//===-- RuntimeDyld.h - Run-time dynamic linker for MC-JIT ------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Implementation of the MC-JIT runtime dynamic linker. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "dyld" #include "llvm/ADT/OwningPtr.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringMap.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/Twine.h" #include "llvm/ExecutionEngine/RuntimeDyld.h" #include "llvm/Object/MachOObject.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/Format.h" #include "llvm/Support/Memory.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/system_error.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; using namespace llvm::object; // Empty out-of-line virtual destructor as the key function. RTDyldMemoryManager::~RTDyldMemoryManager() {} namespace llvm { class RuntimeDyldImpl { unsigned CPUType; unsigned CPUSubtype; // The MemoryManager to load objects into. RTDyldMemoryManager *MemMgr; // For each function, we have a MemoryBlock of it's instruction data. StringMap Functions; // Master symbol table. As modules are loaded and external symbols are // resolved, their addresses are stored here. StringMap SymbolTable; // FIXME: Should have multiple data blocks, one for each loaded chunk of // compiled code. sys::MemoryBlock Data; bool HasError; std::string ErrorStr; // Set the error state and record an error string. bool Error(const Twine &Msg) { ErrorStr = Msg.str(); HasError = true; return true; } void extractFunction(StringRef Name, uint8_t *StartAddress, uint8_t *EndAddress); bool resolveRelocation(uint32_t BaseSection, macho::RelocationEntry RE, SmallVectorImpl &SectionBases, SmallVectorImpl &SymbolNames); bool resolveX86_64Relocation(intptr_t Address, intptr_t Value, bool isPCRel, unsigned Type, unsigned Size); bool resolveARMRelocation(intptr_t Address, intptr_t Value, bool isPCRel, unsigned Type, unsigned Size); bool loadSegment32(const MachOObject *Obj, const MachOObject::LoadCommandInfo *SegmentLCI, const InMemoryStruct &SymtabLC); bool loadSegment64(const MachOObject *Obj, const MachOObject::LoadCommandInfo *SegmentLCI, const InMemoryStruct &SymtabLC); public: RuntimeDyldImpl(RTDyldMemoryManager *mm) : MemMgr(mm), HasError(false) {} bool loadObject(MemoryBuffer *InputBuffer); uint64_t getSymbolAddress(StringRef Name) { // FIXME: Just look up as a function for now. Overly simple of course. // Work in progress. return (uint64_t)Functions.lookup(Name).base(); } sys::MemoryBlock getMemoryBlock() { return Data; } // Is the linker in an error state? bool hasError() { return HasError; } // Mark the error condition as handled and continue. void clearError() { HasError = false; } // Get the error message. StringRef getErrorString() { return ErrorStr; } }; void RuntimeDyldImpl::extractFunction(StringRef Name, uint8_t *StartAddress, uint8_t *EndAddress) { // Allocate memory for the function via the memory manager. uintptr_t Size = EndAddress - StartAddress + 1; uint8_t *Mem = MemMgr->startFunctionBody(Name.data(), Size); assert(Size >= (uint64_t)(EndAddress - StartAddress + 1) && "Memory manager failed to allocate enough memory!"); // Copy the function payload into the memory block. memcpy(Mem, StartAddress, EndAddress - StartAddress + 1); MemMgr->endFunctionBody(Name.data(), Mem, Mem + Size); // Remember where we put it. Functions[Name] = sys::MemoryBlock(Mem, Size); DEBUG(dbgs() << " allocated to " << Mem << "\n"); } bool RuntimeDyldImpl:: resolveRelocation(uint32_t BaseSection, macho::RelocationEntry RE, SmallVectorImpl &SectionBases, SmallVectorImpl &SymbolNames) { // struct relocation_info { // int32_t r_address; // uint32_t r_symbolnum:24, // r_pcrel:1, // r_length:2, // r_extern:1, // r_type:4; // }; uint32_t SymbolNum = RE.Word1 & 0xffffff; // 24-bit value bool isPCRel = (RE.Word1 >> 24) & 1; unsigned Log2Size = (RE.Word1 >> 25) & 3; bool isExtern = (RE.Word1 >> 27) & 1; unsigned Type = (RE.Word1 >> 28) & 0xf; if (RE.Word0 & macho::RF_Scattered) return Error("NOT YET IMPLEMENTED: scattered relocations."); // The address requiring a relocation. intptr_t Address = (intptr_t)SectionBases[BaseSection] + RE.Word0; // Figure out the target address of the relocation. If isExtern is true, // this relocation references the symbol table, otherwise it references // a section in the same object, numbered from 1 through NumSections // (SectionBases is [0, NumSections-1]). intptr_t Value; if (isExtern) { StringRef Name = SymbolNames[SymbolNum]; if (SymbolTable.lookup(Name)) { // The symbol is in our symbol table, so we can resolve it directly. Value = (intptr_t)SymbolTable[Name]; } else { return Error("NOT YET IMPLEMENTED: relocations to pre-compiled code."); } DEBUG(dbgs() << "Resolve relocation(" << Type << ") from '" << Name << "' to " << format("0x%x", Address) << ".\n"); } else { // For non-external relocations, the SymbolNum is actual a section number // as described above. Value = (intptr_t)SectionBases[SymbolNum - 1]; } unsigned Size = 1 << Log2Size; switch (CPUType) { default: assert(0 && "Unsupported CPU type!"); case mach::CTM_x86_64: return resolveX86_64Relocation(Address, Value, isPCRel, Type, Size); case mach::CTM_ARM: return resolveARMRelocation(Address, Value, isPCRel, Type, Size); } llvm_unreachable(""); } bool RuntimeDyldImpl::resolveX86_64Relocation(intptr_t Address, intptr_t Value, bool isPCRel, unsigned Type, unsigned Size) { // If the relocation is PC-relative, the value to be encoded is the // pointer difference. if (isPCRel) // FIXME: It seems this value needs to be adjusted by 4 for an effective PC // address. Is that expected? Only for branches, perhaps? Value -= Address + 4; switch(Type) { default: llvm_unreachable("Invalid relocation type!"); case macho::RIT_X86_64_Unsigned: case macho::RIT_X86_64_Branch: { // Mask in the target value a byte at a time (we don't have an alignment // guarantee for the target address, so this is safest). uint8_t *p = (uint8_t*)Address; for (unsigned i = 0; i < Size; ++i) { *p++ = (uint8_t)Value; Value >>= 8; } return false; } case macho::RIT_X86_64_Signed: case macho::RIT_X86_64_GOTLoad: case macho::RIT_X86_64_GOT: case macho::RIT_X86_64_Subtractor: case macho::RIT_X86_64_Signed1: case macho::RIT_X86_64_Signed2: case macho::RIT_X86_64_Signed4: case macho::RIT_X86_64_TLV: return Error("Relocation type not implemented yet!"); } return false; } bool RuntimeDyldImpl::resolveARMRelocation(intptr_t Address, intptr_t Value, bool isPCRel, unsigned Type, unsigned Size) { // If the relocation is PC-relative, the value to be encoded is the // pointer difference. if (isPCRel) { Value -= Address; // ARM PCRel relocations have an effective-PC offset of two instructions // (four bytes in Thumb mode, 8 bytes in ARM mode). // FIXME: For now, assume ARM mode. Value -= 8; } switch(Type) { default: case macho::RIT_Vanilla: { llvm_unreachable("Invalid relocation type!"); // Mask in the target value a byte at a time (we don't have an alignment // guarantee for the target address, so this is safest). uint8_t *p = (uint8_t*)Address; for (unsigned i = 0; i < Size; ++i) { *p++ = (uint8_t)Value; Value >>= 8; } break; } case macho::RIT_Pair: case macho::RIT_Difference: case macho::RIT_ARM_LocalDifference: case macho::RIT_ARM_PreboundLazyPointer: case macho::RIT_ARM_Branch24Bit: { // Mask the value into the target address. We know instructions are // 32-bit aligned, so we can do it all at once. uint32_t *p = (uint32_t*)Address; // The low two bits of the value are not encoded. Value >>= 2; // Mask the value to 24 bits. Value &= 0xffffff; // FIXME: If the destination is a Thumb function (and the instruction // is a non-predicated BL instruction), we need to change it to a BLX // instruction instead. // Insert the value into the instruction. *p = (*p & ~0xffffff) | Value; break; } case macho::RIT_ARM_ThumbBranch22Bit: case macho::RIT_ARM_ThumbBranch32Bit: case macho::RIT_ARM_Half: case macho::RIT_ARM_HalfDifference: return Error("Relocation type not implemented yet!"); } return false; } bool RuntimeDyldImpl:: loadSegment32(const MachOObject *Obj, const MachOObject::LoadCommandInfo *SegmentLCI, const InMemoryStruct &SymtabLC) { InMemoryStruct Segment32LC; Obj->ReadSegmentLoadCommand(*SegmentLCI, Segment32LC); if (!Segment32LC) return Error("unable to load segment load command"); // Map the segment into memory. std::string ErrorStr; Data = sys::Memory::AllocateRWX(Segment32LC->VMSize, 0, &ErrorStr); if (!Data.base()) return Error("unable to allocate memory block: '" + ErrorStr + "'"); memcpy(Data.base(), Obj->getData(Segment32LC->FileOffset, Segment32LC->FileSize).data(), Segment32LC->FileSize); memset((char*)Data.base() + Segment32LC->FileSize, 0, Segment32LC->VMSize - Segment32LC->FileSize); // Bind the section indices to addresses and record the relocations we // need to resolve. typedef std::pair RelocationMap; SmallVector Relocations; SmallVector SectionBases; for (unsigned i = 0; i != Segment32LC->NumSections; ++i) { InMemoryStruct Sect; Obj->ReadSection(*SegmentLCI, i, Sect); if (!Sect) return Error("unable to load section: '" + Twine(i) + "'"); // Remember any relocations the section has so we can resolve them later. for (unsigned j = 0; j != Sect->NumRelocationTableEntries; ++j) { InMemoryStruct RE; Obj->ReadRelocationEntry(Sect->RelocationTableOffset, j, RE); Relocations.push_back(RelocationMap(j, *RE)); } // FIXME: Improve check. // if (Sect->Flags != 0x80000400) // return Error("unsupported section type!"); SectionBases.push_back((char*) Data.base() + Sect->Address); } // Bind all the symbols to address. Keep a record of the names for use // by relocation resolution. SmallVector SymbolNames; for (unsigned i = 0; i != SymtabLC->NumSymbolTableEntries; ++i) { InMemoryStruct STE; Obj->ReadSymbolTableEntry(SymtabLC->SymbolTableOffset, i, STE); if (!STE) return Error("unable to read symbol: '" + Twine(i) + "'"); // Get the symbol name. StringRef Name = Obj->getStringAtIndex(STE->StringIndex); SymbolNames.push_back(Name); // Just skip undefined symbols. They'll be loaded from whatever // module they come from (or system dylib) when we resolve relocations // involving them. if (STE->SectionIndex == 0) continue; unsigned Index = STE->SectionIndex - 1; if (Index >= Segment32LC->NumSections) return Error("invalid section index for symbol: '" + Twine() + "'"); // Get the section base address. void *SectionBase = SectionBases[Index]; // Get the symbol address. uint64_t Address = (uint64_t)SectionBase + STE->Value; // FIXME: Check the symbol type and flags. if (STE->Type != 0xF) return Error("unexpected symbol type!"); if (STE->Flags != 0x0) return Error("unexpected symbol type!"); DEBUG(dbgs() << "Symbol: '" << Name << "' @ " << Address << "\n"); SymbolTable[Name] = Address; } // Now resolve any relocations. for (unsigned i = 0, e = Relocations.size(); i != e; ++i) { if (resolveRelocation(Relocations[i].first, Relocations[i].second, SectionBases, SymbolNames)) return true; } // We've loaded the section; now mark the functions in it as executable. // FIXME: We really should use the MemoryManager for this. sys::Memory::setRangeExecutable(Data.base(), Data.size()); return false; } bool RuntimeDyldImpl:: loadSegment64(const MachOObject *Obj, const MachOObject::LoadCommandInfo *SegmentLCI, const InMemoryStruct &SymtabLC) { InMemoryStruct Segment64LC; Obj->ReadSegment64LoadCommand(*SegmentLCI, Segment64LC); if (!Segment64LC) return Error("unable to load segment load command"); for (unsigned SectNum = 0; SectNum != Segment64LC->NumSections; ++SectNum) { InMemoryStruct Sect; Obj->ReadSection64(*SegmentLCI, SectNum, Sect); if (!Sect) return Error("unable to load section: '" + Twine(SectNum) + "'"); // FIXME: Improve check. if (Sect->Flags != 0x80000400) return Error("unsupported section type!"); // Address and names of symbols in the section. typedef std::pair SymbolEntry; SmallVector Symbols; for (unsigned i = 0; i != SymtabLC->NumSymbolTableEntries; ++i) { InMemoryStruct STE; Obj->ReadSymbol64TableEntry(SymtabLC->SymbolTableOffset, i, STE); if (!STE) return Error("unable to read symbol: '" + Twine(i) + "'"); if (STE->SectionIndex > Segment64LC->NumSections) return Error("invalid section index for symbol: '" + Twine() + "'"); // Just skip symbols not defined in this section. if (STE->SectionIndex - 1 != SectNum) continue; // Get the symbol name. StringRef Name = Obj->getStringAtIndex(STE->StringIndex); // FIXME: Check the symbol type and flags. if (STE->Type != 0xF) // external, defined in this section. return Error("unexpected symbol type!"); if (STE->Flags != 0x0) return Error("unexpected symbol type!"); uint64_t BaseAddress = Sect->Address; uint64_t Address = BaseAddress + STE->Value; // Remember the symbol. Symbols.push_back(SymbolEntry(Address, Name)); DEBUG(dbgs() << "Function sym: '" << Name << "' @ " << Address << "\n"); } // Sort the symbols by address, just in case they didn't come in that // way. array_pod_sort(Symbols.begin(), Symbols.end()); // Extract the function data. uint8_t *Base = (uint8_t*)Obj->getData(Segment64LC->FileOffset, Segment64LC->FileSize).data(); for (unsigned i = 0, e = Symbols.size() - 1; i != e; ++i) { uint64_t StartOffset = Symbols[i].first; uint64_t EndOffset = Symbols[i + 1].first - 1; DEBUG(dbgs() << "Extracting function: " << Symbols[i].second << " from [" << StartOffset << ", " << EndOffset << "]\n"); extractFunction(Symbols[i].second, Base + StartOffset, Base + EndOffset); } // The last symbol we do after since the end address is calculated // differently because there is no next symbol to reference. uint64_t StartOffset = Symbols[Symbols.size() - 1].first; uint64_t EndOffset = Sect->Size - 1; DEBUG(dbgs() << "Extracting function: " << Symbols[Symbols.size()-1].second << " from [" << StartOffset << ", " << EndOffset << "]\n"); extractFunction(Symbols[Symbols.size()-1].second, Base + StartOffset, Base + EndOffset); } return false; } bool RuntimeDyldImpl::loadObject(MemoryBuffer *InputBuffer) { // If the linker is in an error state, don't do anything. if (hasError()) return true; // Load the Mach-O wrapper object. std::string ErrorStr; OwningPtr Obj( MachOObject::LoadFromBuffer(InputBuffer, &ErrorStr)); if (!Obj) return Error("unable to load object: '" + ErrorStr + "'"); // Get the CPU type information from the header. const macho::Header &Header = Obj->getHeader(); // FIXME: Error checking that the loaded object is compatible with // the system we're running on. CPUType = Header.CPUType; CPUSubtype = Header.CPUSubtype; // Validate that the load commands match what we expect. const MachOObject::LoadCommandInfo *SegmentLCI = 0, *SymtabLCI = 0, *DysymtabLCI = 0; for (unsigned i = 0; i != Header.NumLoadCommands; ++i) { const MachOObject::LoadCommandInfo &LCI = Obj->getLoadCommandInfo(i); switch (LCI.Command.Type) { case macho::LCT_Segment: case macho::LCT_Segment64: if (SegmentLCI) return Error("unexpected input object (multiple segments)"); SegmentLCI = &LCI; break; case macho::LCT_Symtab: if (SymtabLCI) return Error("unexpected input object (multiple symbol tables)"); SymtabLCI = &LCI; break; case macho::LCT_Dysymtab: if (DysymtabLCI) return Error("unexpected input object (multiple symbol tables)"); DysymtabLCI = &LCI; break; default: return Error("unexpected input object (unexpected load command"); } } if (!SymtabLCI) return Error("no symbol table found in object"); if (!SegmentLCI) return Error("no symbol table found in object"); // Read and register the symbol table data. InMemoryStruct SymtabLC; Obj->ReadSymtabLoadCommand(*SymtabLCI, SymtabLC); if (!SymtabLC) return Error("unable to load symbol table load command"); Obj->RegisterStringTable(*SymtabLC); // Read the dynamic link-edit information, if present (not present in static // objects). if (DysymtabLCI) { InMemoryStruct DysymtabLC; Obj->ReadDysymtabLoadCommand(*DysymtabLCI, DysymtabLC); if (!DysymtabLC) return Error("unable to load dynamic link-exit load command"); // FIXME: We don't support anything interesting yet. // if (DysymtabLC->LocalSymbolsIndex != 0) // return Error("NOT YET IMPLEMENTED: local symbol entries"); // if (DysymtabLC->ExternalSymbolsIndex != 0) // return Error("NOT YET IMPLEMENTED: non-external symbol entries"); // if (DysymtabLC->UndefinedSymbolsIndex != SymtabLC->NumSymbolTableEntries) // return Error("NOT YET IMPLEMENTED: undefined symbol entries"); } // Load the segment load command. if (SegmentLCI->Command.Type == macho::LCT_Segment) { if (loadSegment32(Obj.get(), SegmentLCI, SymtabLC)) return true; } else { if (loadSegment64(Obj.get(), SegmentLCI, SymtabLC)) return true; } return false; } //===----------------------------------------------------------------------===// // RuntimeDyld class implementation RuntimeDyld::RuntimeDyld(RTDyldMemoryManager *MM) { Dyld = new RuntimeDyldImpl(MM); } RuntimeDyld::~RuntimeDyld() { delete Dyld; } bool RuntimeDyld::loadObject(MemoryBuffer *InputBuffer) { return Dyld->loadObject(InputBuffer); } uint64_t RuntimeDyld::getSymbolAddress(StringRef Name) { return Dyld->getSymbolAddress(Name); } sys::MemoryBlock RuntimeDyld::getMemoryBlock() { return Dyld->getMemoryBlock(); } StringRef RuntimeDyld::getErrorString() { return Dyld->getErrorString(); } } // end namespace llvm