//===-- SparcInstrSelection.cpp -------------------------------------------===// // // BURS instruction selection for SPARC V9 architecture. // //===----------------------------------------------------------------------===// #include "SparcInternals.h" #include "SparcInstrSelectionSupport.h" #include "SparcRegClassInfo.h" #include "llvm/CodeGen/InstrSelectionSupport.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineInstrAnnot.h" #include "llvm/CodeGen/InstrForest.h" #include "llvm/CodeGen/InstrSelection.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionInfo.h" #include "llvm/CodeGen/MachineCodeForInstruction.h" #include "llvm/DerivedTypes.h" #include "llvm/Instructions.h" #include "llvm/Module.h" #include "llvm/Constants.h" #include "llvm/ConstantHandling.h" #include "llvm/Intrinsics.h" #include "Support/MathExtras.h" #include #include static inline void Add3OperandInstr(unsigned Opcode, InstructionNode* Node, std::vector& mvec) { mvec.push_back(BuildMI(Opcode, 3).addReg(Node->leftChild()->getValue()) .addReg(Node->rightChild()->getValue()) .addRegDef(Node->getValue())); } //--------------------------------------------------------------------------- // Function: GetMemInstArgs // // Purpose: // Get the pointer value and the index vector for a memory operation // (GetElementPtr, Load, or Store). If all indices of the given memory // operation are constant, fold in constant indices in a chain of // preceding GetElementPtr instructions (if any), and return the // pointer value of the first instruction in the chain. // All folded instructions are marked so no code is generated for them. // // Return values: // Returns the pointer Value to use. // Returns the resulting IndexVector in idxVec. // Returns true/false in allConstantIndices if all indices are/aren't const. //--------------------------------------------------------------------------- //--------------------------------------------------------------------------- // Function: FoldGetElemChain // // Purpose: // Fold a chain of GetElementPtr instructions containing only // constant offsets into an equivalent (Pointer, IndexVector) pair. // Returns the pointer Value, and stores the resulting IndexVector // in argument chainIdxVec. This is a helper function for // FoldConstantIndices that does the actual folding. //--------------------------------------------------------------------------- // Check for a constant 0. inline bool IsZero(Value* idx) { return (idx == ConstantSInt::getNullValue(idx->getType())); } static Value* FoldGetElemChain(InstrTreeNode* ptrNode, std::vector& chainIdxVec, bool lastInstHasLeadingNonZero) { InstructionNode* gepNode = dyn_cast(ptrNode); GetElementPtrInst* gepInst = dyn_cast_or_null(gepNode ? gepNode->getInstruction() :0); // ptr value is not computed in this tree or ptr value does not come from GEP // instruction if (gepInst == NULL) return NULL; // Return NULL if we don't fold any instructions in. Value* ptrVal = NULL; // Now chase the chain of getElementInstr instructions, if any. // Check for any non-constant indices and stop there. // Also, stop if the first index of child is a non-zero array index // and the last index of the current node is a non-array index: // in that case, a non-array declared type is being accessed as an array // which is not type-safe, but could be legal. // InstructionNode* ptrChild = gepNode; while (ptrChild && (ptrChild->getOpLabel() == Instruction::GetElementPtr || ptrChild->getOpLabel() == GetElemPtrIdx)) { // Child is a GetElemPtr instruction gepInst = cast(ptrChild->getValue()); User::op_iterator OI, firstIdx = gepInst->idx_begin(); User::op_iterator lastIdx = gepInst->idx_end(); bool allConstantOffsets = true; // The first index of every GEP must be an array index. assert((*firstIdx)->getType() == Type::LongTy && "INTERNAL ERROR: Structure index for a pointer type!"); // If the last instruction had a leading non-zero index, check if the // current one references a sequential (i.e., indexable) type. // If not, the code is not type-safe and we would create an illegal GEP // by folding them, so don't fold any more instructions. // if (lastInstHasLeadingNonZero) if (! isa(gepInst->getType()->getElementType())) break; // cannot fold in any preceding getElementPtr instrs. // Check that all offsets are constant for this instruction for (OI = firstIdx; allConstantOffsets && OI != lastIdx; ++OI) allConstantOffsets = isa(*OI); if (allConstantOffsets) { // Get pointer value out of ptrChild. ptrVal = gepInst->getPointerOperand(); // Insert its index vector at the start, skipping any leading [0] // Remember the old size to check if anything was inserted. unsigned oldSize = chainIdxVec.size(); int firstIsZero = IsZero(*firstIdx); chainIdxVec.insert(chainIdxVec.begin(), firstIdx + firstIsZero, lastIdx); // Remember if it has leading zero index: it will be discarded later. if (oldSize < chainIdxVec.size()) lastInstHasLeadingNonZero = !firstIsZero; // Mark the folded node so no code is generated for it. ((InstructionNode*) ptrChild)->markFoldedIntoParent(); // Get the previous GEP instruction and continue trying to fold ptrChild = dyn_cast(ptrChild->leftChild()); } else // cannot fold this getElementPtr instr. or any preceding ones break; } // If the first getElementPtr instruction had a leading [0], add it back. // Note that this instruction is the *last* one that was successfully // folded *and* contributed any indices, in the loop above. // if (ptrVal && ! lastInstHasLeadingNonZero) chainIdxVec.insert(chainIdxVec.begin(), ConstantSInt::get(Type::LongTy,0)); return ptrVal; } //--------------------------------------------------------------------------- // Function: GetGEPInstArgs // // Purpose: // Helper function for GetMemInstArgs that handles the final getElementPtr // instruction used by (or same as) the memory operation. // Extracts the indices of the current instruction and tries to fold in // preceding ones if all indices of the current one are constant. //--------------------------------------------------------------------------- static Value * GetGEPInstArgs(InstructionNode* gepNode, std::vector& idxVec, bool& allConstantIndices) { allConstantIndices = true; GetElementPtrInst* gepI = cast(gepNode->getInstruction()); // Default pointer is the one from the current instruction. Value* ptrVal = gepI->getPointerOperand(); InstrTreeNode* ptrChild = gepNode->leftChild(); // Extract the index vector of the GEP instruction. // If all indices are constant and first index is zero, try to fold // in preceding GEPs with all constant indices. for (User::op_iterator OI=gepI->idx_begin(), OE=gepI->idx_end(); allConstantIndices && OI != OE; ++OI) if (! isa(*OI)) allConstantIndices = false; // note: this also terminates loop! // If we have only constant indices, fold chains of constant indices // in this and any preceding GetElemPtr instructions. bool foldedGEPs = false; bool leadingNonZeroIdx = gepI && ! IsZero(*gepI->idx_begin()); if (allConstantIndices) if (Value* newPtr = FoldGetElemChain(ptrChild, idxVec, leadingNonZeroIdx)) { ptrVal = newPtr; foldedGEPs = true; } // Append the index vector of the current instruction. // Skip the leading [0] index if preceding GEPs were folded into this. idxVec.insert(idxVec.end(), gepI->idx_begin() + (foldedGEPs && !leadingNonZeroIdx), gepI->idx_end()); return ptrVal; } //--------------------------------------------------------------------------- // Function: GetMemInstArgs // // Purpose: // Get the pointer value and the index vector for a memory operation // (GetElementPtr, Load, or Store). If all indices of the given memory // operation are constant, fold in constant indices in a chain of // preceding GetElementPtr instructions (if any), and return the // pointer value of the first instruction in the chain. // All folded instructions are marked so no code is generated for them. // // Return values: // Returns the pointer Value to use. // Returns the resulting IndexVector in idxVec. // Returns true/false in allConstantIndices if all indices are/aren't const. //--------------------------------------------------------------------------- static Value* GetMemInstArgs(InstructionNode* memInstrNode, std::vector& idxVec, bool& allConstantIndices) { allConstantIndices = false; Instruction* memInst = memInstrNode->getInstruction(); assert(idxVec.size() == 0 && "Need empty vector to return indices"); // If there is a GetElemPtr instruction to fold in to this instr, // it must be in the left child for Load and GetElemPtr, and in the // right child for Store instructions. InstrTreeNode* ptrChild = (memInst->getOpcode() == Instruction::Store ? memInstrNode->rightChild() : memInstrNode->leftChild()); // Default pointer is the one from the current instruction. Value* ptrVal = ptrChild->getValue(); // Find the "last" GetElemPtr instruction: this one or the immediate child. // There will be none if this is a load or a store from a scalar pointer. InstructionNode* gepNode = NULL; if (isa(memInst)) gepNode = memInstrNode; else if (isa(ptrChild) && isa(ptrVal)) { // Child of load/store is a GEP and memInst is its only use. // Use its indices and mark it as folded. gepNode = cast(ptrChild); gepNode->markFoldedIntoParent(); } // If there are no indices, return the current pointer. // Else extract the pointer from the GEP and fold the indices. return gepNode ? GetGEPInstArgs(gepNode, idxVec, allConstantIndices) : ptrVal; } //************************ Internal Functions ******************************/ static inline MachineOpCode ChooseBprInstruction(const InstructionNode* instrNode) { MachineOpCode opCode; Instruction* setCCInstr = ((InstructionNode*) instrNode->leftChild())->getInstruction(); switch(setCCInstr->getOpcode()) { case Instruction::SetEQ: opCode = V9::BRZ; break; case Instruction::SetNE: opCode = V9::BRNZ; break; case Instruction::SetLE: opCode = V9::BRLEZ; break; case Instruction::SetGE: opCode = V9::BRGEZ; break; case Instruction::SetLT: opCode = V9::BRLZ; break; case Instruction::SetGT: opCode = V9::BRGZ; break; default: assert(0 && "Unrecognized VM instruction!"); opCode = V9::INVALID_OPCODE; break; } return opCode; } static inline MachineOpCode ChooseBpccInstruction(const InstructionNode* instrNode, const BinaryOperator* setCCInstr) { MachineOpCode opCode = V9::INVALID_OPCODE; bool isSigned = setCCInstr->getOperand(0)->getType()->isSigned(); if (isSigned) { switch(setCCInstr->getOpcode()) { case Instruction::SetEQ: opCode = V9::BE; break; case Instruction::SetNE: opCode = V9::BNE; break; case Instruction::SetLE: opCode = V9::BLE; break; case Instruction::SetGE: opCode = V9::BGE; break; case Instruction::SetLT: opCode = V9::BL; break; case Instruction::SetGT: opCode = V9::BG; break; default: assert(0 && "Unrecognized VM instruction!"); break; } } else { switch(setCCInstr->getOpcode()) { case Instruction::SetEQ: opCode = V9::BE; break; case Instruction::SetNE: opCode = V9::BNE; break; case Instruction::SetLE: opCode = V9::BLEU; break; case Instruction::SetGE: opCode = V9::BCC; break; case Instruction::SetLT: opCode = V9::BCS; break; case Instruction::SetGT: opCode = V9::BGU; break; default: assert(0 && "Unrecognized VM instruction!"); break; } } return opCode; } static inline MachineOpCode ChooseBFpccInstruction(const InstructionNode* instrNode, const BinaryOperator* setCCInstr) { MachineOpCode opCode = V9::INVALID_OPCODE; switch(setCCInstr->getOpcode()) { case Instruction::SetEQ: opCode = V9::FBE; break; case Instruction::SetNE: opCode = V9::FBNE; break; case Instruction::SetLE: opCode = V9::FBLE; break; case Instruction::SetGE: opCode = V9::FBGE; break; case Instruction::SetLT: opCode = V9::FBL; break; case Instruction::SetGT: opCode = V9::FBG; break; default: assert(0 && "Unrecognized VM instruction!"); break; } return opCode; } // Create a unique TmpInstruction for a boolean value, // representing the CC register used by a branch on that value. // For now, hack this using a little static cache of TmpInstructions. // Eventually the entire BURG instruction selection should be put // into a separate class that can hold such information. // The static cache is not too bad because the memory for these // TmpInstructions will be freed along with the rest of the Function anyway. // static TmpInstruction* GetTmpForCC(Value* boolVal, const Function *F, const Type* ccType, MachineCodeForInstruction& mcfi) { typedef hash_map BoolTmpCache; static BoolTmpCache boolToTmpCache; // Map boolVal -> TmpInstruction* static const Function *lastFunction = 0;// Use to flush cache between funcs assert(boolVal->getType() == Type::BoolTy && "Weird but ok! Delete assert"); if (lastFunction != F) { lastFunction = F; boolToTmpCache.clear(); } // Look for tmpI and create a new one otherwise. The new value is // directly written to map using the ref returned by operator[]. TmpInstruction*& tmpI = boolToTmpCache[boolVal]; if (tmpI == NULL) tmpI = new TmpInstruction(mcfi, ccType, boolVal); return tmpI; } static inline MachineOpCode ChooseBccInstruction(const InstructionNode* instrNode, const Type*& setCCType) { InstructionNode* setCCNode = (InstructionNode*) instrNode->leftChild(); assert(setCCNode->getOpLabel() == SetCCOp); BinaryOperator* setCCInstr =cast(setCCNode->getInstruction()); setCCType = setCCInstr->getOperand(0)->getType(); if (setCCType->isFloatingPoint()) return ChooseBFpccInstruction(instrNode, setCCInstr); else return ChooseBpccInstruction(instrNode, setCCInstr); } // WARNING: since this function has only one caller, it always returns // the opcode that expects an immediate and a register. If this function // is ever used in cases where an opcode that takes two registers is required, // then modify this function and use convertOpcodeFromRegToImm() where required. // // It will be necessary to expand convertOpcodeFromRegToImm() to handle the // new cases of opcodes. static inline MachineOpCode ChooseMovFpcciInstruction(const InstructionNode* instrNode) { MachineOpCode opCode = V9::INVALID_OPCODE; switch(instrNode->getInstruction()->getOpcode()) { case Instruction::SetEQ: opCode = V9::MOVFEi; break; case Instruction::SetNE: opCode = V9::MOVFNEi; break; case Instruction::SetLE: opCode = V9::MOVFLEi; break; case Instruction::SetGE: opCode = V9::MOVFGEi; break; case Instruction::SetLT: opCode = V9::MOVFLi; break; case Instruction::SetGT: opCode = V9::MOVFGi; break; default: assert(0 && "Unrecognized VM instruction!"); break; } return opCode; } // ChooseMovpcciForSetCC -- Choose a conditional-move instruction // based on the type of SetCC operation. // // WARNING: since this function has only one caller, it always returns // the opcode that expects an immediate and a register. If this function // is ever used in cases where an opcode that takes two registers is required, // then modify this function and use convertOpcodeFromRegToImm() where required. // // It will be necessary to expand convertOpcodeFromRegToImm() to handle the // new cases of opcodes. // static MachineOpCode ChooseMovpcciForSetCC(const InstructionNode* instrNode) { MachineOpCode opCode = V9::INVALID_OPCODE; const Type* opType = instrNode->leftChild()->getValue()->getType(); assert(opType->isIntegral() || isa(opType)); bool noSign = opType->isUnsigned() || isa(opType); switch(instrNode->getInstruction()->getOpcode()) { case Instruction::SetEQ: opCode = V9::MOVEi; break; case Instruction::SetLE: opCode = noSign? V9::MOVLEUi : V9::MOVLEi; break; case Instruction::SetGE: opCode = noSign? V9::MOVCCi : V9::MOVGEi; break; case Instruction::SetLT: opCode = noSign? V9::MOVCSi : V9::MOVLi; break; case Instruction::SetGT: opCode = noSign? V9::MOVGUi : V9::MOVGi; break; case Instruction::SetNE: opCode = V9::MOVNEi; break; default: assert(0 && "Unrecognized LLVM instr!"); break; } return opCode; } // ChooseMovpregiForSetCC -- Choose a conditional-move-on-register-value // instruction based on the type of SetCC operation. These instructions // compare a register with 0 and perform the move is the comparison is true. // // WARNING: like the previous function, this function it always returns // the opcode that expects an immediate and a register. See above. // static MachineOpCode ChooseMovpregiForSetCC(const InstructionNode* instrNode) { MachineOpCode opCode = V9::INVALID_OPCODE; switch(instrNode->getInstruction()->getOpcode()) { case Instruction::SetEQ: opCode = V9::MOVRZi; break; case Instruction::SetLE: opCode = V9::MOVRLEZi; break; case Instruction::SetGE: opCode = V9::MOVRGEZi; break; case Instruction::SetLT: opCode = V9::MOVRLZi; break; case Instruction::SetGT: opCode = V9::MOVRGZi; break; case Instruction::SetNE: opCode = V9::MOVRNZi; break; default: assert(0 && "Unrecognized VM instr!"); break; } return opCode; } static inline MachineOpCode ChooseConvertToFloatInstr(const TargetMachine& target, OpLabel vopCode, const Type* opType) { assert((vopCode == ToFloatTy || vopCode == ToDoubleTy) && "Unrecognized convert-to-float opcode!"); assert((opType->isIntegral() || opType->isFloatingPoint() || isa(opType)) && "Trying to convert a non-scalar type to FLOAT/DOUBLE?"); MachineOpCode opCode = V9::INVALID_OPCODE; unsigned opSize = target.getTargetData().getTypeSize(opType); if (opType == Type::FloatTy) opCode = (vopCode == ToFloatTy? V9::NOP : V9::FSTOD); else if (opType == Type::DoubleTy) opCode = (vopCode == ToFloatTy? V9::FDTOS : V9::NOP); else if (opSize <= 4) opCode = (vopCode == ToFloatTy? V9::FITOS : V9::FITOD); else { assert(opSize == 8 && "Unrecognized type size > 4 and < 8!"); opCode = (vopCode == ToFloatTy? V9::FXTOS : V9::FXTOD); } return opCode; } static inline MachineOpCode ChooseConvertFPToIntInstr(const TargetMachine& target, const Type* destType, const Type* opType) { assert((opType == Type::FloatTy || opType == Type::DoubleTy) && "This function should only be called for FLOAT or DOUBLE"); assert((destType->isIntegral() || isa(destType)) && "Trying to convert FLOAT/DOUBLE to a non-scalar type?"); MachineOpCode opCode = V9::INVALID_OPCODE; unsigned destSize = target.getTargetData().getTypeSize(destType); if (destType == Type::UIntTy) assert(destType != Type::UIntTy && "Expand FP-to-uint beforehand."); else if (destSize <= 4) opCode = (opType == Type::FloatTy)? V9::FSTOI : V9::FDTOI; else { assert(destSize == 8 && "Unrecognized type size > 4 and < 8!"); opCode = (opType == Type::FloatTy)? V9::FSTOX : V9::FDTOX; } return opCode; } static MachineInstr* CreateConvertFPToIntInstr(const TargetMachine& target, Value* srcVal, Value* destVal, const Type* destType) { MachineOpCode opCode = ChooseConvertFPToIntInstr(target, destType, srcVal->getType()); assert(opCode != V9::INVALID_OPCODE && "Expected to need conversion!"); return BuildMI(opCode, 2).addReg(srcVal).addRegDef(destVal); } // CreateCodeToConvertFloatToInt: Convert FP value to signed or unsigned integer // The FP value must be converted to the dest type in an FP register, // and the result is then copied from FP to int register via memory. // SPARC does not have a float-to-uint conversion, only a float-to-int (fdtoi). // Since fdtoi converts to signed integers, any FP value V between MAXINT+1 // and MAXUNSIGNED (i.e., 2^31 <= V <= 2^32-1) would be converted incorrectly. // Therefore, for converting an FP value to uint32_t, we first need to convert // to uint64_t and then to uint32_t. // static void CreateCodeToConvertFloatToInt(const TargetMachine& target, Value* opVal, Instruction* destI, std::vector& mvec, MachineCodeForInstruction& mcfi) { Function* F = destI->getParent()->getParent(); // Create a temporary to represent the FP register into which the // int value will placed after conversion. The type of this temporary // depends on the type of FP register to use: single-prec for a 32-bit // int or smaller; double-prec for a 64-bit int. // size_t destSize = target.getTargetData().getTypeSize(destI->getType()); const Type* castDestType = destI->getType(); // type for the cast instr result const Type* castDestRegType; // type for cast instruction result reg TmpInstruction* destForCast; // dest for cast instruction Instruction* fpToIntCopyDest = destI; // dest for fp-reg-to-int-reg copy instr // For converting an FP value to uint32_t, we first need to convert to // uint64_t and then to uint32_t, as explained above. if (destI->getType() == Type::UIntTy) { castDestType = Type::ULongTy; // use this instead of type of destI castDestRegType = Type::DoubleTy; // uint64_t needs 64-bit FP register. destForCast = new TmpInstruction(mcfi, castDestRegType, opVal); fpToIntCopyDest = new TmpInstruction(mcfi, castDestType, destForCast); } else { castDestRegType = (destSize > 4)? Type::DoubleTy : Type::FloatTy; destForCast = new TmpInstruction(mcfi, castDestRegType, opVal); } // Create the fp-to-int conversion instruction (src and dest regs are FP regs) mvec.push_back(CreateConvertFPToIntInstr(target, opVal, destForCast, castDestType)); // Create the fpreg-to-intreg copy code target.getInstrInfo().CreateCodeToCopyFloatToInt(target, F, destForCast, fpToIntCopyDest, mvec, mcfi); // Create the uint64_t to uint32_t conversion, if needed if (destI->getType() == Type::UIntTy) target.getInstrInfo(). CreateZeroExtensionInstructions(target, F, fpToIntCopyDest, destI, /*numLowBits*/ 32, mvec, mcfi); } static inline MachineOpCode ChooseAddInstruction(const InstructionNode* instrNode) { return ChooseAddInstructionByType(instrNode->getInstruction()->getType()); } static inline MachineInstr* CreateMovFloatInstruction(const InstructionNode* instrNode, const Type* resultType) { return BuildMI((resultType == Type::FloatTy) ? V9::FMOVS : V9::FMOVD, 2) .addReg(instrNode->leftChild()->getValue()) .addRegDef(instrNode->getValue()); } static inline MachineInstr* CreateAddConstInstruction(const InstructionNode* instrNode) { MachineInstr* minstr = NULL; Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue(); assert(isa(constOp)); // Cases worth optimizing are: // (1) Add with 0 for float or double: use an FMOV of appropriate type, // instead of an FADD (1 vs 3 cycles). There is no integer MOV. // if (ConstantFP *FPC = dyn_cast(constOp)) { double dval = FPC->getValue(); if (dval == 0.0) minstr = CreateMovFloatInstruction(instrNode, instrNode->getInstruction()->getType()); } return minstr; } static inline MachineOpCode ChooseSubInstructionByType(const Type* resultType) { MachineOpCode opCode = V9::INVALID_OPCODE; if (resultType->isInteger() || isa(resultType)) { opCode = V9::SUBr; } else { switch(resultType->getPrimitiveID()) { case Type::FloatTyID: opCode = V9::FSUBS; break; case Type::DoubleTyID: opCode = V9::FSUBD; break; default: assert(0 && "Invalid type for SUB instruction"); break; } } return opCode; } static inline MachineInstr* CreateSubConstInstruction(const InstructionNode* instrNode) { MachineInstr* minstr = NULL; Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue(); assert(isa(constOp)); // Cases worth optimizing are: // (1) Sub with 0 for float or double: use an FMOV of appropriate type, // instead of an FSUB (1 vs 3 cycles). There is no integer MOV. // if (ConstantFP *FPC = dyn_cast(constOp)) { double dval = FPC->getValue(); if (dval == 0.0) minstr = CreateMovFloatInstruction(instrNode, instrNode->getInstruction()->getType()); } return minstr; } static inline MachineOpCode ChooseFcmpInstruction(const InstructionNode* instrNode) { MachineOpCode opCode = V9::INVALID_OPCODE; Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue(); switch(operand->getType()->getPrimitiveID()) { case Type::FloatTyID: opCode = V9::FCMPS; break; case Type::DoubleTyID: opCode = V9::FCMPD; break; default: assert(0 && "Invalid type for FCMP instruction"); break; } return opCode; } // Assumes that leftArg and rightArg are both cast instructions. // static inline bool BothFloatToDouble(const InstructionNode* instrNode) { InstrTreeNode* leftArg = instrNode->leftChild(); InstrTreeNode* rightArg = instrNode->rightChild(); InstrTreeNode* leftArgArg = leftArg->leftChild(); InstrTreeNode* rightArgArg = rightArg->leftChild(); assert(leftArg->getValue()->getType() == rightArg->getValue()->getType()); // Check if both arguments are floats cast to double return (leftArg->getValue()->getType() == Type::DoubleTy && leftArgArg->getValue()->getType() == Type::FloatTy && rightArgArg->getValue()->getType() == Type::FloatTy); } static inline MachineOpCode ChooseMulInstructionByType(const Type* resultType) { MachineOpCode opCode = V9::INVALID_OPCODE; if (resultType->isInteger()) opCode = V9::MULXr; else switch(resultType->getPrimitiveID()) { case Type::FloatTyID: opCode = V9::FMULS; break; case Type::DoubleTyID: opCode = V9::FMULD; break; default: assert(0 && "Invalid type for MUL instruction"); break; } return opCode; } static inline MachineInstr* CreateIntNegInstruction(const TargetMachine& target, Value* vreg) { return BuildMI(V9::SUBr, 3).addMReg(target.getRegInfo().getZeroRegNum()) .addReg(vreg).addRegDef(vreg); } // Create instruction sequence for any shift operation. // SLL or SLLX on an operand smaller than the integer reg. size (64bits) // requires a second instruction for explicit sign-extension. // Note that we only have to worry about a sign-bit appearing in the // most significant bit of the operand after shifting (e.g., bit 32 of // Int or bit 16 of Short), so we do not have to worry about results // that are as large as a normal integer register. // static inline void CreateShiftInstructions(const TargetMachine& target, Function* F, MachineOpCode shiftOpCode, Value* argVal1, Value* optArgVal2, /* Use optArgVal2 if not NULL */ unsigned optShiftNum, /* else use optShiftNum */ Instruction* destVal, std::vector& mvec, MachineCodeForInstruction& mcfi) { assert((optArgVal2 != NULL || optShiftNum <= 64) && "Large shift sizes unexpected, but can be handled below: " "You need to check whether or not it fits in immed field below"); // If this is a logical left shift of a type smaller than the standard // integer reg. size, we have to extend the sign-bit into upper bits // of dest, so we need to put the result of the SLL into a temporary. // Value* shiftDest = destVal; unsigned opSize = target.getTargetData().getTypeSize(argVal1->getType()); if ((shiftOpCode == V9::SLLr5 || shiftOpCode == V9::SLLXr6) && opSize < 8) { // put SLL result into a temporary shiftDest = new TmpInstruction(mcfi, argVal1, optArgVal2, "sllTmp"); } MachineInstr* M = (optArgVal2 != NULL) ? BuildMI(shiftOpCode, 3).addReg(argVal1).addReg(optArgVal2) .addReg(shiftDest, MOTy::Def) : BuildMI(shiftOpCode, 3).addReg(argVal1).addZImm(optShiftNum) .addReg(shiftDest, MOTy::Def); mvec.push_back(M); if (shiftDest != destVal) { // extend the sign-bit of the result into all upper bits of dest assert(8*opSize <= 32 && "Unexpected type size > 4 and < IntRegSize?"); target.getInstrInfo(). CreateSignExtensionInstructions(target, F, shiftDest, destVal, 8*opSize, mvec, mcfi); } } // Does not create any instructions if we cannot exploit constant to // create a cheaper instruction. // This returns the approximate cost of the instructions generated, // which is used to pick the cheapest when both operands are constant. static unsigned CreateMulConstInstruction(const TargetMachine &target, Function* F, Value* lval, Value* rval, Instruction* destVal, std::vector& mvec, MachineCodeForInstruction& mcfi) { /* Use max. multiply cost, viz., cost of MULX */ unsigned cost = target.getInstrInfo().minLatency(V9::MULXr); unsigned firstNewInstr = mvec.size(); Value* constOp = rval; if (! isa(constOp)) return cost; // Cases worth optimizing are: // (1) Multiply by 0 or 1 for any type: replace with copy (ADD or FMOV) // (2) Multiply by 2^x for integer types: replace with Shift // const Type* resultType = destVal->getType(); if (resultType->isInteger() || isa(resultType)) { bool isValidConst; int64_t C = (int64_t) target.getInstrInfo().ConvertConstantToIntType(target, constOp, constOp->getType(), isValidConst); if (isValidConst) { unsigned pow; bool needNeg = false; if (C < 0) { needNeg = true; C = -C; } if (C == 0 || C == 1) { cost = target.getInstrInfo().minLatency(V9::ADDr); unsigned Zero = target.getRegInfo().getZeroRegNum(); MachineInstr* M; if (C == 0) M =BuildMI(V9::ADDr,3).addMReg(Zero).addMReg(Zero).addRegDef(destVal); else M = BuildMI(V9::ADDr,3).addReg(lval).addMReg(Zero).addRegDef(destVal); mvec.push_back(M); } else if (isPowerOf2(C, pow)) { unsigned opSize = target.getTargetData().getTypeSize(resultType); MachineOpCode opCode = (opSize <= 32)? V9::SLLr5 : V9::SLLXr6; CreateShiftInstructions(target, F, opCode, lval, NULL, pow, destVal, mvec, mcfi); } if (mvec.size() > 0 && needNeg) { // insert after the instr to flip the sign MachineInstr* M = CreateIntNegInstruction(target, destVal); mvec.push_back(M); } } } else { if (ConstantFP *FPC = dyn_cast(constOp)) { double dval = FPC->getValue(); if (fabs(dval) == 1) { MachineOpCode opCode = (dval < 0) ? (resultType == Type::FloatTy? V9::FNEGS : V9::FNEGD) : (resultType == Type::FloatTy? V9::FMOVS : V9::FMOVD); mvec.push_back(BuildMI(opCode,2).addReg(lval).addRegDef(destVal)); } } } if (firstNewInstr < mvec.size()) { cost = 0; for (unsigned i=firstNewInstr; i < mvec.size(); ++i) cost += target.getInstrInfo().minLatency(mvec[i]->getOpCode()); } return cost; } // Does not create any instructions if we cannot exploit constant to // create a cheaper instruction. // static inline void CreateCheapestMulConstInstruction(const TargetMachine &target, Function* F, Value* lval, Value* rval, Instruction* destVal, std::vector& mvec, MachineCodeForInstruction& mcfi) { Value* constOp; if (isa(lval) && isa(rval)) { // both operands are constant: evaluate and "set" in dest Constant* P = ConstantFoldBinaryInstruction(Instruction::Mul, cast(lval), cast(rval)); target.getInstrInfo().CreateCodeToLoadConst(target,F,P,destVal,mvec,mcfi); } else if (isa(rval)) // rval is constant, but not lval CreateMulConstInstruction(target, F, lval, rval, destVal, mvec, mcfi); else if (isa(lval)) // lval is constant, but not rval CreateMulConstInstruction(target, F, lval, rval, destVal, mvec, mcfi); // else neither is constant return; } // Return NULL if we cannot exploit constant to create a cheaper instruction static inline void CreateMulInstruction(const TargetMachine &target, Function* F, Value* lval, Value* rval, Instruction* destVal, std::vector& mvec, MachineCodeForInstruction& mcfi, MachineOpCode forceMulOp = INVALID_MACHINE_OPCODE) { unsigned L = mvec.size(); CreateCheapestMulConstInstruction(target,F, lval, rval, destVal, mvec, mcfi); if (mvec.size() == L) { // no instructions were added so create MUL reg, reg, reg. // Use FSMULD if both operands are actually floats cast to doubles. // Otherwise, use the default opcode for the appropriate type. MachineOpCode mulOp = ((forceMulOp != INVALID_MACHINE_OPCODE) ? forceMulOp : ChooseMulInstructionByType(destVal->getType())); mvec.push_back(BuildMI(mulOp, 3).addReg(lval).addReg(rval) .addRegDef(destVal)); } } // Generate a divide instruction for Div or Rem. // For Rem, this assumes that the operand type will be signed if the result // type is signed. This is correct because they must have the same sign. // static inline MachineOpCode ChooseDivInstruction(TargetMachine &target, const InstructionNode* instrNode) { MachineOpCode opCode = V9::INVALID_OPCODE; const Type* resultType = instrNode->getInstruction()->getType(); if (resultType->isInteger()) opCode = resultType->isSigned()? V9::SDIVXr : V9::UDIVXr; else switch(resultType->getPrimitiveID()) { case Type::FloatTyID: opCode = V9::FDIVS; break; case Type::DoubleTyID: opCode = V9::FDIVD; break; default: assert(0 && "Invalid type for DIV instruction"); break; } return opCode; } // Return if we cannot exploit constant to create a cheaper instruction static void CreateDivConstInstruction(TargetMachine &target, const InstructionNode* instrNode, std::vector& mvec) { Value* LHS = instrNode->leftChild()->getValue(); Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue(); if (!isa(constOp)) return; Instruction* destVal = instrNode->getInstruction(); unsigned ZeroReg = target.getRegInfo().getZeroRegNum(); // Cases worth optimizing are: // (1) Divide by 1 for any type: replace with copy (ADD or FMOV) // (2) Divide by 2^x for integer types: replace with SR[L or A]{X} // const Type* resultType = instrNode->getInstruction()->getType(); if (resultType->isInteger()) { unsigned pow; bool isValidConst; int64_t C = (int64_t) target.getInstrInfo().ConvertConstantToIntType(target, constOp, constOp->getType(), isValidConst); if (isValidConst) { bool needNeg = false; if (C < 0) { needNeg = true; C = -C; } if (C == 1) { mvec.push_back(BuildMI(V9::ADDr, 3).addReg(LHS).addMReg(ZeroReg) .addRegDef(destVal)); } else if (isPowerOf2(C, pow)) { unsigned opCode; Value* shiftOperand; unsigned opSize = target.getTargetData().getTypeSize(resultType); if (resultType->isSigned()) { // For N / 2^k, if the operand N is negative, // we need to add (2^k - 1) before right-shifting by k, i.e., // // (N / 2^k) = N >> k, if N >= 0; // (N + 2^k - 1) >> k, if N < 0 // // If N is <= 32 bits, use: // sra N, 31, t1 // t1 = ~0, if N < 0, 0 else // srl t1, 32-k, t2 // t2 = 2^k - 1, if N < 0, 0 else // add t2, N, t3 // t3 = N + 2^k -1, if N < 0, N else // sra t3, k, result // result = N / 2^k // // If N is 64 bits, use: // srax N, k-1, t1 // t1 = sign bit in high k positions // srlx t1, 64-k, t2 // t2 = 2^k - 1, if N < 0, 0 else // add t2, N, t3 // t3 = N + 2^k -1, if N < 0, N else // sra t3, k, result // result = N / 2^k // TmpInstruction *sraTmp, *srlTmp, *addTmp; MachineCodeForInstruction& mcfi = MachineCodeForInstruction::get(destVal); sraTmp = new TmpInstruction(mcfi, resultType, LHS, 0, "getSign"); srlTmp = new TmpInstruction(mcfi, resultType, LHS, 0, "getPlus2km1"); addTmp = new TmpInstruction(mcfi, resultType, LHS, srlTmp,"incIfNeg"); // Create the SRA or SRAX instruction to get the sign bit mvec.push_back(BuildMI((opSize > 4)? V9::SRAXi6 : V9::SRAi5, 3) .addReg(LHS) .addSImm((resultType==Type::LongTy)? pow-1 : 31) .addRegDef(sraTmp)); // Create the SRL or SRLX instruction to get the sign bit mvec.push_back(BuildMI((opSize > 4)? V9::SRLXi6 : V9::SRLi5, 3) .addReg(sraTmp) .addSImm((resultType==Type::LongTy)? 64-pow : 32-pow) .addRegDef(srlTmp)); // Create the ADD instruction to add 2^pow-1 for negative values mvec.push_back(BuildMI(V9::ADDr, 3).addReg(LHS).addReg(srlTmp) .addRegDef(addTmp)); // Get the shift operand and "right-shift" opcode to do the divide shiftOperand = addTmp; opCode = (opSize > 4)? V9::SRAXi6 : V9::SRAi5; } else { // Get the shift operand and "right-shift" opcode to do the divide shiftOperand = LHS; opCode = (opSize > 4)? V9::SRLXi6 : V9::SRLi5; } // Now do the actual shift! mvec.push_back(BuildMI(opCode, 3).addReg(shiftOperand).addZImm(pow) .addRegDef(destVal)); } if (needNeg && (C == 1 || isPowerOf2(C, pow))) { // insert after the instr to flip the sign mvec.push_back(CreateIntNegInstruction(target, destVal)); } } } else { if (ConstantFP *FPC = dyn_cast(constOp)) { double dval = FPC->getValue(); if (fabs(dval) == 1) { unsigned opCode = (dval < 0) ? (resultType == Type::FloatTy? V9::FNEGS : V9::FNEGD) : (resultType == Type::FloatTy? V9::FMOVS : V9::FMOVD); mvec.push_back(BuildMI(opCode, 2).addReg(LHS).addRegDef(destVal)); } } } } static void CreateCodeForVariableSizeAlloca(const TargetMachine& target, Instruction* result, unsigned tsize, Value* numElementsVal, std::vector& getMvec) { Value* totalSizeVal; MachineInstr* M; MachineCodeForInstruction& mcfi = MachineCodeForInstruction::get(result); Function *F = result->getParent()->getParent(); // Enforce the alignment constraints on the stack pointer at // compile time if the total size is a known constant. if (isa(numElementsVal)) { bool isValid; int64_t numElem = (int64_t) target.getInstrInfo(). ConvertConstantToIntType(target, numElementsVal, numElementsVal->getType(), isValid); assert(isValid && "Unexpectedly large array dimension in alloca!"); int64_t total = numElem * tsize; if (int extra= total % target.getFrameInfo().getStackFrameSizeAlignment()) total += target.getFrameInfo().getStackFrameSizeAlignment() - extra; totalSizeVal = ConstantSInt::get(Type::IntTy, total); } else { // The size is not a constant. Generate code to compute it and // code to pad the size for stack alignment. // Create a Value to hold the (constant) element size Value* tsizeVal = ConstantSInt::get(Type::IntTy, tsize); // Create temporary values to hold the result of MUL, SLL, SRL // To pad `size' to next smallest multiple of 16: // size = (size + 15) & (-16 = 0xfffffffffffffff0) // TmpInstruction* tmpProd = new TmpInstruction(mcfi,numElementsVal, tsizeVal); TmpInstruction* tmpAdd15= new TmpInstruction(mcfi,numElementsVal, tmpProd); TmpInstruction* tmpAndf0= new TmpInstruction(mcfi,numElementsVal, tmpAdd15); // Instruction 1: mul numElements, typeSize -> tmpProd // This will optimize the MUL as far as possible. CreateMulInstruction(target, F, numElementsVal, tsizeVal, tmpProd, getMvec, mcfi, INVALID_MACHINE_OPCODE); // Instruction 2: andn tmpProd, 0x0f -> tmpAndn getMvec.push_back(BuildMI(V9::ADDi, 3).addReg(tmpProd).addSImm(15) .addReg(tmpAdd15, MOTy::Def)); // Instruction 3: add tmpAndn, 0x10 -> tmpAdd16 getMvec.push_back(BuildMI(V9::ANDi, 3).addReg(tmpAdd15).addSImm(-16) .addReg(tmpAndf0, MOTy::Def)); totalSizeVal = tmpAndf0; } // Get the constant offset from SP for dynamically allocated storage // and create a temporary Value to hold it. MachineFunction& mcInfo = MachineFunction::get(F); bool growUp; ConstantSInt* dynamicAreaOffset = ConstantSInt::get(Type::IntTy, target.getFrameInfo().getDynamicAreaOffset(mcInfo,growUp)); assert(! growUp && "Has SPARC v9 stack frame convention changed?"); unsigned SPReg = target.getRegInfo().getStackPointer(); // Instruction 2: sub %sp, totalSizeVal -> %sp getMvec.push_back(BuildMI(V9::SUBr, 3).addMReg(SPReg).addReg(totalSizeVal) .addMReg(SPReg,MOTy::Def)); // Instruction 3: add %sp, frameSizeBelowDynamicArea -> result getMvec.push_back(BuildMI(V9::ADDr,3).addMReg(SPReg).addReg(dynamicAreaOffset) .addRegDef(result)); } static void CreateCodeForFixedSizeAlloca(const TargetMachine& target, Instruction* result, unsigned tsize, unsigned numElements, std::vector& getMvec) { assert(tsize > 0 && "Illegal (zero) type size for alloca"); assert(result && result->getParent() && "Result value is not part of a function?"); Function *F = result->getParent()->getParent(); MachineFunction &mcInfo = MachineFunction::get(F); // Put the variable in the dynamically sized area of the frame if either: // (a) The offset is too large to use as an immediate in load/stores // (check LDX because all load/stores have the same-size immed. field). // (b) The object is "large", so it could cause many other locals, // spills, and temporaries to have large offsets. // NOTE: We use LARGE = 8 * argSlotSize = 64 bytes. // You've gotta love having only 13 bits for constant offset values :-|. // unsigned paddedSize; int offsetFromFP = mcInfo.getInfo()->computeOffsetforLocalVar(result, paddedSize, tsize * numElements); if (((int)paddedSize) > 8 * target.getFrameInfo().getSizeOfEachArgOnStack() || ! target.getInstrInfo().constantFitsInImmedField(V9::LDXi,offsetFromFP)) { CreateCodeForVariableSizeAlloca(target, result, tsize, ConstantSInt::get(Type::IntTy,numElements), getMvec); return; } // else offset fits in immediate field so go ahead and allocate it. offsetFromFP = mcInfo.getInfo()->allocateLocalVar(result, tsize *numElements); // Create a temporary Value to hold the constant offset. // This is needed because it may not fit in the immediate field. ConstantSInt* offsetVal = ConstantSInt::get(Type::IntTy, offsetFromFP); // Instruction 1: add %fp, offsetFromFP -> result unsigned FPReg = target.getRegInfo().getFramePointer(); getMvec.push_back(BuildMI(V9::ADDr, 3).addMReg(FPReg).addReg(offsetVal) .addRegDef(result)); } //------------------------------------------------------------------------ // Function SetOperandsForMemInstr // // Choose addressing mode for the given load or store instruction. // Use [reg+reg] if it is an indexed reference, and the index offset is // not a constant or if it cannot fit in the offset field. // Use [reg+offset] in all other cases. // // This assumes that all array refs are "lowered" to one of these forms: // %x = load (subarray*) ptr, constant ; single constant offset // %x = load (subarray*) ptr, offsetVal ; single non-constant offset // Generally, this should happen via strength reduction + LICM. // Also, strength reduction should take care of using the same register for // the loop index variable and an array index, when that is profitable. //------------------------------------------------------------------------ static void SetOperandsForMemInstr(unsigned Opcode, std::vector& mvec, InstructionNode* vmInstrNode, const TargetMachine& target) { Instruction* memInst = vmInstrNode->getInstruction(); // Index vector, ptr value, and flag if all indices are const. std::vector idxVec; bool allConstantIndices; Value* ptrVal = GetMemInstArgs(vmInstrNode, idxVec, allConstantIndices); // Now create the appropriate operands for the machine instruction. // First, initialize so we default to storing the offset in a register. int64_t smallConstOffset = 0; Value* valueForRegOffset = NULL; MachineOperand::MachineOperandType offsetOpType = MachineOperand::MO_VirtualRegister; // Check if there is an index vector and if so, compute the // right offset for structures and for arrays // if (!idxVec.empty()) { const PointerType* ptrType = cast(ptrVal->getType()); // If all indices are constant, compute the combined offset directly. if (allConstantIndices) { // Compute the offset value using the index vector. Create a // virtual reg. for it since it may not fit in the immed field. uint64_t offset = target.getTargetData().getIndexedOffset(ptrType,idxVec); valueForRegOffset = ConstantSInt::get(Type::LongTy, offset); } else { // There is at least one non-constant offset. Therefore, this must // be an array ref, and must have been lowered to a single non-zero // offset. (An extra leading zero offset, if any, can be ignored.) // Generate code sequence to compute address from index. // bool firstIdxIsZero = IsZero(idxVec[0]); assert(idxVec.size() == 1U + firstIdxIsZero && "Array refs must be lowered before Instruction Selection"); Value* idxVal = idxVec[firstIdxIsZero]; std::vector mulVec; Instruction* addr = new TmpInstruction(MachineCodeForInstruction::get(memInst), Type::ULongTy, memInst); // Get the array type indexed by idxVal, and compute its element size. // The call to getTypeSize() will fail if size is not constant. const Type* vecType = (firstIdxIsZero ? GetElementPtrInst::getIndexedType(ptrType, std::vector(1U, idxVec[0]), /*AllowCompositeLeaf*/ true) : ptrType); const Type* eltType = cast(vecType)->getElementType(); ConstantUInt* eltSizeVal = ConstantUInt::get(Type::ULongTy, target.getTargetData().getTypeSize(eltType)); // CreateMulInstruction() folds constants intelligently enough. CreateMulInstruction(target, memInst->getParent()->getParent(), idxVal, /* lval, not likely to be const*/ eltSizeVal, /* rval, likely to be constant */ addr, /* result */ mulVec, MachineCodeForInstruction::get(memInst), INVALID_MACHINE_OPCODE); assert(mulVec.size() > 0 && "No multiply code created?"); mvec.insert(mvec.end(), mulVec.begin(), mulVec.end()); valueForRegOffset = addr; } } else { offsetOpType = MachineOperand::MO_SignExtendedImmed; smallConstOffset = 0; } // For STORE: // Operand 0 is value, operand 1 is ptr, operand 2 is offset // For LOAD or GET_ELEMENT_PTR, // Operand 0 is ptr, operand 1 is offset, operand 2 is result. // unsigned offsetOpNum, ptrOpNum; MachineInstr *MI; if (memInst->getOpcode() == Instruction::Store) { if (offsetOpType == MachineOperand::MO_VirtualRegister) { MI = BuildMI(Opcode, 3).addReg(vmInstrNode->leftChild()->getValue()) .addReg(ptrVal).addReg(valueForRegOffset); } else { Opcode = convertOpcodeFromRegToImm(Opcode); MI = BuildMI(Opcode, 3).addReg(vmInstrNode->leftChild()->getValue()) .addReg(ptrVal).addSImm(smallConstOffset); } } else { if (offsetOpType == MachineOperand::MO_VirtualRegister) { MI = BuildMI(Opcode, 3).addReg(ptrVal).addReg(valueForRegOffset) .addRegDef(memInst); } else { Opcode = convertOpcodeFromRegToImm(Opcode); MI = BuildMI(Opcode, 3).addReg(ptrVal).addSImm(smallConstOffset) .addRegDef(memInst); } } mvec.push_back(MI); } // // Substitute operand `operandNum' of the instruction in node `treeNode' // in place of the use(s) of that instruction in node `parent'. // Check both explicit and implicit operands! // Also make sure to skip over a parent who: // (1) is a list node in the Burg tree, or // (2) itself had its results forwarded to its parent // static void ForwardOperand(InstructionNode* treeNode, InstrTreeNode* parent, int operandNum) { assert(treeNode && parent && "Invalid invocation of ForwardOperand"); Instruction* unusedOp = treeNode->getInstruction(); Value* fwdOp = unusedOp->getOperand(operandNum); // The parent itself may be a list node, so find the real parent instruction while (parent->getNodeType() != InstrTreeNode::NTInstructionNode) { parent = parent->parent(); assert(parent && "ERROR: Non-instruction node has no parent in tree."); } InstructionNode* parentInstrNode = (InstructionNode*) parent; Instruction* userInstr = parentInstrNode->getInstruction(); MachineCodeForInstruction &mvec = MachineCodeForInstruction::get(userInstr); // The parent's mvec would be empty if it was itself forwarded. // Recursively call ForwardOperand in that case... // if (mvec.size() == 0) { assert(parent->parent() != NULL && "Parent could not have been forwarded, yet has no instructions?"); ForwardOperand(treeNode, parent->parent(), operandNum); } else { for (unsigned i=0, N=mvec.size(); i < N; i++) { MachineInstr* minstr = mvec[i]; for (unsigned i=0, numOps=minstr->getNumOperands(); i < numOps; ++i) { const MachineOperand& mop = minstr->getOperand(i); if (mop.getType() == MachineOperand::MO_VirtualRegister && mop.getVRegValue() == unusedOp) { minstr->SetMachineOperandVal(i, MachineOperand::MO_VirtualRegister, fwdOp); } } for (unsigned i=0,numOps=minstr->getNumImplicitRefs(); igetImplicitRef(i) == unusedOp) minstr->setImplicitRef(i, fwdOp); } } } inline bool AllUsesAreBranches(const Instruction* setccI) { for (Value::use_const_iterator UI=setccI->use_begin(), UE=setccI->use_end(); UI != UE; ++UI) if (! isa(*UI) // ignore tmp instructions here && cast(*UI)->getOpcode() != Instruction::Br) return false; return true; } // Generate code for any intrinsic that needs a special code sequence // instead of a regular call. If not that kind of intrinsic, do nothing. // Returns true if code was generated, otherwise false. // bool CodeGenIntrinsic(LLVMIntrinsic::ID iid, CallInst &callInstr, TargetMachine &target, std::vector& mvec) { switch (iid) { case LLVMIntrinsic::va_start: { // Get the address of the first vararg value on stack and copy it to // the argument of va_start(va_list* ap). bool ignore; Function* func = cast(callInstr.getParent()->getParent()); int numFixedArgs = func->getFunctionType()->getNumParams(); int fpReg = target.getFrameInfo().getIncomingArgBaseRegNum(); int argSize = target.getFrameInfo().getSizeOfEachArgOnStack(); int firstVarArgOff = numFixedArgs * argSize + target.getFrameInfo(). getFirstIncomingArgOffset(MachineFunction::get(func), ignore); mvec.push_back(BuildMI(V9::ADDi, 3).addMReg(fpReg).addSImm(firstVarArgOff). addRegDef(callInstr.getOperand(1))); return true; } case LLVMIntrinsic::va_end: return true; // no-op on Sparc case LLVMIntrinsic::va_copy: // Simple copy of current va_list (arg2) to new va_list (arg1) mvec.push_back(BuildMI(V9::ORr, 3). addMReg(target.getRegInfo().getZeroRegNum()). addReg(callInstr.getOperand(2)). addReg(callInstr.getOperand(1))); return true; case LLVMIntrinsic::sigsetjmp: case LLVMIntrinsic::setjmp: { // act as if we return 0 unsigned g0 = target.getRegInfo().getZeroRegNum(); mvec.push_back(BuildMI(V9::ORr,3).addMReg(g0).addMReg(g0) .addReg(&callInstr, MOTy::Def)); return true; } case LLVMIntrinsic::siglongjmp: case LLVMIntrinsic::longjmp: { // call abort() Module* M = callInstr.getParent()->getParent()->getParent(); const FunctionType *voidvoidFuncTy = FunctionType::get(Type::VoidTy, std::vector(), false); Function *F = M->getOrInsertFunction("abort", voidvoidFuncTy); assert(F && "Unable to get or create `abort' function declaration"); // Create hidden virtual register for return address with type void* TmpInstruction* retAddrReg = new TmpInstruction(MachineCodeForInstruction::get(&callInstr), PointerType::get(Type::VoidTy), &callInstr); // Use a descriptor to pass information about call arguments // to the register allocator. This descriptor will be "owned" // and freed automatically when the MachineCodeForInstruction // object for the callInstr goes away. CallArgsDescriptor* argDesc = new CallArgsDescriptor(&callInstr, retAddrReg, false, false); MachineInstr* callMI = BuildMI(V9::CALL, 1).addPCDisp(F); callMI->addImplicitRef(retAddrReg, /*isDef*/ true); mvec.push_back(callMI); mvec.push_back(BuildMI(V9::NOP, 0)); return true; } default: return false; } } //******************* Externally Visible Functions *************************/ //------------------------------------------------------------------------ // External Function: ThisIsAChainRule // // Purpose: // Check if a given BURG rule is a chain rule. //------------------------------------------------------------------------ extern bool ThisIsAChainRule(int eruleno) { switch(eruleno) { case 111: // stmt: reg case 123: case 124: case 125: case 126: case 127: case 128: case 129: case 130: case 131: case 132: case 133: case 155: case 221: case 222: case 241: case 242: case 243: case 244: case 245: case 321: return true; break; default: return false; break; } } //------------------------------------------------------------------------ // External Function: GetInstructionsByRule // // Purpose: // Choose machine instructions for the SPARC according to the // patterns chosen by the BURG-generated parser. //------------------------------------------------------------------------ void GetInstructionsByRule(InstructionNode* subtreeRoot, int ruleForNode, short* nts, TargetMachine &target, std::vector& mvec) { bool checkCast = false; // initialize here to use fall-through bool maskUnsignedResult = false; int nextRule; int forwardOperandNum = -1; unsigned allocaSize = 0; MachineInstr* M, *M2; unsigned L; bool foldCase = false; mvec.clear(); // If the code for this instruction was folded into the parent (user), // then do nothing! if (subtreeRoot->isFoldedIntoParent()) return; // // Let's check for chain rules outside the switch so that we don't have // to duplicate the list of chain rule production numbers here again // if (ThisIsAChainRule(ruleForNode)) { // Chain rules have a single nonterminal on the RHS. // Get the rule that matches the RHS non-terminal and use that instead. // assert(nts[0] && ! nts[1] && "A chain rule should have only one RHS non-terminal!"); nextRule = burm_rule(subtreeRoot->state, nts[0]); nts = burm_nts[nextRule]; GetInstructionsByRule(subtreeRoot, nextRule, nts, target, mvec); } else { switch(ruleForNode) { case 1: // stmt: Ret case 2: // stmt: RetValue(reg) { // NOTE: Prepass of register allocation is responsible // for moving return value to appropriate register. // Copy the return value to the required return register. // Mark the return Value as an implicit ref of the RET instr.. // Mark the return-address register as a hidden virtual reg. // Finally put a NOP in the delay slot. ReturnInst *returnInstr=cast(subtreeRoot->getInstruction()); Value* retVal = returnInstr->getReturnValue(); MachineCodeForInstruction& mcfi = MachineCodeForInstruction::get(returnInstr); // Create a hidden virtual reg to represent the return address register // used by the machine instruction but not represented in LLVM. // Instruction* returnAddrTmp = new TmpInstruction(mcfi, returnInstr); MachineInstr* retMI = BuildMI(V9::JMPLRETi, 3).addReg(returnAddrTmp).addSImm(8) .addMReg(target.getRegInfo().getZeroRegNum(), MOTy::Def); // If there is a value to return, we need to: // (a) Sign-extend the value if it is smaller than 8 bytes (reg size) // (b) Insert a copy to copy the return value to the appropriate reg. // -- For FP values, create a FMOVS or FMOVD instruction // -- For non-FP values, create an add-with-0 instruction // if (retVal != NULL) { const UltraSparcRegInfo& regInfo = (UltraSparcRegInfo&) target.getRegInfo(); const Type* retType = retVal->getType(); unsigned regClassID = regInfo.getRegClassIDOfType(retType); unsigned retRegNum = (retType->isFloatingPoint() ? (unsigned) SparcFloatRegClass::f0 : (unsigned) SparcIntRegClass::i0); retRegNum = regInfo.getUnifiedRegNum(regClassID, retRegNum); // () Insert sign-extension instructions for small signed values. // Value* retValToUse = retVal; if (retType->isIntegral() && retType->isSigned()) { unsigned retSize = target.getTargetData().getTypeSize(retType); if (retSize <= 4) { // create a temporary virtual reg. to hold the sign-extension retValToUse = new TmpInstruction(mcfi, retVal); // sign-extend retVal and put the result in the temporary reg. target.getInstrInfo().CreateSignExtensionInstructions (target, returnInstr->getParent()->getParent(), retVal, retValToUse, 8*retSize, mvec, mcfi); } } // (b) Now, insert a copy to to the appropriate register: // -- For FP values, create a FMOVS or FMOVD instruction // -- For non-FP values, create an add-with-0 instruction // // First, create a virtual register to represent the register and // mark this vreg as being an implicit operand of the ret MI. TmpInstruction* retVReg = new TmpInstruction(mcfi, retValToUse, NULL, "argReg"); retMI->addImplicitRef(retVReg); if (retType->isFloatingPoint()) M = (BuildMI(retType==Type::FloatTy? V9::FMOVS : V9::FMOVD, 2) .addReg(retValToUse).addReg(retVReg, MOTy::Def)); else M = (BuildMI(ChooseAddInstructionByType(retType), 3) .addReg(retValToUse).addSImm((int64_t) 0) .addReg(retVReg, MOTy::Def)); // Mark the operand with the register it should be assigned M->SetRegForOperand(M->getNumOperands()-1, retRegNum); retMI->SetRegForImplicitRef(retMI->getNumImplicitRefs()-1, retRegNum); mvec.push_back(M); } // Now insert the RET instruction and a NOP for the delay slot mvec.push_back(retMI); mvec.push_back(BuildMI(V9::NOP, 0)); break; } case 3: // stmt: Store(reg,reg) case 4: // stmt: Store(reg,ptrreg) SetOperandsForMemInstr(ChooseStoreInstruction( subtreeRoot->leftChild()->getValue()->getType()), mvec, subtreeRoot, target); break; case 5: // stmt: BrUncond { BranchInst *BI = cast(subtreeRoot->getInstruction()); mvec.push_back(BuildMI(V9::BA, 1).addPCDisp(BI->getSuccessor(0))); // delay slot mvec.push_back(BuildMI(V9::NOP, 0)); break; } case 206: // stmt: BrCond(setCCconst) { // setCCconst => boolean was computed with `%b = setCC type reg1 const' // If the constant is ZERO, we can use the branch-on-integer-register // instructions and avoid the SUBcc instruction entirely. // Otherwise this is just the same as case 5, so just fall through. // InstrTreeNode* constNode = subtreeRoot->leftChild()->rightChild(); assert(constNode && constNode->getNodeType() ==InstrTreeNode::NTConstNode); Constant *constVal = cast(constNode->getValue()); bool isValidConst; if ((constVal->getType()->isInteger() || isa(constVal->getType())) && target.getInstrInfo().ConvertConstantToIntType(target, constVal, constVal->getType(), isValidConst) == 0 && isValidConst) { // That constant is a zero after all... // Use the left child of setCC as the first argument! // Mark the setCC node so that no code is generated for it. InstructionNode* setCCNode = (InstructionNode*) subtreeRoot->leftChild(); assert(setCCNode->getOpLabel() == SetCCOp); setCCNode->markFoldedIntoParent(); BranchInst* brInst=cast(subtreeRoot->getInstruction()); M = BuildMI(ChooseBprInstruction(subtreeRoot), 2) .addReg(setCCNode->leftChild()->getValue()) .addPCDisp(brInst->getSuccessor(0)); mvec.push_back(M); // delay slot mvec.push_back(BuildMI(V9::NOP, 0)); // false branch mvec.push_back(BuildMI(V9::BA, 1) .addPCDisp(brInst->getSuccessor(1))); // delay slot mvec.push_back(BuildMI(V9::NOP, 0)); break; } // ELSE FALL THROUGH } case 6: // stmt: BrCond(setCC) { // bool => boolean was computed with SetCC. // The branch to use depends on whether it is FP, signed, or unsigned. // If it is an integer CC, we also need to find the unique // TmpInstruction representing that CC. // BranchInst* brInst = cast(subtreeRoot->getInstruction()); const Type* setCCType; unsigned Opcode = ChooseBccInstruction(subtreeRoot, setCCType); Value* ccValue = GetTmpForCC(subtreeRoot->leftChild()->getValue(), brInst->getParent()->getParent(), setCCType, MachineCodeForInstruction::get(brInst)); M = BuildMI(Opcode, 2).addCCReg(ccValue) .addPCDisp(brInst->getSuccessor(0)); mvec.push_back(M); // delay slot mvec.push_back(BuildMI(V9::NOP, 0)); // false branch mvec.push_back(BuildMI(V9::BA, 1).addPCDisp(brInst->getSuccessor(1))); // delay slot mvec.push_back(BuildMI(V9::NOP, 0)); break; } case 208: // stmt: BrCond(boolconst) { // boolconst => boolean is a constant; use BA to first or second label Constant* constVal = cast(subtreeRoot->leftChild()->getValue()); unsigned dest = cast(constVal)->getValue()? 0 : 1; M = BuildMI(V9::BA, 1).addPCDisp( cast(subtreeRoot->getInstruction())->getSuccessor(dest)); mvec.push_back(M); // delay slot mvec.push_back(BuildMI(V9::NOP, 0)); break; } case 8: // stmt: BrCond(boolreg) { // boolreg => boolean is recorded in an integer register. // Use branch-on-integer-register instruction. // BranchInst *BI = cast(subtreeRoot->getInstruction()); M = BuildMI(V9::BRNZ, 2).addReg(subtreeRoot->leftChild()->getValue()) .addPCDisp(BI->getSuccessor(0)); mvec.push_back(M); // delay slot mvec.push_back(BuildMI(V9::NOP, 0)); // false branch mvec.push_back(BuildMI(V9::BA, 1).addPCDisp(BI->getSuccessor(1))); // delay slot mvec.push_back(BuildMI(V9::NOP, 0)); break; } case 9: // stmt: Switch(reg) assert(0 && "*** SWITCH instruction is not implemented yet."); break; case 10: // reg: VRegList(reg, reg) assert(0 && "VRegList should never be the topmost non-chain rule"); break; case 21: // bool: Not(bool,reg): Compute with a conditional-move-on-reg { // First find the unary operand. It may be left or right, usually right. Instruction* notI = subtreeRoot->getInstruction(); Value* notArg = BinaryOperator::getNotArgument( cast(subtreeRoot->getInstruction())); unsigned ZeroReg = target.getRegInfo().getZeroRegNum(); // Unconditionally set register to 0 mvec.push_back(BuildMI(V9::SETHI, 2).addZImm(0).addRegDef(notI)); // Now conditionally move 1 into the register. // Mark the register as a use (as well as a def) because the old // value will be retained if the condition is false. mvec.push_back(BuildMI(V9::MOVRZi, 3).addReg(notArg).addZImm(1) .addReg(notI, MOTy::UseAndDef)); break; } case 421: // reg: BNot(reg,reg): Compute as reg = reg XOR-NOT 0 { // First find the unary operand. It may be left or right, usually right. Value* notArg = BinaryOperator::getNotArgument( cast(subtreeRoot->getInstruction())); unsigned ZeroReg = target.getRegInfo().getZeroRegNum(); mvec.push_back(BuildMI(V9::XNORr, 3).addReg(notArg).addMReg(ZeroReg) .addRegDef(subtreeRoot->getValue())); break; } case 322: // reg: Not(tobool, reg): // Fold CAST-TO-BOOL with NOT by inverting the sense of cast-to-bool foldCase = true; // Just fall through! case 22: // reg: ToBoolTy(reg): { Instruction* castI = subtreeRoot->getInstruction(); Value* opVal = subtreeRoot->leftChild()->getValue(); assert(opVal->getType()->isIntegral() || isa(opVal->getType())); // Unconditionally set register to 0 mvec.push_back(BuildMI(V9::SETHI, 2).addZImm(0).addRegDef(castI)); // Now conditionally move 1 into the register. // Mark the register as a use (as well as a def) because the old // value will be retained if the condition is false. MachineOpCode opCode = foldCase? V9::MOVRZi : V9::MOVRNZi; mvec.push_back(BuildMI(opCode, 3).addReg(opVal).addZImm(1) .addReg(castI, MOTy::UseAndDef)); break; } case 23: // reg: ToUByteTy(reg) case 24: // reg: ToSByteTy(reg) case 25: // reg: ToUShortTy(reg) case 26: // reg: ToShortTy(reg) case 27: // reg: ToUIntTy(reg) case 28: // reg: ToIntTy(reg) case 29: // reg: ToULongTy(reg) case 30: // reg: ToLongTy(reg) { //====================================================================== // Rules for integer conversions: // //-------- // From ISO 1998 C++ Standard, Sec. 4.7: // // 2. If the destination type is unsigned, the resulting value is // the least unsigned integer congruent to the source integer // (modulo 2n where n is the number of bits used to represent the // unsigned type). [Note: In a two s complement representation, // this conversion is conceptual and there is no change in the // bit pattern (if there is no truncation). ] // // 3. If the destination type is signed, the value is unchanged if // it can be represented in the destination type (and bitfield width); // otherwise, the value is implementation-defined. //-------- // // Since we assume 2s complement representations, this implies: // // -- If operand is smaller than destination, zero-extend or sign-extend // according to the signedness of the *operand*: source decides: // (1) If operand is signed, sign-extend it. // If dest is unsigned, zero-ext the result! // (2) If operand is unsigned, our current invariant is that // it's high bits are correct, so zero-extension is not needed. // // -- If operand is same size as or larger than destination, // zero-extend or sign-extend according to the signedness of // the *destination*: destination decides: // (1) If destination is signed, sign-extend (truncating if needed) // This choice is implementation defined. We sign-extend the // operand, which matches both Sun's cc and gcc3.2. // (2) If destination is unsigned, zero-extend (truncating if needed) //====================================================================== Instruction* destI = subtreeRoot->getInstruction(); Function* currentFunc = destI->getParent()->getParent(); MachineCodeForInstruction& mcfi=MachineCodeForInstruction::get(destI); Value* opVal = subtreeRoot->leftChild()->getValue(); const Type* opType = opVal->getType(); const Type* destType = destI->getType(); unsigned opSize = target.getTargetData().getTypeSize(opType); unsigned destSize = target.getTargetData().getTypeSize(destType); bool isIntegral = opType->isIntegral() || isa(opType); if (opType == Type::BoolTy || opType == destType || isIntegral && opSize == destSize && opSize == 8) { // nothing to do in all these cases forwardOperandNum = 0; // forward first operand to user } else if (opType->isFloatingPoint()) { CreateCodeToConvertFloatToInt(target, opVal, destI, mvec, mcfi); if (destI->getType()->isUnsigned() && destI->getType() !=Type::UIntTy) maskUnsignedResult = true; // not handled by fp->int code } else if (isIntegral) { bool opSigned = opType->isSigned(); bool destSigned = destType->isSigned(); unsigned extSourceInBits = 8 * std::min(opSize, destSize); assert(! (opSize == destSize && opSigned == destSigned) && "How can different int types have same size and signedness?"); bool signExtend = (opSize < destSize && opSigned || opSize >= destSize && destSigned); bool signAndZeroExtend = (opSize < destSize && destSize < 8u && opSigned && !destSigned); assert(!signAndZeroExtend || signExtend); bool zeroExtendOnly = opSize >= destSize && !destSigned; assert(!zeroExtendOnly || !signExtend); if (signExtend) { Value* signExtDest = (signAndZeroExtend ? new TmpInstruction(mcfi, destType, opVal) : destI); target.getInstrInfo().CreateSignExtensionInstructions (target, currentFunc,opVal,signExtDest,extSourceInBits,mvec,mcfi); if (signAndZeroExtend) target.getInstrInfo().CreateZeroExtensionInstructions (target, currentFunc, signExtDest, destI, 8*destSize, mvec, mcfi); } else if (zeroExtendOnly) { target.getInstrInfo().CreateZeroExtensionInstructions (target, currentFunc, opVal, destI, extSourceInBits, mvec, mcfi); } else forwardOperandNum = 0; // forward first operand to user } else assert(0 && "Unrecognized operand type for convert-to-integer"); break; } case 31: // reg: ToFloatTy(reg): case 32: // reg: ToDoubleTy(reg): case 232: // reg: ToDoubleTy(Constant): // If this instruction has a parent (a user) in the tree // and the user is translated as an FsMULd instruction, // then the cast is unnecessary. So check that first. // In the future, we'll want to do the same for the FdMULq instruction, // so do the check here instead of only for ToFloatTy(reg). // if (subtreeRoot->parent() != NULL) { const MachineCodeForInstruction& mcfi = MachineCodeForInstruction::get( cast(subtreeRoot->parent())->getInstruction()); if (mcfi.size() == 0 || mcfi.front()->getOpCode() == V9::FSMULD) forwardOperandNum = 0; // forward first operand to user } if (forwardOperandNum != 0) { // we do need the cast Value* leftVal = subtreeRoot->leftChild()->getValue(); const Type* opType = leftVal->getType(); MachineOpCode opCode=ChooseConvertToFloatInstr(target, subtreeRoot->getOpLabel(), opType); if (opCode == V9::NOP) { // no conversion needed forwardOperandNum = 0; // forward first operand to user } else { // If the source operand is a non-FP type it must be // first copied from int to float register via memory! Instruction *dest = subtreeRoot->getInstruction(); Value* srcForCast; int n = 0; if (! opType->isFloatingPoint()) { // Create a temporary to represent the FP register // into which the integer will be copied via memory. // The type of this temporary will determine the FP // register used: single-prec for a 32-bit int or smaller, // double-prec for a 64-bit int. // uint64_t srcSize = target.getTargetData().getTypeSize(leftVal->getType()); Type* tmpTypeToUse = (srcSize <= 4)? Type::FloatTy : Type::DoubleTy; MachineCodeForInstruction &destMCFI = MachineCodeForInstruction::get(dest); srcForCast = new TmpInstruction(destMCFI, tmpTypeToUse, dest); target.getInstrInfo().CreateCodeToCopyIntToFloat(target, dest->getParent()->getParent(), leftVal, cast(srcForCast), mvec, destMCFI); } else srcForCast = leftVal; M = BuildMI(opCode, 2).addReg(srcForCast).addRegDef(dest); mvec.push_back(M); } } break; case 19: // reg: ToArrayTy(reg): case 20: // reg: ToPointerTy(reg): forwardOperandNum = 0; // forward first operand to user break; case 233: // reg: Add(reg, Constant) maskUnsignedResult = true; M = CreateAddConstInstruction(subtreeRoot); if (M != NULL) { mvec.push_back(M); break; } // ELSE FALL THROUGH case 33: // reg: Add(reg, reg) maskUnsignedResult = true; Add3OperandInstr(ChooseAddInstruction(subtreeRoot), subtreeRoot, mvec); break; case 234: // reg: Sub(reg, Constant) maskUnsignedResult = true; M = CreateSubConstInstruction(subtreeRoot); if (M != NULL) { mvec.push_back(M); break; } // ELSE FALL THROUGH case 34: // reg: Sub(reg, reg) maskUnsignedResult = true; Add3OperandInstr(ChooseSubInstructionByType( subtreeRoot->getInstruction()->getType()), subtreeRoot, mvec); break; case 135: // reg: Mul(todouble, todouble) checkCast = true; // FALL THROUGH case 35: // reg: Mul(reg, reg) { maskUnsignedResult = true; MachineOpCode forceOp = ((checkCast && BothFloatToDouble(subtreeRoot)) ? V9::FSMULD : INVALID_MACHINE_OPCODE); Instruction* mulInstr = subtreeRoot->getInstruction(); CreateMulInstruction(target, mulInstr->getParent()->getParent(), subtreeRoot->leftChild()->getValue(), subtreeRoot->rightChild()->getValue(), mulInstr, mvec, MachineCodeForInstruction::get(mulInstr),forceOp); break; } case 335: // reg: Mul(todouble, todoubleConst) checkCast = true; // FALL THROUGH case 235: // reg: Mul(reg, Constant) { maskUnsignedResult = true; MachineOpCode forceOp = ((checkCast && BothFloatToDouble(subtreeRoot)) ? V9::FSMULD : INVALID_MACHINE_OPCODE); Instruction* mulInstr = subtreeRoot->getInstruction(); CreateMulInstruction(target, mulInstr->getParent()->getParent(), subtreeRoot->leftChild()->getValue(), subtreeRoot->rightChild()->getValue(), mulInstr, mvec, MachineCodeForInstruction::get(mulInstr), forceOp); break; } case 236: // reg: Div(reg, Constant) maskUnsignedResult = true; L = mvec.size(); CreateDivConstInstruction(target, subtreeRoot, mvec); if (mvec.size() > L) break; // ELSE FALL THROUGH case 36: // reg: Div(reg, reg) { maskUnsignedResult = true; // If either operand of divide is smaller than 64 bits, we have // to make sure the unused top bits are correct because they affect // the result. These bits are already correct for unsigned values. // They may be incorrect for signed values, so sign extend to fill in. Instruction* divI = subtreeRoot->getInstruction(); Value* divOp1 = subtreeRoot->leftChild()->getValue(); Value* divOp2 = subtreeRoot->rightChild()->getValue(); Value* divOp1ToUse = divOp1; Value* divOp2ToUse = divOp2; if (divI->getType()->isSigned()) { unsigned opSize=target.getTargetData().getTypeSize(divI->getType()); if (opSize < 8) { MachineCodeForInstruction& mcfi=MachineCodeForInstruction::get(divI); divOp1ToUse = new TmpInstruction(mcfi, divOp1); divOp2ToUse = new TmpInstruction(mcfi, divOp2); target.getInstrInfo(). CreateSignExtensionInstructions(target, divI->getParent()->getParent(), divOp1, divOp1ToUse, 8*opSize, mvec, mcfi); target.getInstrInfo(). CreateSignExtensionInstructions(target, divI->getParent()->getParent(), divOp2, divOp2ToUse, 8*opSize, mvec, mcfi); } } mvec.push_back(BuildMI(ChooseDivInstruction(target, subtreeRoot), 3) .addReg(divOp1ToUse) .addReg(divOp2ToUse) .addRegDef(divI)); break; } case 37: // reg: Rem(reg, reg) case 237: // reg: Rem(reg, Constant) { maskUnsignedResult = true; Instruction* remI = subtreeRoot->getInstruction(); Value* divOp1 = subtreeRoot->leftChild()->getValue(); Value* divOp2 = subtreeRoot->rightChild()->getValue(); MachineCodeForInstruction& mcfi = MachineCodeForInstruction::get(remI); // If second operand of divide is smaller than 64 bits, we have // to make sure the unused top bits are correct because they affect // the result. These bits are already correct for unsigned values. // They may be incorrect for signed values, so sign extend to fill in. // Value* divOpToUse = divOp2; if (divOp2->getType()->isSigned()) { unsigned opSize=target.getTargetData().getTypeSize(divOp2->getType()); if (opSize < 8) { divOpToUse = new TmpInstruction(mcfi, divOp2); target.getInstrInfo(). CreateSignExtensionInstructions(target, remI->getParent()->getParent(), divOp2, divOpToUse, 8*opSize, mvec, mcfi); } } // Now compute: result = rem V1, V2 as: // result = V1 - (V1 / signExtend(V2)) * signExtend(V2) // TmpInstruction* quot = new TmpInstruction(mcfi, divOp1, divOpToUse); TmpInstruction* prod = new TmpInstruction(mcfi, quot, divOpToUse); mvec.push_back(BuildMI(ChooseDivInstruction(target, subtreeRoot), 3) .addReg(divOp1).addReg(divOpToUse).addRegDef(quot)); mvec.push_back(BuildMI(ChooseMulInstructionByType(remI->getType()), 3) .addReg(quot).addReg(divOpToUse).addRegDef(prod)); mvec.push_back(BuildMI(ChooseSubInstructionByType(remI->getType()), 3) .addReg(divOp1).addReg(prod).addRegDef(remI)); break; } case 38: // bool: And(bool, bool) case 138: // bool: And(bool, not) case 238: // bool: And(bool, boolconst) case 338: // reg : BAnd(reg, reg) case 538: // reg : BAnd(reg, Constant) Add3OperandInstr(V9::ANDr, subtreeRoot, mvec); break; case 438: // bool: BAnd(bool, bnot) { // Use the argument of NOT as the second argument! // Mark the NOT node so that no code is generated for it. // If the type is boolean, set 1 or 0 in the result register. InstructionNode* notNode = (InstructionNode*) subtreeRoot->rightChild(); Value* notArg = BinaryOperator::getNotArgument( cast(notNode->getInstruction())); notNode->markFoldedIntoParent(); Value *lhs = subtreeRoot->leftChild()->getValue(); Value *dest = subtreeRoot->getValue(); mvec.push_back(BuildMI(V9::ANDNr, 3).addReg(lhs).addReg(notArg) .addReg(dest, MOTy::Def)); if (notArg->getType() == Type::BoolTy) { // set 1 in result register if result of above is non-zero mvec.push_back(BuildMI(V9::MOVRNZi, 3).addReg(dest).addZImm(1) .addReg(dest, MOTy::UseAndDef)); } break; } case 39: // bool: Or(bool, bool) case 139: // bool: Or(bool, not) case 239: // bool: Or(bool, boolconst) case 339: // reg : BOr(reg, reg) case 539: // reg : BOr(reg, Constant) Add3OperandInstr(V9::ORr, subtreeRoot, mvec); break; case 439: // bool: BOr(bool, bnot) { // Use the argument of NOT as the second argument! // Mark the NOT node so that no code is generated for it. // If the type is boolean, set 1 or 0 in the result register. InstructionNode* notNode = (InstructionNode*) subtreeRoot->rightChild(); Value* notArg = BinaryOperator::getNotArgument( cast(notNode->getInstruction())); notNode->markFoldedIntoParent(); Value *lhs = subtreeRoot->leftChild()->getValue(); Value *dest = subtreeRoot->getValue(); mvec.push_back(BuildMI(V9::ORNr, 3).addReg(lhs).addReg(notArg) .addReg(dest, MOTy::Def)); if (notArg->getType() == Type::BoolTy) { // set 1 in result register if result of above is non-zero mvec.push_back(BuildMI(V9::MOVRNZi, 3).addReg(dest).addZImm(1) .addReg(dest, MOTy::UseAndDef)); } break; } case 40: // bool: Xor(bool, bool) case 140: // bool: Xor(bool, not) case 240: // bool: Xor(bool, boolconst) case 340: // reg : BXor(reg, reg) case 540: // reg : BXor(reg, Constant) Add3OperandInstr(V9::XORr, subtreeRoot, mvec); break; case 440: // bool: BXor(bool, bnot) { // Use the argument of NOT as the second argument! // Mark the NOT node so that no code is generated for it. // If the type is boolean, set 1 or 0 in the result register. InstructionNode* notNode = (InstructionNode*) subtreeRoot->rightChild(); Value* notArg = BinaryOperator::getNotArgument( cast(notNode->getInstruction())); notNode->markFoldedIntoParent(); Value *lhs = subtreeRoot->leftChild()->getValue(); Value *dest = subtreeRoot->getValue(); mvec.push_back(BuildMI(V9::XNORr, 3).addReg(lhs).addReg(notArg) .addReg(dest, MOTy::Def)); if (notArg->getType() == Type::BoolTy) { // set 1 in result register if result of above is non-zero mvec.push_back(BuildMI(V9::MOVRNZi, 3).addReg(dest).addZImm(1) .addReg(dest, MOTy::UseAndDef)); } break; } case 41: // setCCconst: SetCC(reg, Constant) { // Comparison is with a constant: // // If the bool result must be computed into a register (see below), // and the constant is int ZERO, we can use the MOVR[op] instructions // and avoid the SUBcc instruction entirely. // Otherwise this is just the same as case 42, so just fall through. // // The result of the SetCC must be computed and stored in a register if // it is used outside the current basic block (so it must be computed // as a boolreg) or it is used by anything other than a branch. // We will use a conditional move to do this. // Instruction* setCCInstr = subtreeRoot->getInstruction(); bool computeBoolVal = (subtreeRoot->parent() == NULL || ! AllUsesAreBranches(setCCInstr)); if (computeBoolVal) { InstrTreeNode* constNode = subtreeRoot->rightChild(); assert(constNode && constNode->getNodeType() ==InstrTreeNode::NTConstNode); Constant *constVal = cast(constNode->getValue()); bool isValidConst; if ((constVal->getType()->isInteger() || isa(constVal->getType())) && target.getInstrInfo().ConvertConstantToIntType(target, constVal, constVal->getType(), isValidConst) == 0 && isValidConst) { // That constant is an integer zero after all... // Use a MOVR[op] to compute the boolean result // Unconditionally set register to 0 mvec.push_back(BuildMI(V9::SETHI, 2).addZImm(0) .addRegDef(setCCInstr)); // Now conditionally move 1 into the register. // Mark the register as a use (as well as a def) because the old // value will be retained if the condition is false. MachineOpCode movOpCode = ChooseMovpregiForSetCC(subtreeRoot); mvec.push_back(BuildMI(movOpCode, 3) .addReg(subtreeRoot->leftChild()->getValue()) .addZImm(1).addReg(setCCInstr, MOTy::UseAndDef)); break; } } // ELSE FALL THROUGH } case 42: // bool: SetCC(reg, reg): { // This generates a SUBCC instruction, putting the difference in a // result reg. if needed, and/or setting a condition code if needed. // Instruction* setCCInstr = subtreeRoot->getInstruction(); Value* leftVal = subtreeRoot->leftChild()->getValue(); Value* rightVal = subtreeRoot->rightChild()->getValue(); const Type* opType = leftVal->getType(); bool isFPCompare = opType->isFloatingPoint(); // If the boolean result of the SetCC is used outside the current basic // block (so it must be computed as a boolreg) or is used by anything // other than a branch, the boolean must be computed and stored // in a result register. We will use a conditional move to do this. // bool computeBoolVal = (subtreeRoot->parent() == NULL || ! AllUsesAreBranches(setCCInstr)); // A TmpInstruction is created to represent the CC "result". // Unlike other instances of TmpInstruction, this one is used // by machine code of multiple LLVM instructions, viz., // the SetCC and the branch. Make sure to get the same one! // Note that we do this even for FP CC registers even though they // are explicit operands, because the type of the operand // needs to be a floating point condition code, not an integer // condition code. Think of this as casting the bool result to // a FP condition code register. // Later, we mark the 4th operand as being a CC register, and as a def. // TmpInstruction* tmpForCC = GetTmpForCC(setCCInstr, setCCInstr->getParent()->getParent(), leftVal->getType(), MachineCodeForInstruction::get(setCCInstr)); // If the operands are signed values smaller than 4 bytes, then they // must be sign-extended in order to do a valid 32-bit comparison // and get the right result in the 32-bit CC register (%icc). // Value* leftOpToUse = leftVal; Value* rightOpToUse = rightVal; if (opType->isIntegral() && opType->isSigned()) { unsigned opSize = target.getTargetData().getTypeSize(opType); if (opSize < 4) { MachineCodeForInstruction& mcfi = MachineCodeForInstruction::get(setCCInstr); // create temporary virtual regs. to hold the sign-extensions leftOpToUse = new TmpInstruction(mcfi, leftVal); rightOpToUse = new TmpInstruction(mcfi, rightVal); // sign-extend each operand and put the result in the temporary reg. target.getInstrInfo().CreateSignExtensionInstructions (target, setCCInstr->getParent()->getParent(), leftVal, leftOpToUse, 8*opSize, mvec, mcfi); target.getInstrInfo().CreateSignExtensionInstructions (target, setCCInstr->getParent()->getParent(), rightVal, rightOpToUse, 8*opSize, mvec, mcfi); } } if (! isFPCompare) { // Integer condition: set CC and discard result. mvec.push_back(BuildMI(V9::SUBccr, 4) .addReg(leftOpToUse) .addReg(rightOpToUse) .addMReg(target.getRegInfo().getZeroRegNum(),MOTy::Def) .addCCReg(tmpForCC, MOTy::Def)); } else { // FP condition: dest of FCMP should be some FCCn register mvec.push_back(BuildMI(ChooseFcmpInstruction(subtreeRoot), 3) .addCCReg(tmpForCC, MOTy::Def) .addReg(leftOpToUse) .addReg(rightOpToUse)); } if (computeBoolVal) { MachineOpCode movOpCode = (isFPCompare ? ChooseMovFpcciInstruction(subtreeRoot) : ChooseMovpcciForSetCC(subtreeRoot)); // Unconditionally set register to 0 M = BuildMI(V9::SETHI, 2).addZImm(0).addRegDef(setCCInstr); mvec.push_back(M); // Now conditionally move 1 into the register. // Mark the register as a use (as well as a def) because the old // value will be retained if the condition is false. M = (BuildMI(movOpCode, 3).addCCReg(tmpForCC).addZImm(1) .addReg(setCCInstr, MOTy::UseAndDef)); mvec.push_back(M); } break; } case 51: // reg: Load(reg) case 52: // reg: Load(ptrreg) SetOperandsForMemInstr(ChooseLoadInstruction( subtreeRoot->getValue()->getType()), mvec, subtreeRoot, target); break; case 55: // reg: GetElemPtr(reg) case 56: // reg: GetElemPtrIdx(reg,reg) // If the GetElemPtr was folded into the user (parent), it will be // caught above. For other cases, we have to compute the address. SetOperandsForMemInstr(V9::ADDr, mvec, subtreeRoot, target); break; case 57: // reg: Alloca: Implement as 1 instruction: { // add %fp, offsetFromFP -> result AllocationInst* instr = cast(subtreeRoot->getInstruction()); unsigned tsize = target.getTargetData().getTypeSize(instr->getAllocatedType()); assert(tsize != 0); CreateCodeForFixedSizeAlloca(target, instr, tsize, 1, mvec); break; } case 58: // reg: Alloca(reg): Implement as 3 instructions: // mul num, typeSz -> tmp // sub %sp, tmp -> %sp { // add %sp, frameSizeBelowDynamicArea -> result AllocationInst* instr = cast(subtreeRoot->getInstruction()); const Type* eltType = instr->getAllocatedType(); // If #elements is constant, use simpler code for fixed-size allocas int tsize = (int) target.getTargetData().getTypeSize(eltType); Value* numElementsVal = NULL; bool isArray = instr->isArrayAllocation(); if (!isArray || isa(numElementsVal = instr->getArraySize())) { // total size is constant: generate code for fixed-size alloca unsigned numElements = isArray? cast(numElementsVal)->getValue() : 1; CreateCodeForFixedSizeAlloca(target, instr, tsize, numElements, mvec); } else { // total size is not constant. CreateCodeForVariableSizeAlloca(target, instr, tsize, numElementsVal, mvec); } break; } case 61: // reg: Call { // Generate a direct (CALL) or indirect (JMPL) call. // Mark the return-address register, the indirection // register (for indirect calls), the operands of the Call, // and the return value (if any) as implicit operands // of the machine instruction. // // If this is a varargs function, floating point arguments // have to passed in integer registers so insert // copy-float-to-int instructions for each float operand. // CallInst *callInstr = cast(subtreeRoot->getInstruction()); Value *callee = callInstr->getCalledValue(); Function* calledFunc = dyn_cast(callee); // Check if this is an intrinsic function that needs a special code // sequence (e.g., va_start). Indirect calls cannot be special. // bool specialIntrinsic = false; LLVMIntrinsic::ID iid; if (calledFunc && (iid=(LLVMIntrinsic::ID)calledFunc->getIntrinsicID())) specialIntrinsic = CodeGenIntrinsic(iid, *callInstr, target, mvec); // If not, generate the normal call sequence for the function. // This can also handle any intrinsics that are just function calls. // if (! specialIntrinsic) { Function* currentFunc = callInstr->getParent()->getParent(); MachineFunction& MF = MachineFunction::get(currentFunc); MachineCodeForInstruction& mcfi = MachineCodeForInstruction::get(callInstr); const UltraSparcRegInfo& regInfo = (UltraSparcRegInfo&) target.getRegInfo(); const TargetFrameInfo& frameInfo = target.getFrameInfo(); // Create hidden virtual register for return address with type void* TmpInstruction* retAddrReg = new TmpInstruction(mcfi, PointerType::get(Type::VoidTy), callInstr); // Generate the machine instruction and its operands. // Use CALL for direct function calls; this optimistically assumes // the PC-relative address fits in the CALL address field (22 bits). // Use JMPL for indirect calls. // This will be added to mvec later, after operand copies. // MachineInstr* callMI; if (calledFunc) // direct function call callMI = BuildMI(V9::CALL, 1).addPCDisp(callee); else // indirect function call callMI = (BuildMI(V9::JMPLCALLi,3).addReg(callee) .addSImm((int64_t)0).addRegDef(retAddrReg)); const FunctionType* funcType = cast(cast(callee->getType()) ->getElementType()); bool isVarArgs = funcType->isVarArg(); bool noPrototype = isVarArgs && funcType->getNumParams() == 0; // Use a descriptor to pass information about call arguments // to the register allocator. This descriptor will be "owned" // and freed automatically when the MachineCodeForInstruction // object for the callInstr goes away. CallArgsDescriptor* argDesc = new CallArgsDescriptor(callInstr, retAddrReg,isVarArgs,noPrototype); assert(callInstr->getOperand(0) == callee && "This is assumed in the loop below!"); // Insert sign-extension instructions for small signed values, // if this is an unknown function (i.e., called via a funcptr) // or an external one (i.e., which may not be compiled by llc). // if (calledFunc == NULL || calledFunc->isExternal()) { for (unsigned i=1, N=callInstr->getNumOperands(); i < N; ++i) { Value* argVal = callInstr->getOperand(i); const Type* argType = argVal->getType(); if (argType->isIntegral() && argType->isSigned()) { unsigned argSize = target.getTargetData().getTypeSize(argType); if (argSize <= 4) { // create a temporary virtual reg. to hold the sign-extension TmpInstruction* argExtend = new TmpInstruction(mcfi, argVal); // sign-extend argVal and put the result in the temporary reg. target.getInstrInfo().CreateSignExtensionInstructions (target, currentFunc, argVal, argExtend, 8*argSize, mvec, mcfi); // replace argVal with argExtend in CallArgsDescriptor argDesc->getArgInfo(i-1).replaceArgVal(argExtend); } } } } // Insert copy instructions to get all the arguments into // all the places that they need to be. // for (unsigned i=1, N=callInstr->getNumOperands(); i < N; ++i) { int argNo = i-1; CallArgInfo& argInfo = argDesc->getArgInfo(argNo); Value* argVal = argInfo.getArgVal(); // don't use callInstr arg here const Type* argType = argVal->getType(); unsigned regType = regInfo.getRegTypeForDataType(argType); unsigned argSize = target.getTargetData().getTypeSize(argType); int regNumForArg = TargetRegInfo::getInvalidRegNum(); unsigned regClassIDOfArgReg; // Check for FP arguments to varargs functions. // Any such argument in the first $K$ args must be passed in an // integer register. If there is no prototype, it must also // be passed as an FP register. // K = #integer argument registers. bool isFPArg = argVal->getType()->isFloatingPoint(); if (isVarArgs && isFPArg) { if (noPrototype) { // It is a function with no prototype: pass value // as an FP value as well as a varargs value. The FP value // may go in a register or on the stack. The copy instruction // to the outgoing reg/stack is created by the normal argument // handling code since this is the "normal" passing mode. // regNumForArg = regInfo.regNumForFPArg(regType, false, false, argNo, regClassIDOfArgReg); if (regNumForArg == regInfo.getInvalidRegNum()) argInfo.setUseStackSlot(); else argInfo.setUseFPArgReg(); } // If this arg. is in the first $K$ regs, add special copy- // float-to-int instructions to pass the value as an int. // To check if it is in the first $K$, get the register // number for the arg #i. These copy instructions are // generated here because they are extra cases and not needed // for the normal argument handling (some code reuse is // possible though -- later). // int copyRegNum = regInfo.regNumForIntArg(false, false, argNo, regClassIDOfArgReg); if (copyRegNum != regInfo.getInvalidRegNum()) { // Create a virtual register to represent copyReg. Mark // this vreg as being an implicit operand of the call MI const Type* loadTy = (argType == Type::FloatTy ? Type::IntTy : Type::LongTy); TmpInstruction* argVReg = new TmpInstruction(mcfi, loadTy, argVal, NULL, "argRegCopy"); callMI->addImplicitRef(argVReg); // Get a temp stack location to use to copy // float-to-int via the stack. // // FIXME: For now, we allocate permanent space because // the stack frame manager does not allow locals to be // allocated (e.g., for alloca) after a temp is // allocated! // // int tmpOffset = MF.getInfo()->pushTempValue(argSize); int tmpOffset = MF.getInfo()->allocateLocalVar(argVReg); // Generate the store from FP reg to stack unsigned StoreOpcode = ChooseStoreInstruction(argType); M = BuildMI(convertOpcodeFromRegToImm(StoreOpcode), 3) .addReg(argVal).addMReg(regInfo.getFramePointer()) .addSImm(tmpOffset); mvec.push_back(M); // Generate the load from stack to int arg reg unsigned LoadOpcode = ChooseLoadInstruction(loadTy); M = BuildMI(convertOpcodeFromRegToImm(LoadOpcode), 3) .addMReg(regInfo.getFramePointer()).addSImm(tmpOffset) .addReg(argVReg, MOTy::Def); // Mark operand with register it should be assigned // both for copy and for the callMI M->SetRegForOperand(M->getNumOperands()-1, copyRegNum); callMI->SetRegForImplicitRef(callMI->getNumImplicitRefs()-1, copyRegNum); mvec.push_back(M); // Add info about the argument to the CallArgsDescriptor argInfo.setUseIntArgReg(); argInfo.setArgCopy(copyRegNum); } else { // Cannot fit in first $K$ regs so pass arg on stack argInfo.setUseStackSlot(); } } else if (isFPArg) { // Get the outgoing arg reg to see if there is one. regNumForArg = regInfo.regNumForFPArg(regType, false, false, argNo, regClassIDOfArgReg); if (regNumForArg == regInfo.getInvalidRegNum()) argInfo.setUseStackSlot(); else { argInfo.setUseFPArgReg(); regNumForArg =regInfo.getUnifiedRegNum(regClassIDOfArgReg, regNumForArg); } } else { // Get the outgoing arg reg to see if there is one. regNumForArg = regInfo.regNumForIntArg(false,false, argNo, regClassIDOfArgReg); if (regNumForArg == regInfo.getInvalidRegNum()) argInfo.setUseStackSlot(); else { argInfo.setUseIntArgReg(); regNumForArg =regInfo.getUnifiedRegNum(regClassIDOfArgReg, regNumForArg); } } // // Now insert copy instructions to stack slot or arg. register // if (argInfo.usesStackSlot()) { // Get the stack offset for this argument slot. // FP args on stack are right justified so adjust offset! // int arguments are also right justified but they are // always loaded as a full double-word so the offset does // not need to be adjusted. int argOffset = frameInfo.getOutgoingArgOffset(MF, argNo); if (argType->isFloatingPoint()) { unsigned slotSize = frameInfo.getSizeOfEachArgOnStack(); assert(argSize <= slotSize && "Insufficient slot size!"); argOffset += slotSize - argSize; } // Now generate instruction to copy argument to stack MachineOpCode storeOpCode = (argType->isFloatingPoint() ? ((argSize == 4)? V9::STFi : V9::STDFi) : V9::STXi); M = BuildMI(storeOpCode, 3).addReg(argVal) .addMReg(regInfo.getStackPointer()).addSImm(argOffset); mvec.push_back(M); } else if (regNumForArg != regInfo.getInvalidRegNum()) { // Create a virtual register to represent the arg reg. Mark // this vreg as being an implicit operand of the call MI. TmpInstruction* argVReg = new TmpInstruction(mcfi, argVal, NULL, "argReg"); callMI->addImplicitRef(argVReg); // Generate the reg-to-reg copy into the outgoing arg reg. // -- For FP values, create a FMOVS or FMOVD instruction // -- For non-FP values, create an add-with-0 instruction if (argType->isFloatingPoint()) M=(BuildMI(argType==Type::FloatTy? V9::FMOVS :V9::FMOVD,2) .addReg(argVal).addReg(argVReg, MOTy::Def)); else M = (BuildMI(ChooseAddInstructionByType(argType), 3) .addReg(argVal).addSImm((int64_t) 0) .addReg(argVReg, MOTy::Def)); // Mark the operand with the register it should be assigned M->SetRegForOperand(M->getNumOperands()-1, regNumForArg); callMI->SetRegForImplicitRef(callMI->getNumImplicitRefs()-1, regNumForArg); mvec.push_back(M); } else assert(argInfo.getArgCopy() != regInfo.getInvalidRegNum() && "Arg. not in stack slot, primary or secondary register?"); } // add call instruction and delay slot before copying return value mvec.push_back(callMI); mvec.push_back(BuildMI(V9::NOP, 0)); // Add the return value as an implicit ref. The call operands // were added above. Also, add code to copy out the return value. // This is always register-to-register for int or FP return values. // if (callInstr->getType() != Type::VoidTy) { // Get the return value reg. const Type* retType = callInstr->getType(); int regNum = (retType->isFloatingPoint() ? (unsigned) SparcFloatRegClass::f0 : (unsigned) SparcIntRegClass::o0); unsigned regClassID = regInfo.getRegClassIDOfType(retType); regNum = regInfo.getUnifiedRegNum(regClassID, regNum); // Create a virtual register to represent it and mark // this vreg as being an implicit operand of the call MI TmpInstruction* retVReg = new TmpInstruction(mcfi, callInstr, NULL, "argReg"); callMI->addImplicitRef(retVReg, /*isDef*/ true); // Generate the reg-to-reg copy from the return value reg. // -- For FP values, create a FMOVS or FMOVD instruction // -- For non-FP values, create an add-with-0 instruction if (retType->isFloatingPoint()) M = (BuildMI(retType==Type::FloatTy? V9::FMOVS : V9::FMOVD, 2) .addReg(retVReg).addReg(callInstr, MOTy::Def)); else M = (BuildMI(ChooseAddInstructionByType(retType), 3) .addReg(retVReg).addSImm((int64_t) 0) .addReg(callInstr, MOTy::Def)); // Mark the operand with the register it should be assigned // Also mark the implicit ref of the call defining this operand M->SetRegForOperand(0, regNum); callMI->SetRegForImplicitRef(callMI->getNumImplicitRefs()-1,regNum); mvec.push_back(M); } // For the CALL instruction, the ret. addr. reg. is also implicit if (isa(callee)) callMI->addImplicitRef(retAddrReg, /*isDef*/ true); MF.getInfo()->popAllTempValues(); // free temps used for this inst } break; } case 62: // reg: Shl(reg, reg) { Value* argVal1 = subtreeRoot->leftChild()->getValue(); Value* argVal2 = subtreeRoot->rightChild()->getValue(); Instruction* shlInstr = subtreeRoot->getInstruction(); const Type* opType = argVal1->getType(); assert((opType->isInteger() || isa(opType)) && "Shl unsupported for other types"); unsigned opSize = target.getTargetData().getTypeSize(opType); CreateShiftInstructions(target, shlInstr->getParent()->getParent(), (opSize > 4)? V9::SLLXr6:V9::SLLr5, argVal1, argVal2, 0, shlInstr, mvec, MachineCodeForInstruction::get(shlInstr)); break; } case 63: // reg: Shr(reg, reg) { const Type* opType = subtreeRoot->leftChild()->getValue()->getType(); assert((opType->isInteger() || isa(opType)) && "Shr unsupported for other types"); unsigned opSize = target.getTargetData().getTypeSize(opType); Add3OperandInstr(opType->isSigned() ? (opSize > 4? V9::SRAXr6 : V9::SRAr5) : (opSize > 4? V9::SRLXr6 : V9::SRLr5), subtreeRoot, mvec); break; } case 64: // reg: Phi(reg,reg) break; // don't forward the value case 65: // reg: VaArg(reg): the va_arg instruction { // Use value initialized by va_start as pointer to args on the stack. // Load argument via current pointer value, then increment pointer. int argSize = target.getFrameInfo().getSizeOfEachArgOnStack(); Instruction* vaArgI = subtreeRoot->getInstruction(); MachineOpCode loadOp = vaArgI->getType()->isFloatingPoint()? V9::LDDFi : V9::LDXi; mvec.push_back(BuildMI(loadOp, 3).addReg(vaArgI->getOperand(0)). addSImm(0).addRegDef(vaArgI)); mvec.push_back(BuildMI(V9::ADDi, 3).addReg(vaArgI->getOperand(0)). addSImm(argSize).addRegDef(vaArgI->getOperand(0))); break; } case 71: // reg: VReg case 72: // reg: Constant break; // don't forward the value default: assert(0 && "Unrecognized BURG rule"); break; } } if (forwardOperandNum >= 0) { // We did not generate a machine instruction but need to use operand. // If user is in the same tree, replace Value in its machine operand. // If not, insert a copy instruction which should get coalesced away // by register allocation. if (subtreeRoot->parent() != NULL) ForwardOperand(subtreeRoot, subtreeRoot->parent(), forwardOperandNum); else { std::vector minstrVec; Instruction* instr = subtreeRoot->getInstruction(); target.getInstrInfo(). CreateCopyInstructionsByType(target, instr->getParent()->getParent(), instr->getOperand(forwardOperandNum), instr, minstrVec, MachineCodeForInstruction::get(instr)); assert(minstrVec.size() > 0); mvec.insert(mvec.end(), minstrVec.begin(), minstrVec.end()); } } if (maskUnsignedResult) { // If result is unsigned and smaller than int reg size, // we need to clear high bits of result value. assert(forwardOperandNum < 0 && "Need mask but no instruction generated"); Instruction* dest = subtreeRoot->getInstruction(); if (dest->getType()->isUnsigned()) { unsigned destSize=target.getTargetData().getTypeSize(dest->getType()); if (destSize <= 4) { // Mask high 64 - N bits, where N = 4*destSize. // Use a TmpInstruction to represent the // intermediate result before masking. Since those instructions // have already been generated, go back and substitute tmpI // for dest in the result position of each one of them. // MachineCodeForInstruction& mcfi = MachineCodeForInstruction::get(dest); TmpInstruction *tmpI = new TmpInstruction(mcfi, dest->getType(), dest, NULL, "maskHi"); Value* srlArgToUse = tmpI; unsigned numSubst = 0; for (unsigned i=0, N=mvec.size(); i < N; ++i) { // Make sure we substitute all occurrences of dest in these instrs. // Otherwise, we will have bogus code. bool someArgsWereIgnored = false; // Make sure not to substitute an upwards-exposed use -- that would // introduce a use of `tmpI' with no preceding def. Therefore, // substitute a use or def-and-use operand only if a previous def // operand has already been substituted (i.e., numSusbt > 0). // numSubst += mvec[i]->substituteValue(dest, tmpI, /*defsOnly*/ numSubst == 0, /*notDefsAndUses*/ numSubst > 0, someArgsWereIgnored); assert(!someArgsWereIgnored && "Operand `dest' exists but not replaced: probably bogus!"); } assert(numSubst > 0 && "Operand `dest' not replaced: probably bogus!"); // Left shift 32-N if size (N) is less than 32 bits. // Use another tmp. virtual register to represent this result. if (destSize < 4) { srlArgToUse = new TmpInstruction(mcfi, dest->getType(), tmpI, NULL, "maskHi2"); mvec.push_back(BuildMI(V9::SLLXi6, 3).addReg(tmpI) .addZImm(8*(4-destSize)) .addReg(srlArgToUse, MOTy::Def)); } // Logical right shift 32-N to get zero extension in top 64-N bits. mvec.push_back(BuildMI(V9::SRLi5, 3).addReg(srlArgToUse) .addZImm(8*(4-destSize)).addReg(dest, MOTy::Def)); } else if (destSize < 8) { assert(0 && "Unsupported type size: 32 < size < 64 bits"); } } } }