//===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// /// /// \file /// This file describes how to lower LLVM code to machine code. This has two /// main components: /// /// 1. Which ValueTypes are natively supported by the target. /// 2. Which operations are supported for supported ValueTypes. /// 3. Cost thresholds for alternative implementations of certain operations. /// /// In addition it has a few other components, like information about FP /// immediates. /// //===----------------------------------------------------------------------===// #ifndef LLVM_TARGET_TARGETLOWERING_H #define LLVM_TARGET_TARGETLOWERING_H #include "llvm/ADT/DenseMap.h" #include "llvm/CodeGen/DAGCombine.h" #include "llvm/CodeGen/RuntimeLibcalls.h" #include "llvm/CodeGen/SelectionDAGNodes.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/CallSite.h" #include "llvm/IR/CallingConv.h" #include "llvm/IR/InlineAsm.h" #include "llvm/Target/TargetCallingConv.h" #include "llvm/Target/TargetMachine.h" #include #include #include namespace llvm { class CallInst; class CCState; class FastISel; class FunctionLoweringInfo; class ImmutableCallSite; class IntrinsicInst; class MachineBasicBlock; class MachineFunction; class MachineInstr; class MachineJumpTableInfo; class Mangler; class MCContext; class MCExpr; class MCSymbol; template class SmallVectorImpl; class DataLayout; class TargetRegisterClass; class TargetLibraryInfo; class TargetLoweringObjectFile; class Value; namespace Sched { enum Preference { None, // No preference Source, // Follow source order. RegPressure, // Scheduling for lowest register pressure. Hybrid, // Scheduling for both latency and register pressure. ILP, // Scheduling for ILP in low register pressure mode. VLIW // Scheduling for VLIW targets. }; } /// This base class for TargetLowering contains the SelectionDAG-independent /// parts that can be used from the rest of CodeGen. class TargetLoweringBase { TargetLoweringBase(const TargetLoweringBase&) LLVM_DELETED_FUNCTION; void operator=(const TargetLoweringBase&) LLVM_DELETED_FUNCTION; public: /// This enum indicates whether operations are valid for a target, and if not, /// what action should be used to make them valid. enum LegalizeAction { Legal, // The target natively supports this operation. Promote, // This operation should be executed in a larger type. Expand, // Try to expand this to other ops, otherwise use a libcall. Custom // Use the LowerOperation hook to implement custom lowering. }; /// This enum indicates whether a types are legal for a target, and if not, /// what action should be used to make them valid. enum LegalizeTypeAction { TypeLegal, // The target natively supports this type. TypePromoteInteger, // Replace this integer with a larger one. TypeExpandInteger, // Split this integer into two of half the size. TypeSoftenFloat, // Convert this float to a same size integer type. TypeExpandFloat, // Split this float into two of half the size. TypeScalarizeVector, // Replace this one-element vector with its element. TypeSplitVector, // Split this vector into two of half the size. TypeWidenVector // This vector should be widened into a larger vector. }; /// LegalizeKind holds the legalization kind that needs to happen to EVT /// in order to type-legalize it. typedef std::pair LegalizeKind; /// Enum that describes how the target represents true/false values. enum BooleanContent { UndefinedBooleanContent, // Only bit 0 counts, the rest can hold garbage. ZeroOrOneBooleanContent, // All bits zero except for bit 0. ZeroOrNegativeOneBooleanContent // All bits equal to bit 0. }; /// Enum that describes what type of support for selects the target has. enum SelectSupportKind { ScalarValSelect, // The target supports scalar selects (ex: cmov). ScalarCondVectorVal, // The target supports selects with a scalar condition // and vector values (ex: cmov). VectorMaskSelect // The target supports vector selects with a vector // mask (ex: x86 blends). }; static ISD::NodeType getExtendForContent(BooleanContent Content) { switch (Content) { case UndefinedBooleanContent: // Extend by adding rubbish bits. return ISD::ANY_EXTEND; case ZeroOrOneBooleanContent: // Extend by adding zero bits. return ISD::ZERO_EXTEND; case ZeroOrNegativeOneBooleanContent: // Extend by copying the sign bit. return ISD::SIGN_EXTEND; } llvm_unreachable("Invalid content kind"); } /// NOTE: The constructor takes ownership of TLOF. explicit TargetLoweringBase(const TargetMachine &TM, const TargetLoweringObjectFile *TLOF); virtual ~TargetLoweringBase(); protected: /// \brief Initialize all of the actions to default values. void initActions(); public: const TargetMachine &getTargetMachine() const { return TM; } const DataLayout *getDataLayout() const { return DL; } const TargetLoweringObjectFile &getObjFileLowering() const { return TLOF; } bool isBigEndian() const { return !IsLittleEndian; } bool isLittleEndian() const { return IsLittleEndian; } /// Return the pointer type for the given address space, defaults to /// the pointer type from the data layout. /// FIXME: The default needs to be removed once all the code is updated. virtual MVT getPointerTy(uint32_t /*AS*/ = 0) const; unsigned getPointerSizeInBits(uint32_t AS = 0) const; unsigned getPointerTypeSizeInBits(Type *Ty) const; virtual MVT getScalarShiftAmountTy(EVT LHSTy) const; EVT getShiftAmountTy(EVT LHSTy) const; /// Returns the type to be used for the index operand of: /// ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT, /// ISD::INSERT_SUBVECTOR, and ISD::EXTRACT_SUBVECTOR virtual MVT getVectorIdxTy() const { return getPointerTy(); } /// Return true if the select operation is expensive for this target. bool isSelectExpensive() const { return SelectIsExpensive; } virtual bool isSelectSupported(SelectSupportKind /*kind*/) const { return true; } /// Return true if multiple condition registers are available. bool hasMultipleConditionRegisters() const { return HasMultipleConditionRegisters; } /// Return true if a vector of the given type should be split /// (TypeSplitVector) instead of promoted (TypePromoteInteger) during type /// legalization. virtual bool shouldSplitVectorElementType(EVT /*VT*/) const { return false; } /// Return true if integer divide is usually cheaper than a sequence of /// several shifts, adds, and multiplies for this target. bool isIntDivCheap() const { return IntDivIsCheap; } /// Returns true if target has indicated at least one type should be bypassed. bool isSlowDivBypassed() const { return !BypassSlowDivWidths.empty(); } /// Returns map of slow types for division or remainder with corresponding /// fast types const DenseMap &getBypassSlowDivWidths() const { return BypassSlowDivWidths; } /// Return true if pow2 div is cheaper than a chain of srl/add/sra. bool isPow2DivCheap() const { return Pow2DivIsCheap; } /// Return true if Flow Control is an expensive operation that should be /// avoided. bool isJumpExpensive() const { return JumpIsExpensive; } /// Return true if selects are only cheaper than branches if the branch is /// unlikely to be predicted right. bool isPredictableSelectExpensive() const { return PredictableSelectIsExpensive; } /// isLoadBitCastBeneficial() - Return true if the following transform /// is beneficial. /// fold (conv (load x)) -> (load (conv*)x) /// On architectures that don't natively support some vector loads efficiently, /// casting the load to a smaller vector of larger types and loading /// is more efficient, however, this can be undone by optimizations in /// dag combiner. virtual bool isLoadBitCastBeneficial(EVT /* Load */, EVT /* Bitcast */) const { return true; } /// Return the ValueType of the result of SETCC operations. Also used to /// obtain the target's preferred type for the condition operand of SELECT and /// BRCOND nodes. In the case of BRCOND the argument passed is MVT::Other /// since there are no other operands to get a type hint from. virtual EVT getSetCCResultType(LLVMContext &Context, EVT VT) const; /// Return the ValueType for comparison libcalls. Comparions libcalls include /// floating point comparion calls, and Ordered/Unordered check calls on /// floating point numbers. virtual MVT::SimpleValueType getCmpLibcallReturnType() const; /// For targets without i1 registers, this gives the nature of the high-bits /// of boolean values held in types wider than i1. /// /// "Boolean values" are special true/false values produced by nodes like /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND. /// Not to be confused with general values promoted from i1. Some cpus /// distinguish between vectors of boolean and scalars; the isVec parameter /// selects between the two kinds. For example on X86 a scalar boolean should /// be zero extended from i1, while the elements of a vector of booleans /// should be sign extended from i1. BooleanContent getBooleanContents(bool isVec) const { return isVec ? BooleanVectorContents : BooleanContents; } /// Return target scheduling preference. Sched::Preference getSchedulingPreference() const { return SchedPreferenceInfo; } /// Some scheduler, e.g. hybrid, can switch to different scheduling heuristics /// for different nodes. This function returns the preference (or none) for /// the given node. virtual Sched::Preference getSchedulingPreference(SDNode *) const { return Sched::None; } /// Return the register class that should be used for the specified value /// type. virtual const TargetRegisterClass *getRegClassFor(MVT VT) const { const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy]; assert(RC && "This value type is not natively supported!"); return RC; } /// Return the 'representative' register class for the specified value /// type. /// /// The 'representative' register class is the largest legal super-reg /// register class for the register class of the value type. For example, on /// i386 the rep register class for i8, i16, and i32 are GR32; while the rep /// register class is GR64 on x86_64. virtual const TargetRegisterClass *getRepRegClassFor(MVT VT) const { const TargetRegisterClass *RC = RepRegClassForVT[VT.SimpleTy]; return RC; } /// Return the cost of the 'representative' register class for the specified /// value type. virtual uint8_t getRepRegClassCostFor(MVT VT) const { return RepRegClassCostForVT[VT.SimpleTy]; } /// Return true if the target has native support for the specified value type. /// This means that it has a register that directly holds it without /// promotions or expansions. bool isTypeLegal(EVT VT) const { assert(!VT.isSimple() || (unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT)); return VT.isSimple() && RegClassForVT[VT.getSimpleVT().SimpleTy] != 0; } class ValueTypeActionImpl { /// ValueTypeActions - For each value type, keep a LegalizeTypeAction enum /// that indicates how instruction selection should deal with the type. uint8_t ValueTypeActions[MVT::LAST_VALUETYPE]; public: ValueTypeActionImpl() { std::fill(ValueTypeActions, array_endof(ValueTypeActions), 0); } LegalizeTypeAction getTypeAction(MVT VT) const { return (LegalizeTypeAction)ValueTypeActions[VT.SimpleTy]; } void setTypeAction(MVT VT, LegalizeTypeAction Action) { unsigned I = VT.SimpleTy; ValueTypeActions[I] = Action; } }; const ValueTypeActionImpl &getValueTypeActions() const { return ValueTypeActions; } /// Return how we should legalize values of this type, either it is already /// legal (return 'Legal') or we need to promote it to a larger type (return /// 'Promote'), or we need to expand it into multiple registers of smaller /// integer type (return 'Expand'). 'Custom' is not an option. LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const { return getTypeConversion(Context, VT).first; } LegalizeTypeAction getTypeAction(MVT VT) const { return ValueTypeActions.getTypeAction(VT); } /// For types supported by the target, this is an identity function. For /// types that must be promoted to larger types, this returns the larger type /// to promote to. For integer types that are larger than the largest integer /// register, this contains one step in the expansion to get to the smaller /// register. For illegal floating point types, this returns the integer type /// to transform to. EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const { return getTypeConversion(Context, VT).second; } /// For types supported by the target, this is an identity function. For /// types that must be expanded (i.e. integer types that are larger than the /// largest integer register or illegal floating point types), this returns /// the largest legal type it will be expanded to. EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const { assert(!VT.isVector()); while (true) { switch (getTypeAction(Context, VT)) { case TypeLegal: return VT; case TypeExpandInteger: VT = getTypeToTransformTo(Context, VT); break; default: llvm_unreachable("Type is not legal nor is it to be expanded!"); } } } /// Vector types are broken down into some number of legal first class types. /// For example, EVT::v8f32 maps to 2 EVT::v4f32 with Altivec or SSE1, or 8 /// promoted EVT::f64 values with the X86 FP stack. Similarly, EVT::v2i64 /// turns into 4 EVT::i32 values with both PPC and X86. /// /// This method returns the number of registers needed, and the VT for each /// register. It also returns the VT and quantity of the intermediate values /// before they are promoted/expanded. unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT, EVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT) const; struct IntrinsicInfo { unsigned opc; // target opcode EVT memVT; // memory VT const Value* ptrVal; // value representing memory location int offset; // offset off of ptrVal unsigned align; // alignment bool vol; // is volatile? bool readMem; // reads memory? bool writeMem; // writes memory? }; /// Given an intrinsic, checks if on the target the intrinsic will need to map /// to a MemIntrinsicNode (touches memory). If this is the case, it returns /// true and store the intrinsic information into the IntrinsicInfo that was /// passed to the function. virtual bool getTgtMemIntrinsic(IntrinsicInfo &, const CallInst &, unsigned /*Intrinsic*/) const { return false; } /// Returns true if the target can instruction select the specified FP /// immediate natively. If false, the legalizer will materialize the FP /// immediate as a load from a constant pool. virtual bool isFPImmLegal(const APFloat &/*Imm*/, EVT /*VT*/) const { return false; } /// Targets can use this to indicate that they only support *some* /// VECTOR_SHUFFLE operations, those with specific masks. By default, if a /// target supports the VECTOR_SHUFFLE node, all mask values are assumed to be /// legal. virtual bool isShuffleMaskLegal(const SmallVectorImpl &/*Mask*/, EVT /*VT*/) const { return true; } /// Returns true if the operation can trap for the value type. /// /// VT must be a legal type. By default, we optimistically assume most /// operations don't trap except for divide and remainder. virtual bool canOpTrap(unsigned Op, EVT VT) const; /// Similar to isShuffleMaskLegal. This is used by Targets can use this to /// indicate if there is a suitable VECTOR_SHUFFLE that can be used to replace /// a VAND with a constant pool entry. virtual bool isVectorClearMaskLegal(const SmallVectorImpl &/*Mask*/, EVT /*VT*/) const { return false; } /// Return how this operation should be treated: either it is legal, needs to /// be promoted to a larger size, needs to be expanded to some other code /// sequence, or the target has a custom expander for it. LegalizeAction getOperationAction(unsigned Op, EVT VT) const { if (VT.isExtended()) return Expand; // If a target-specific SDNode requires legalization, require the target // to provide custom legalization for it. if (Op > array_lengthof(OpActions[0])) return Custom; unsigned I = (unsigned) VT.getSimpleVT().SimpleTy; return (LegalizeAction)OpActions[I][Op]; } /// Return true if the specified operation is legal on this target or can be /// made legal with custom lowering. This is used to help guide high-level /// lowering decisions. bool isOperationLegalOrCustom(unsigned Op, EVT VT) const { return (VT == MVT::Other || isTypeLegal(VT)) && (getOperationAction(Op, VT) == Legal || getOperationAction(Op, VT) == Custom); } /// Return true if the specified operation is legal on this target or can be /// made legal using promotion. This is used to help guide high-level lowering /// decisions. bool isOperationLegalOrPromote(unsigned Op, EVT VT) const { return (VT == MVT::Other || isTypeLegal(VT)) && (getOperationAction(Op, VT) == Legal || getOperationAction(Op, VT) == Promote); } /// Return true if the specified operation is illegal on this target or /// unlikely to be made legal with custom lowering. This is used to help guide /// high-level lowering decisions. bool isOperationExpand(unsigned Op, EVT VT) const { return (!isTypeLegal(VT) || getOperationAction(Op, VT) == Expand); } /// Return true if the specified operation is legal on this target. bool isOperationLegal(unsigned Op, EVT VT) const { return (VT == MVT::Other || isTypeLegal(VT)) && getOperationAction(Op, VT) == Legal; } /// Return how this load with extension should be treated: either it is legal, /// needs to be promoted to a larger size, needs to be expanded to some other /// code sequence, or the target has a custom expander for it. LegalizeAction getLoadExtAction(unsigned ExtType, MVT VT) const { assert(ExtType < ISD::LAST_LOADEXT_TYPE && VT < MVT::LAST_VALUETYPE && "Table isn't big enough!"); return (LegalizeAction)LoadExtActions[VT.SimpleTy][ExtType]; } /// Return true if the specified load with extension is legal on this target. bool isLoadExtLegal(unsigned ExtType, EVT VT) const { return VT.isSimple() && getLoadExtAction(ExtType, VT.getSimpleVT()) == Legal; } /// Return how this store with truncation should be treated: either it is /// legal, needs to be promoted to a larger size, needs to be expanded to some /// other code sequence, or the target has a custom expander for it. LegalizeAction getTruncStoreAction(MVT ValVT, MVT MemVT) const { assert(ValVT < MVT::LAST_VALUETYPE && MemVT < MVT::LAST_VALUETYPE && "Table isn't big enough!"); return (LegalizeAction)TruncStoreActions[ValVT.SimpleTy] [MemVT.SimpleTy]; } /// Return true if the specified store with truncation is legal on this /// target. bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const { return isTypeLegal(ValVT) && MemVT.isSimple() && getTruncStoreAction(ValVT.getSimpleVT(), MemVT.getSimpleVT()) == Legal; } /// Return how the indexed load should be treated: either it is legal, needs /// to be promoted to a larger size, needs to be expanded to some other code /// sequence, or the target has a custom expander for it. LegalizeAction getIndexedLoadAction(unsigned IdxMode, MVT VT) const { assert(IdxMode < ISD::LAST_INDEXED_MODE && VT < MVT::LAST_VALUETYPE && "Table isn't big enough!"); unsigned Ty = (unsigned)VT.SimpleTy; return (LegalizeAction)((IndexedModeActions[Ty][IdxMode] & 0xf0) >> 4); } /// Return true if the specified indexed load is legal on this target. bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const { return VT.isSimple() && (getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Legal || getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Custom); } /// Return how the indexed store should be treated: either it is legal, needs /// to be promoted to a larger size, needs to be expanded to some other code /// sequence, or the target has a custom expander for it. LegalizeAction getIndexedStoreAction(unsigned IdxMode, MVT VT) const { assert(IdxMode < ISD::LAST_INDEXED_MODE && VT < MVT::LAST_VALUETYPE && "Table isn't big enough!"); unsigned Ty = (unsigned)VT.SimpleTy; return (LegalizeAction)(IndexedModeActions[Ty][IdxMode] & 0x0f); } /// Return true if the specified indexed load is legal on this target. bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const { return VT.isSimple() && (getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Legal || getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Custom); } /// Return how the condition code should be treated: either it is legal, needs /// to be expanded to some other code sequence, or the target has a custom /// expander for it. LegalizeAction getCondCodeAction(ISD::CondCode CC, MVT VT) const { assert((unsigned)CC < array_lengthof(CondCodeActions) && ((unsigned)VT.SimpleTy >> 4) < array_lengthof(CondCodeActions[0]) && "Table isn't big enough!"); // See setCondCodeAction for how this is encoded. uint32_t Shift = 2 * (VT.SimpleTy & 0xF); uint32_t Value = CondCodeActions[CC][VT.SimpleTy >> 4]; LegalizeAction Action = (LegalizeAction) ((Value >> Shift) & 0x3); assert(Action != Promote && "Can't promote condition code!"); return Action; } /// Return true if the specified condition code is legal on this target. bool isCondCodeLegal(ISD::CondCode CC, MVT VT) const { return getCondCodeAction(CC, VT) == Legal || getCondCodeAction(CC, VT) == Custom; } /// If the action for this operation is to promote, this method returns the /// ValueType to promote to. MVT getTypeToPromoteTo(unsigned Op, MVT VT) const { assert(getOperationAction(Op, VT) == Promote && "This operation isn't promoted!"); // See if this has an explicit type specified. std::map, MVT::SimpleValueType>::const_iterator PTTI = PromoteToType.find(std::make_pair(Op, VT.SimpleTy)); if (PTTI != PromoteToType.end()) return PTTI->second; assert((VT.isInteger() || VT.isFloatingPoint()) && "Cannot autopromote this type, add it with AddPromotedToType."); MVT NVT = VT; do { NVT = (MVT::SimpleValueType)(NVT.SimpleTy+1); assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid && "Didn't find type to promote to!"); } while (!isTypeLegal(NVT) || getOperationAction(Op, NVT) == Promote); return NVT; } /// Return the EVT corresponding to this LLVM type. This is fixed by the LLVM /// operations except for the pointer size. If AllowUnknown is true, this /// will return MVT::Other for types with no EVT counterpart (e.g. structs), /// otherwise it will assert. EVT getValueType(Type *Ty, bool AllowUnknown = false) const { // Lower scalar pointers to native pointer types. if (PointerType *PTy = dyn_cast(Ty)) return getPointerTy(PTy->getAddressSpace()); if (Ty->isVectorTy()) { VectorType *VTy = cast(Ty); Type *Elm = VTy->getElementType(); // Lower vectors of pointers to native pointer types. if (PointerType *PT = dyn_cast(Elm)) { EVT PointerTy(getPointerTy(PT->getAddressSpace())); Elm = PointerTy.getTypeForEVT(Ty->getContext()); } return EVT::getVectorVT(Ty->getContext(), EVT::getEVT(Elm, false), VTy->getNumElements()); } return EVT::getEVT(Ty, AllowUnknown); } /// Return the MVT corresponding to this LLVM type. See getValueType. MVT getSimpleValueType(Type *Ty, bool AllowUnknown = false) const { return getValueType(Ty, AllowUnknown).getSimpleVT(); } /// Return the desired alignment for ByVal or InAlloca aggregate function /// arguments in the caller parameter area. This is the actual alignment, not /// its logarithm. virtual unsigned getByValTypeAlignment(Type *Ty) const; /// Return the type of registers that this ValueType will eventually require. MVT getRegisterType(MVT VT) const { assert((unsigned)VT.SimpleTy < array_lengthof(RegisterTypeForVT)); return RegisterTypeForVT[VT.SimpleTy]; } /// Return the type of registers that this ValueType will eventually require. MVT getRegisterType(LLVMContext &Context, EVT VT) const { if (VT.isSimple()) { assert((unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegisterTypeForVT)); return RegisterTypeForVT[VT.getSimpleVT().SimpleTy]; } if (VT.isVector()) { EVT VT1; MVT RegisterVT; unsigned NumIntermediates; (void)getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, RegisterVT); return RegisterVT; } if (VT.isInteger()) { return getRegisterType(Context, getTypeToTransformTo(Context, VT)); } llvm_unreachable("Unsupported extended type!"); } /// Return the number of registers that this ValueType will eventually /// require. /// /// This is one for any types promoted to live in larger registers, but may be /// more than one for types (like i64) that are split into pieces. For types /// like i140, which are first promoted then expanded, it is the number of /// registers needed to hold all the bits of the original type. For an i140 /// on a 32 bit machine this means 5 registers. unsigned getNumRegisters(LLVMContext &Context, EVT VT) const { if (VT.isSimple()) { assert((unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(NumRegistersForVT)); return NumRegistersForVT[VT.getSimpleVT().SimpleTy]; } if (VT.isVector()) { EVT VT1; MVT VT2; unsigned NumIntermediates; return getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, VT2); } if (VT.isInteger()) { unsigned BitWidth = VT.getSizeInBits(); unsigned RegWidth = getRegisterType(Context, VT).getSizeInBits(); return (BitWidth + RegWidth - 1) / RegWidth; } llvm_unreachable("Unsupported extended type!"); } /// If true, then instruction selection should seek to shrink the FP constant /// of the specified type to a smaller type in order to save space and / or /// reduce runtime. virtual bool ShouldShrinkFPConstant(EVT) const { return true; } /// If true, the target has custom DAG combine transformations that it can /// perform for the specified node. bool hasTargetDAGCombine(ISD::NodeType NT) const { assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray)); return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7)); } /// \brief Get maximum # of store operations permitted for llvm.memset /// /// This function returns the maximum number of store operations permitted /// to replace a call to llvm.memset. The value is set by the target at the /// performance threshold for such a replacement. If OptSize is true, /// return the limit for functions that have OptSize attribute. unsigned getMaxStoresPerMemset(bool OptSize) const { return OptSize ? MaxStoresPerMemsetOptSize : MaxStoresPerMemset; } /// \brief Get maximum # of store operations permitted for llvm.memcpy /// /// This function returns the maximum number of store operations permitted /// to replace a call to llvm.memcpy. The value is set by the target at the /// performance threshold for such a replacement. If OptSize is true, /// return the limit for functions that have OptSize attribute. unsigned getMaxStoresPerMemcpy(bool OptSize) const { return OptSize ? MaxStoresPerMemcpyOptSize : MaxStoresPerMemcpy; } /// \brief Get maximum # of store operations permitted for llvm.memmove /// /// This function returns the maximum number of store operations permitted /// to replace a call to llvm.memmove. The value is set by the target at the /// performance threshold for such a replacement. If OptSize is true, /// return the limit for functions that have OptSize attribute. unsigned getMaxStoresPerMemmove(bool OptSize) const { return OptSize ? MaxStoresPerMemmoveOptSize : MaxStoresPerMemmove; } /// \brief Determine if the target supports unaligned memory accesses. /// /// This function returns true if the target allows unaligned memory accesses /// of the specified type in the given address space. If true, it also returns /// whether the unaligned memory access is "fast" in the third argument by /// reference. This is used, for example, in situations where an array /// copy/move/set is converted to a sequence of store operations. Its use /// helps to ensure that such replacements don't generate code that causes an /// alignment error (trap) on the target machine. virtual bool allowsUnalignedMemoryAccesses(EVT, unsigned AddrSpace = 0, bool * /*Fast*/ = 0) const { return false; } /// Returns the target specific optimal type for load and store operations as /// a result of memset, memcpy, and memmove lowering. /// /// If DstAlign is zero that means it's safe to destination alignment can /// satisfy any constraint. Similarly if SrcAlign is zero it means there isn't /// a need to check it against alignment requirement, probably because the /// source does not need to be loaded. If 'IsMemset' is true, that means it's /// expanding a memset. If 'ZeroMemset' is true, that means it's a memset of /// zero. 'MemcpyStrSrc' indicates whether the memcpy source is constant so it /// does not need to be loaded. It returns EVT::Other if the type should be /// determined using generic target-independent logic. virtual EVT getOptimalMemOpType(uint64_t /*Size*/, unsigned /*DstAlign*/, unsigned /*SrcAlign*/, bool /*IsMemset*/, bool /*ZeroMemset*/, bool /*MemcpyStrSrc*/, MachineFunction &/*MF*/) const { return MVT::Other; } /// Returns true if it's safe to use load / store of the specified type to /// expand memcpy / memset inline. /// /// This is mostly true for all types except for some special cases. For /// example, on X86 targets without SSE2 f64 load / store are done with fldl / /// fstpl which also does type conversion. Note the specified type doesn't /// have to be legal as the hook is used before type legalization. virtual bool isSafeMemOpType(MVT /*VT*/) const { return true; } /// Determine if we should use _setjmp or setjmp to implement llvm.setjmp. bool usesUnderscoreSetJmp() const { return UseUnderscoreSetJmp; } /// Determine if we should use _longjmp or longjmp to implement llvm.longjmp. bool usesUnderscoreLongJmp() const { return UseUnderscoreLongJmp; } /// Return whether the target can generate code for jump tables. bool supportJumpTables() const { return SupportJumpTables; } /// Return integer threshold on number of blocks to use jump tables rather /// than if sequence. int getMinimumJumpTableEntries() const { return MinimumJumpTableEntries; } /// If a physical register, this specifies the register that /// llvm.savestack/llvm.restorestack should save and restore. unsigned getStackPointerRegisterToSaveRestore() const { return StackPointerRegisterToSaveRestore; } /// If a physical register, this returns the register that receives the /// exception address on entry to a landing pad. unsigned getExceptionPointerRegister() const { return ExceptionPointerRegister; } /// If a physical register, this returns the register that receives the /// exception typeid on entry to a landing pad. unsigned getExceptionSelectorRegister() const { return ExceptionSelectorRegister; } /// Returns the target's jmp_buf size in bytes (if never set, the default is /// 200) unsigned getJumpBufSize() const { return JumpBufSize; } /// Returns the target's jmp_buf alignment in bytes (if never set, the default /// is 0) unsigned getJumpBufAlignment() const { return JumpBufAlignment; } /// Return the minimum stack alignment of an argument. unsigned getMinStackArgumentAlignment() const { return MinStackArgumentAlignment; } /// Return the minimum function alignment. unsigned getMinFunctionAlignment() const { return MinFunctionAlignment; } /// Return the preferred function alignment. unsigned getPrefFunctionAlignment() const { return PrefFunctionAlignment; } /// Return the preferred loop alignment. unsigned getPrefLoopAlignment() const { return PrefLoopAlignment; } /// Return whether the DAG builder should automatically insert fences and /// reduce ordering for atomics. bool getInsertFencesForAtomic() const { return InsertFencesForAtomic; } /// Return true if the target stores stack protector cookies at a fixed offset /// in some non-standard address space, and populates the address space and /// offset as appropriate. virtual bool getStackCookieLocation(unsigned &/*AddressSpace*/, unsigned &/*Offset*/) const { return false; } /// Returns the maximal possible offset which can be used for loads / stores /// from the global. virtual unsigned getMaximalGlobalOffset() const { return 0; } /// Returns true if a cast between SrcAS and DestAS is a noop. virtual bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const { return false; } //===--------------------------------------------------------------------===// /// \name Helpers for TargetTransformInfo implementations /// @{ /// Get the ISD node that corresponds to the Instruction class opcode. int InstructionOpcodeToISD(unsigned Opcode) const; /// Estimate the cost of type-legalization and the legalized type. std::pair getTypeLegalizationCost(Type *Ty) const; /// @} //===--------------------------------------------------------------------===// // TargetLowering Configuration Methods - These methods should be invoked by // the derived class constructor to configure this object for the target. // /// \brief Reset the operation actions based on target options. virtual void resetOperationActions() {} protected: /// Specify how the target extends the result of a boolean value from i1 to a /// wider type. See getBooleanContents. void setBooleanContents(BooleanContent Ty) { BooleanContents = Ty; } /// Specify how the target extends the result of a vector boolean value from a /// vector of i1 to a wider type. See getBooleanContents. void setBooleanVectorContents(BooleanContent Ty) { BooleanVectorContents = Ty; } /// Specify the target scheduling preference. void setSchedulingPreference(Sched::Preference Pref) { SchedPreferenceInfo = Pref; } /// Indicate whether this target prefers to use _setjmp to implement /// llvm.setjmp or the version without _. Defaults to false. void setUseUnderscoreSetJmp(bool Val) { UseUnderscoreSetJmp = Val; } /// Indicate whether this target prefers to use _longjmp to implement /// llvm.longjmp or the version without _. Defaults to false. void setUseUnderscoreLongJmp(bool Val) { UseUnderscoreLongJmp = Val; } /// Indicate whether the target can generate code for jump tables. void setSupportJumpTables(bool Val) { SupportJumpTables = Val; } /// Indicate the number of blocks to generate jump tables rather than if /// sequence. void setMinimumJumpTableEntries(int Val) { MinimumJumpTableEntries = Val; } /// If set to a physical register, this specifies the register that /// llvm.savestack/llvm.restorestack should save and restore. void setStackPointerRegisterToSaveRestore(unsigned R) { StackPointerRegisterToSaveRestore = R; } /// If set to a physical register, this sets the register that receives the /// exception address on entry to a landing pad. void setExceptionPointerRegister(unsigned R) { ExceptionPointerRegister = R; } /// If set to a physical register, this sets the register that receives the /// exception typeid on entry to a landing pad. void setExceptionSelectorRegister(unsigned R) { ExceptionSelectorRegister = R; } /// Tells the code generator not to expand operations into sequences that use /// the select operations if possible. void setSelectIsExpensive(bool isExpensive = true) { SelectIsExpensive = isExpensive; } /// Tells the code generator that the target has multiple (allocatable) /// condition registers that can be used to store the results of comparisons /// for use by selects and conditional branches. With multiple condition /// registers, the code generator will not aggressively sink comparisons into /// the blocks of their users. void setHasMultipleConditionRegisters(bool hasManyRegs = true) { HasMultipleConditionRegisters = hasManyRegs; } /// Tells the code generator not to expand sequence of operations into a /// separate sequences that increases the amount of flow control. void setJumpIsExpensive(bool isExpensive = true) { JumpIsExpensive = isExpensive; } /// Tells the code generator that integer divide is expensive, and if /// possible, should be replaced by an alternate sequence of instructions not /// containing an integer divide. void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; } /// Tells the code generator which bitwidths to bypass. void addBypassSlowDiv(unsigned int SlowBitWidth, unsigned int FastBitWidth) { BypassSlowDivWidths[SlowBitWidth] = FastBitWidth; } /// Tells the code generator that it shouldn't generate srl/add/sra for a /// signed divide by power of two, and let the target handle it. void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; } /// Add the specified register class as an available regclass for the /// specified value type. This indicates the selector can handle values of /// that class natively. void addRegisterClass(MVT VT, const TargetRegisterClass *RC) { assert((unsigned)VT.SimpleTy < array_lengthof(RegClassForVT)); AvailableRegClasses.push_back(std::make_pair(VT, RC)); RegClassForVT[VT.SimpleTy] = RC; } /// Remove all register classes. void clearRegisterClasses() { memset(RegClassForVT, 0,MVT::LAST_VALUETYPE * sizeof(TargetRegisterClass*)); AvailableRegClasses.clear(); } /// \brief Remove all operation actions. void clearOperationActions() { } /// Return the largest legal super-reg register class of the register class /// for the specified type and its associated "cost". virtual std::pair findRepresentativeClass(MVT VT) const; /// Once all of the register classes are added, this allows us to compute /// derived properties we expose. void computeRegisterProperties(); /// Indicate that the specified operation does not work with the specified /// type and indicate what to do about it. void setOperationAction(unsigned Op, MVT VT, LegalizeAction Action) { assert(Op < array_lengthof(OpActions[0]) && "Table isn't big enough!"); OpActions[(unsigned)VT.SimpleTy][Op] = (uint8_t)Action; } /// Indicate that the specified load with extension does not work with the /// specified type and indicate what to do about it. void setLoadExtAction(unsigned ExtType, MVT VT, LegalizeAction Action) { assert(ExtType < ISD::LAST_LOADEXT_TYPE && VT < MVT::LAST_VALUETYPE && "Table isn't big enough!"); LoadExtActions[VT.SimpleTy][ExtType] = (uint8_t)Action; } /// Indicate that the specified truncating store does not work with the /// specified type and indicate what to do about it. void setTruncStoreAction(MVT ValVT, MVT MemVT, LegalizeAction Action) { assert(ValVT < MVT::LAST_VALUETYPE && MemVT < MVT::LAST_VALUETYPE && "Table isn't big enough!"); TruncStoreActions[ValVT.SimpleTy][MemVT.SimpleTy] = (uint8_t)Action; } /// Indicate that the specified indexed load does or does not work with the /// specified type and indicate what to do abort it. /// /// NOTE: All indexed mode loads are initialized to Expand in /// TargetLowering.cpp void setIndexedLoadAction(unsigned IdxMode, MVT VT, LegalizeAction Action) { assert(VT < MVT::LAST_VALUETYPE && IdxMode < ISD::LAST_INDEXED_MODE && (unsigned)Action < 0xf && "Table isn't big enough!"); // Load action are kept in the upper half. IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0xf0; IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action) <<4; } /// Indicate that the specified indexed store does or does not work with the /// specified type and indicate what to do about it. /// /// NOTE: All indexed mode stores are initialized to Expand in /// TargetLowering.cpp void setIndexedStoreAction(unsigned IdxMode, MVT VT, LegalizeAction Action) { assert(VT < MVT::LAST_VALUETYPE && IdxMode < ISD::LAST_INDEXED_MODE && (unsigned)Action < 0xf && "Table isn't big enough!"); // Store action are kept in the lower half. IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0x0f; IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action); } /// Indicate that the specified condition code is or isn't supported on the /// target and indicate what to do about it. void setCondCodeAction(ISD::CondCode CC, MVT VT, LegalizeAction Action) { assert(VT < MVT::LAST_VALUETYPE && (unsigned)CC < array_lengthof(CondCodeActions) && "Table isn't big enough!"); /// The lower 5 bits of the SimpleTy index into Nth 2bit set from the 32-bit /// value and the upper 27 bits index into the second dimension of the array /// to select what 32-bit value to use. uint32_t Shift = 2 * (VT.SimpleTy & 0xF); CondCodeActions[CC][VT.SimpleTy >> 4] &= ~((uint32_t)0x3 << Shift); CondCodeActions[CC][VT.SimpleTy >> 4] |= (uint32_t)Action << Shift; } /// If Opc/OrigVT is specified as being promoted, the promotion code defaults /// to trying a larger integer/fp until it can find one that works. If that /// default is insufficient, this method can be used by the target to override /// the default. void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) { PromoteToType[std::make_pair(Opc, OrigVT.SimpleTy)] = DestVT.SimpleTy; } /// Targets should invoke this method for each target independent node that /// they want to provide a custom DAG combiner for by implementing the /// PerformDAGCombine virtual method. void setTargetDAGCombine(ISD::NodeType NT) { assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray)); TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7); } /// Set the target's required jmp_buf buffer size (in bytes); default is 200 void setJumpBufSize(unsigned Size) { JumpBufSize = Size; } /// Set the target's required jmp_buf buffer alignment (in bytes); default is /// 0 void setJumpBufAlignment(unsigned Align) { JumpBufAlignment = Align; } /// Set the target's minimum function alignment (in log2(bytes)) void setMinFunctionAlignment(unsigned Align) { MinFunctionAlignment = Align; } /// Set the target's preferred function alignment. This should be set if /// there is a performance benefit to higher-than-minimum alignment (in /// log2(bytes)) void setPrefFunctionAlignment(unsigned Align) { PrefFunctionAlignment = Align; } /// Set the target's preferred loop alignment. Default alignment is zero, it /// means the target does not care about loop alignment. The alignment is /// specified in log2(bytes). void setPrefLoopAlignment(unsigned Align) { PrefLoopAlignment = Align; } /// Set the minimum stack alignment of an argument (in log2(bytes)). void setMinStackArgumentAlignment(unsigned Align) { MinStackArgumentAlignment = Align; } /// Set if the DAG builder should automatically insert fences and reduce the /// order of atomic memory operations to Monotonic. void setInsertFencesForAtomic(bool fence) { InsertFencesForAtomic = fence; } public: //===--------------------------------------------------------------------===// // Addressing mode description hooks (used by LSR etc). // /// CodeGenPrepare sinks address calculations into the same BB as Load/Store /// instructions reading the address. This allows as much computation as /// possible to be done in the address mode for that operand. This hook lets /// targets also pass back when this should be done on intrinsics which /// load/store. virtual bool GetAddrModeArguments(IntrinsicInst * /*I*/, SmallVectorImpl &/*Ops*/, Type *&/*AccessTy*/) const { return false; } /// This represents an addressing mode of: /// BaseGV + BaseOffs + BaseReg + Scale*ScaleReg /// If BaseGV is null, there is no BaseGV. /// If BaseOffs is zero, there is no base offset. /// If HasBaseReg is false, there is no base register. /// If Scale is zero, there is no ScaleReg. Scale of 1 indicates a reg with /// no scale. struct AddrMode { GlobalValue *BaseGV; int64_t BaseOffs; bool HasBaseReg; int64_t Scale; AddrMode() : BaseGV(0), BaseOffs(0), HasBaseReg(false), Scale(0) {} }; /// Return true if the addressing mode represented by AM is legal for this /// target, for a load/store of the specified type. /// /// The type may be VoidTy, in which case only return true if the addressing /// mode is legal for a load/store of any legal type. TODO: Handle /// pre/postinc as well. virtual bool isLegalAddressingMode(const AddrMode &AM, Type *Ty) const; /// \brief Return the cost of the scaling factor used in the addressing mode /// represented by AM for this target, for a load/store of the specified type. /// /// If the AM is supported, the return value must be >= 0. /// If the AM is not supported, it returns a negative value. /// TODO: Handle pre/postinc as well. virtual int getScalingFactorCost(const AddrMode &AM, Type *Ty) const { // Default: assume that any scaling factor used in a legal AM is free. if (isLegalAddressingMode(AM, Ty)) return 0; return -1; } /// Return true if the specified immediate is legal icmp immediate, that is /// the target has icmp instructions which can compare a register against the /// immediate without having to materialize the immediate into a register. virtual bool isLegalICmpImmediate(int64_t) const { return true; } /// Return true if the specified immediate is legal add immediate, that is the /// target has add instructions which can add a register with the immediate /// without having to materialize the immediate into a register. virtual bool isLegalAddImmediate(int64_t) const { return true; } /// Return true if it's significantly cheaper to shift a vector by a uniform /// scalar than by an amount which will vary across each lane. On x86, for /// example, there is a "psllw" instruction for the former case, but no simple /// instruction for a general "a << b" operation on vectors. virtual bool isVectorShiftByScalarCheap(Type *Ty) const { return false; } /// Return true if it's free to truncate a value of type Ty1 to type /// Ty2. e.g. On x86 it's free to truncate a i32 value in register EAX to i16 /// by referencing its sub-register AX. virtual bool isTruncateFree(Type * /*Ty1*/, Type * /*Ty2*/) const { return false; } /// Return true if a truncation from Ty1 to Ty2 is permitted when deciding /// whether a call is in tail position. Typically this means that both results /// would be assigned to the same register or stack slot, but it could mean /// the target performs adequate checks of its own before proceeding with the /// tail call. virtual bool allowTruncateForTailCall(Type * /*Ty1*/, Type * /*Ty2*/) const { return false; } virtual bool isTruncateFree(EVT /*VT1*/, EVT /*VT2*/) const { return false; } /// Return true if any actual instruction that defines a value of type Ty1 /// implicitly zero-extends the value to Ty2 in the result register. /// /// This does not necessarily include registers defined in unknown ways, such /// as incoming arguments, or copies from unknown virtual registers. Also, if /// isTruncateFree(Ty2, Ty1) is true, this does not necessarily apply to /// truncate instructions. e.g. on x86-64, all instructions that define 32-bit /// values implicit zero-extend the result out to 64 bits. virtual bool isZExtFree(Type * /*Ty1*/, Type * /*Ty2*/) const { return false; } virtual bool isZExtFree(EVT /*VT1*/, EVT /*VT2*/) const { return false; } /// Return true if the target supplies and combines to a paired load /// two loaded values of type LoadedType next to each other in memory. /// RequiredAlignment gives the minimal alignment constraints that must be met /// to be able to select this paired load. /// /// This information is *not* used to generate actual paired loads, but it is /// used to generate a sequence of loads that is easier to combine into a /// paired load. /// For instance, something like this: /// a = load i64* addr /// b = trunc i64 a to i32 /// c = lshr i64 a, 32 /// d = trunc i64 c to i32 /// will be optimized into: /// b = load i32* addr1 /// d = load i32* addr2 /// Where addr1 = addr2 +/- sizeof(i32). /// /// In other words, unless the target performs a post-isel load combining, /// this information should not be provided because it will generate more /// loads. virtual bool hasPairedLoad(Type * /*LoadedType*/, unsigned & /*RequiredAligment*/) const { return false; } virtual bool hasPairedLoad(EVT /*LoadedType*/, unsigned & /*RequiredAligment*/) const { return false; } /// Return true if zero-extending the specific node Val to type VT2 is free /// (either because it's implicitly zero-extended such as ARM ldrb / ldrh or /// because it's folded such as X86 zero-extending loads). virtual bool isZExtFree(SDValue Val, EVT VT2) const { return isZExtFree(Val.getValueType(), VT2); } /// Return true if an fneg operation is free to the point where it is never /// worthwhile to replace it with a bitwise operation. virtual bool isFNegFree(EVT VT) const { assert(VT.isFloatingPoint()); return false; } /// Return true if an fabs operation is free to the point where it is never /// worthwhile to replace it with a bitwise operation. virtual bool isFAbsFree(EVT VT) const { assert(VT.isFloatingPoint()); return false; } /// Return true if an FMA operation is faster than a pair of fmul and fadd /// instructions. fmuladd intrinsics will be expanded to FMAs when this method /// returns true, otherwise fmuladd is expanded to fmul + fadd. /// /// NOTE: This may be called before legalization on types for which FMAs are /// not legal, but should return true if those types will eventually legalize /// to types that support FMAs. After legalization, it will only be called on /// types that support FMAs (via Legal or Custom actions) virtual bool isFMAFasterThanFMulAndFAdd(EVT) const { return false; } /// Return true if it's profitable to narrow operations of type VT1 to /// VT2. e.g. on x86, it's profitable to narrow from i32 to i8 but not from /// i32 to i16. virtual bool isNarrowingProfitable(EVT /*VT1*/, EVT /*VT2*/) const { return false; } /// \brief Return true if it is beneficial to convert a load of a constant to /// just the constant itself. /// On some targets it might be more efficient to use a combination of /// arithmetic instructions to materialize the constant instead of loading it /// from a constant pool. virtual bool shouldConvertConstantLoadToIntImm(const APInt &Imm, Type *Ty) const { return false; } //===--------------------------------------------------------------------===// // Runtime Library hooks // /// Rename the default libcall routine name for the specified libcall. void setLibcallName(RTLIB::Libcall Call, const char *Name) { LibcallRoutineNames[Call] = Name; } /// Get the libcall routine name for the specified libcall. const char *getLibcallName(RTLIB::Libcall Call) const { return LibcallRoutineNames[Call]; } /// Override the default CondCode to be used to test the result of the /// comparison libcall against zero. void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) { CmpLibcallCCs[Call] = CC; } /// Get the CondCode that's to be used to test the result of the comparison /// libcall against zero. ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const { return CmpLibcallCCs[Call]; } /// Set the CallingConv that should be used for the specified libcall. void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC) { LibcallCallingConvs[Call] = CC; } /// Get the CallingConv that should be used for the specified libcall. CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const { return LibcallCallingConvs[Call]; } private: const TargetMachine &TM; const DataLayout *DL; const TargetLoweringObjectFile &TLOF; /// True if this is a little endian target. bool IsLittleEndian; /// Tells the code generator not to expand operations into sequences that use /// the select operations if possible. bool SelectIsExpensive; /// Tells the code generator that the target has multiple (allocatable) /// condition registers that can be used to store the results of comparisons /// for use by selects and conditional branches. With multiple condition /// registers, the code generator will not aggressively sink comparisons into /// the blocks of their users. bool HasMultipleConditionRegisters; /// Tells the code generator not to expand integer divides by constants into a /// sequence of muls, adds, and shifts. This is a hack until a real cost /// model is in place. If we ever optimize for size, this will be set to true /// unconditionally. bool IntDivIsCheap; /// Tells the code generator to bypass slow divide or remainder /// instructions. For example, BypassSlowDivWidths[32,8] tells the code /// generator to bypass 32-bit integer div/rem with an 8-bit unsigned integer /// div/rem when the operands are positive and less than 256. DenseMap BypassSlowDivWidths; /// Tells the code generator that it shouldn't generate srl/add/sra for a /// signed divide by power of two, and let the target handle it. bool Pow2DivIsCheap; /// Tells the code generator that it shouldn't generate extra flow control /// instructions and should attempt to combine flow control instructions via /// predication. bool JumpIsExpensive; /// This target prefers to use _setjmp to implement llvm.setjmp. /// /// Defaults to false. bool UseUnderscoreSetJmp; /// This target prefers to use _longjmp to implement llvm.longjmp. /// /// Defaults to false. bool UseUnderscoreLongJmp; /// Whether the target can generate code for jumptables. If it's not true, /// then each jumptable must be lowered into if-then-else's. bool SupportJumpTables; /// Number of blocks threshold to use jump tables. int MinimumJumpTableEntries; /// Information about the contents of the high-bits in boolean values held in /// a type wider than i1. See getBooleanContents. BooleanContent BooleanContents; /// Information about the contents of the high-bits in boolean vector values /// when the element type is wider than i1. See getBooleanContents. BooleanContent BooleanVectorContents; /// The target scheduling preference: shortest possible total cycles or lowest /// register usage. Sched::Preference SchedPreferenceInfo; /// The size, in bytes, of the target's jmp_buf buffers unsigned JumpBufSize; /// The alignment, in bytes, of the target's jmp_buf buffers unsigned JumpBufAlignment; /// The minimum alignment that any argument on the stack needs to have. unsigned MinStackArgumentAlignment; /// The minimum function alignment (used when optimizing for size, and to /// prevent explicitly provided alignment from leading to incorrect code). unsigned MinFunctionAlignment; /// The preferred function alignment (used when alignment unspecified and /// optimizing for speed). unsigned PrefFunctionAlignment; /// The preferred loop alignment. unsigned PrefLoopAlignment; /// Whether the DAG builder should automatically insert fences and reduce /// ordering for atomics. (This will be set for for most architectures with /// weak memory ordering.) bool InsertFencesForAtomic; /// If set to a physical register, this specifies the register that /// llvm.savestack/llvm.restorestack should save and restore. unsigned StackPointerRegisterToSaveRestore; /// If set to a physical register, this specifies the register that receives /// the exception address on entry to a landing pad. unsigned ExceptionPointerRegister; /// If set to a physical register, this specifies the register that receives /// the exception typeid on entry to a landing pad. unsigned ExceptionSelectorRegister; /// This indicates the default register class to use for each ValueType the /// target supports natively. const TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE]; unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE]; MVT RegisterTypeForVT[MVT::LAST_VALUETYPE]; /// This indicates the "representative" register class to use for each /// ValueType the target supports natively. This information is used by the /// scheduler to track register pressure. By default, the representative /// register class is the largest legal super-reg register class of the /// register class of the specified type. e.g. On x86, i8, i16, and i32's /// representative class would be GR32. const TargetRegisterClass *RepRegClassForVT[MVT::LAST_VALUETYPE]; /// This indicates the "cost" of the "representative" register class for each /// ValueType. The cost is used by the scheduler to approximate register /// pressure. uint8_t RepRegClassCostForVT[MVT::LAST_VALUETYPE]; /// For any value types we are promoting or expanding, this contains the value /// type that we are changing to. For Expanded types, this contains one step /// of the expand (e.g. i64 -> i32), even if there are multiple steps required /// (e.g. i64 -> i16). For types natively supported by the system, this holds /// the same type (e.g. i32 -> i32). MVT TransformToType[MVT::LAST_VALUETYPE]; /// For each operation and each value type, keep a LegalizeAction that /// indicates how instruction selection should deal with the operation. Most /// operations are Legal (aka, supported natively by the target), but /// operations that are not should be described. Note that operations on /// non-legal value types are not described here. uint8_t OpActions[MVT::LAST_VALUETYPE][ISD::BUILTIN_OP_END]; /// For each load extension type and each value type, keep a LegalizeAction /// that indicates how instruction selection should deal with a load of a /// specific value type and extension type. uint8_t LoadExtActions[MVT::LAST_VALUETYPE][ISD::LAST_LOADEXT_TYPE]; /// For each value type pair keep a LegalizeAction that indicates whether a /// truncating store of a specific value type and truncating type is legal. uint8_t TruncStoreActions[MVT::LAST_VALUETYPE][MVT::LAST_VALUETYPE]; /// For each indexed mode and each value type, keep a pair of LegalizeAction /// that indicates how instruction selection should deal with the load / /// store. /// /// The first dimension is the value_type for the reference. The second /// dimension represents the various modes for load store. uint8_t IndexedModeActions[MVT::LAST_VALUETYPE][ISD::LAST_INDEXED_MODE]; /// For each condition code (ISD::CondCode) keep a LegalizeAction that /// indicates how instruction selection should deal with the condition code. /// /// Because each CC action takes up 2 bits, we need to have the array size be /// large enough to fit all of the value types. This can be done by rounding /// up the MVT::LAST_VALUETYPE value to the next multiple of 16. uint32_t CondCodeActions[ISD::SETCC_INVALID][(MVT::LAST_VALUETYPE + 15) / 16]; ValueTypeActionImpl ValueTypeActions; public: LegalizeKind getTypeConversion(LLVMContext &Context, EVT VT) const { // If this is a simple type, use the ComputeRegisterProp mechanism. if (VT.isSimple()) { MVT SVT = VT.getSimpleVT(); assert((unsigned)SVT.SimpleTy < array_lengthof(TransformToType)); MVT NVT = TransformToType[SVT.SimpleTy]; LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT); assert( (LA == TypeLegal || ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger) && "Promote may not follow Expand or Promote"); if (LA == TypeSplitVector) return LegalizeKind(LA, EVT::getVectorVT(Context, SVT.getVectorElementType(), SVT.getVectorNumElements()/2)); if (LA == TypeScalarizeVector) return LegalizeKind(LA, SVT.getVectorElementType()); return LegalizeKind(LA, NVT); } // Handle Extended Scalar Types. if (!VT.isVector()) { assert(VT.isInteger() && "Float types must be simple"); unsigned BitSize = VT.getSizeInBits(); // First promote to a power-of-two size, then expand if necessary. if (BitSize < 8 || !isPowerOf2_32(BitSize)) { EVT NVT = VT.getRoundIntegerType(Context); assert(NVT != VT && "Unable to round integer VT"); LegalizeKind NextStep = getTypeConversion(Context, NVT); // Avoid multi-step promotion. if (NextStep.first == TypePromoteInteger) return NextStep; // Return rounded integer type. return LegalizeKind(TypePromoteInteger, NVT); } return LegalizeKind(TypeExpandInteger, EVT::getIntegerVT(Context, VT.getSizeInBits()/2)); } // Handle vector types. unsigned NumElts = VT.getVectorNumElements(); EVT EltVT = VT.getVectorElementType(); // Vectors with only one element are always scalarized. if (NumElts == 1) return LegalizeKind(TypeScalarizeVector, EltVT); // Try to widen vector elements until the element type is a power of two and // promote it to a legal type later on, for example: // <3 x i8> -> <4 x i8> -> <4 x i32> if (EltVT.isInteger()) { // Vectors with a number of elements that is not a power of two are always // widened, for example <3 x i8> -> <4 x i8>. if (!VT.isPow2VectorType()) { NumElts = (unsigned)NextPowerOf2(NumElts); EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts); return LegalizeKind(TypeWidenVector, NVT); } // Examine the element type. LegalizeKind LK = getTypeConversion(Context, EltVT); // If type is to be expanded, split the vector. // <4 x i140> -> <2 x i140> if (LK.first == TypeExpandInteger) return LegalizeKind(TypeSplitVector, EVT::getVectorVT(Context, EltVT, NumElts / 2)); // Promote the integer element types until a legal vector type is found // or until the element integer type is too big. If a legal type was not // found, fallback to the usual mechanism of widening/splitting the // vector. EVT OldEltVT = EltVT; while (1) { // Increase the bitwidth of the element to the next pow-of-two // (which is greater than 8 bits). EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits() ).getRoundIntegerType(Context); // Stop trying when getting a non-simple element type. // Note that vector elements may be greater than legal vector element // types. Example: X86 XMM registers hold 64bit element on 32bit // systems. if (!EltVT.isSimple()) break; // Build a new vector type and check if it is legal. MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts); // Found a legal promoted vector type. if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal) return LegalizeKind(TypePromoteInteger, EVT::getVectorVT(Context, EltVT, NumElts)); } // Reset the type to the unexpanded type if we did not find a legal vector // type with a promoted vector element type. EltVT = OldEltVT; } // Try to widen the vector until a legal type is found. // If there is no wider legal type, split the vector. while (1) { // Round up to the next power of 2. NumElts = (unsigned)NextPowerOf2(NumElts); // If there is no simple vector type with this many elements then there // cannot be a larger legal vector type. Note that this assumes that // there are no skipped intermediate vector types in the simple types. if (!EltVT.isSimple()) break; MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts); if (LargerVector == MVT()) break; // If this type is legal then widen the vector. if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal) return LegalizeKind(TypeWidenVector, LargerVector); } // Widen odd vectors to next power of two. if (!VT.isPow2VectorType()) { EVT NVT = VT.getPow2VectorType(Context); return LegalizeKind(TypeWidenVector, NVT); } // Vectors with illegal element types are expanded. EVT NVT = EVT::getVectorVT(Context, EltVT, VT.getVectorNumElements() / 2); return LegalizeKind(TypeSplitVector, NVT); } private: std::vector > AvailableRegClasses; /// Targets can specify ISD nodes that they would like PerformDAGCombine /// callbacks for by calling setTargetDAGCombine(), which sets a bit in this /// array. unsigned char TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT]; /// For operations that must be promoted to a specific type, this holds the /// destination type. This map should be sparse, so don't hold it as an /// array. /// /// Targets add entries to this map with AddPromotedToType(..), clients access /// this with getTypeToPromoteTo(..). std::map, MVT::SimpleValueType> PromoteToType; /// Stores the name each libcall. const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL]; /// The ISD::CondCode that should be used to test the result of each of the /// comparison libcall against zero. ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL]; /// Stores the CallingConv that should be used for each libcall. CallingConv::ID LibcallCallingConvs[RTLIB::UNKNOWN_LIBCALL]; protected: /// \brief Specify maximum number of store instructions per memset call. /// /// When lowering \@llvm.memset this field specifies the maximum number of /// store operations that may be substituted for the call to memset. Targets /// must set this value based on the cost threshold for that target. Targets /// should assume that the memset will be done using as many of the largest /// store operations first, followed by smaller ones, if necessary, per /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine /// with 16-bit alignment would result in four 2-byte stores and one 1-byte /// store. This only applies to setting a constant array of a constant size. unsigned MaxStoresPerMemset; /// Maximum number of stores operations that may be substituted for the call /// to memset, used for functions with OptSize attribute. unsigned MaxStoresPerMemsetOptSize; /// \brief Specify maximum bytes of store instructions per memcpy call. /// /// When lowering \@llvm.memcpy this field specifies the maximum number of /// store operations that may be substituted for a call to memcpy. Targets /// must set this value based on the cost threshold for that target. Targets /// should assume that the memcpy will be done using as many of the largest /// store operations first, followed by smaller ones, if necessary, per /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store /// and one 1-byte store. This only applies to copying a constant array of /// constant size. unsigned MaxStoresPerMemcpy; /// Maximum number of store operations that may be substituted for a call to /// memcpy, used for functions with OptSize attribute. unsigned MaxStoresPerMemcpyOptSize; /// \brief Specify maximum bytes of store instructions per memmove call. /// /// When lowering \@llvm.memmove this field specifies the maximum number of /// store instructions that may be substituted for a call to memmove. Targets /// must set this value based on the cost threshold for that target. Targets /// should assume that the memmove will be done using as many of the largest /// store operations first, followed by smaller ones, if necessary, per /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine /// with 8-bit alignment would result in nine 1-byte stores. This only /// applies to copying a constant array of constant size. unsigned MaxStoresPerMemmove; /// Maximum number of store instructions that may be substituted for a call to /// memmove, used for functions with OpSize attribute. unsigned MaxStoresPerMemmoveOptSize; /// Tells the code generator that select is more expensive than a branch if /// the branch is usually predicted right. bool PredictableSelectIsExpensive; protected: /// Return true if the value types that can be represented by the specified /// register class are all legal. bool isLegalRC(const TargetRegisterClass *RC) const; /// Replace/modify any TargetFrameIndex operands with a targte-dependent /// sequence of memory operands that is recognized by PrologEpilogInserter. MachineBasicBlock *emitPatchPoint(MachineInstr *MI, MachineBasicBlock *MBB) const; }; /// This class defines information used to lower LLVM code to legal SelectionDAG /// operators that the target instruction selector can accept natively. /// /// This class also defines callbacks that targets must implement to lower /// target-specific constructs to SelectionDAG operators. class TargetLowering : public TargetLoweringBase { TargetLowering(const TargetLowering&) LLVM_DELETED_FUNCTION; void operator=(const TargetLowering&) LLVM_DELETED_FUNCTION; public: /// NOTE: The constructor takes ownership of TLOF. explicit TargetLowering(const TargetMachine &TM, const TargetLoweringObjectFile *TLOF); /// Returns true by value, base pointer and offset pointer and addressing mode /// by reference if the node's address can be legally represented as /// pre-indexed load / store address. virtual bool getPreIndexedAddressParts(SDNode * /*N*/, SDValue &/*Base*/, SDValue &/*Offset*/, ISD::MemIndexedMode &/*AM*/, SelectionDAG &/*DAG*/) const { return false; } /// Returns true by value, base pointer and offset pointer and addressing mode /// by reference if this node can be combined with a load / store to form a /// post-indexed load / store. virtual bool getPostIndexedAddressParts(SDNode * /*N*/, SDNode * /*Op*/, SDValue &/*Base*/, SDValue &/*Offset*/, ISD::MemIndexedMode &/*AM*/, SelectionDAG &/*DAG*/) const { return false; } /// Return the entry encoding for a jump table in the current function. The /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. virtual unsigned getJumpTableEncoding() const; virtual const MCExpr * LowerCustomJumpTableEntry(const MachineJumpTableInfo * /*MJTI*/, const MachineBasicBlock * /*MBB*/, unsigned /*uid*/, MCContext &/*Ctx*/) const { llvm_unreachable("Need to implement this hook if target has custom JTIs"); } /// Returns relocation base for the given PIC jumptable. virtual SDValue getPICJumpTableRelocBase(SDValue Table, SelectionDAG &DAG) const; /// This returns the relocation base for the given PIC jumptable, the same as /// getPICJumpTableRelocBase, but as an MCExpr. virtual const MCExpr * getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI, MCContext &Ctx) const; /// Return true if folding a constant offset with the given GlobalAddress is /// legal. It is frequently not legal in PIC relocation models. virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const; bool isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, SDValue &Chain) const; void softenSetCCOperands(SelectionDAG &DAG, EVT VT, SDValue &NewLHS, SDValue &NewRHS, ISD::CondCode &CCCode, SDLoc DL) const; /// Returns a pair of (return value, chain). std::pair makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, const SDValue *Ops, unsigned NumOps, bool isSigned, SDLoc dl, bool doesNotReturn = false, bool isReturnValueUsed = true) const; //===--------------------------------------------------------------------===// // TargetLowering Optimization Methods // /// A convenience struct that encapsulates a DAG, and two SDValues for /// returning information from TargetLowering to its clients that want to /// combine. struct TargetLoweringOpt { SelectionDAG &DAG; bool LegalTys; bool LegalOps; SDValue Old; SDValue New; explicit TargetLoweringOpt(SelectionDAG &InDAG, bool LT, bool LO) : DAG(InDAG), LegalTys(LT), LegalOps(LO) {} bool LegalTypes() const { return LegalTys; } bool LegalOperations() const { return LegalOps; } bool CombineTo(SDValue O, SDValue N) { Old = O; New = N; return true; } /// Check to see if the specified operand of the specified instruction is a /// constant integer. If so, check to see if there are any bits set in the /// constant that are not demanded. If so, shrink the constant and return /// true. bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded); /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. This /// uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be /// generalized for targets with other types of implicit widening casts. bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded, SDLoc dl); }; /// Look at Op. At this point, we know that only the DemandedMask bits of the /// result of Op are ever used downstream. If we can use this information to /// simplify Op, create a new simplified DAG node and return true, returning /// the original and new nodes in Old and New. Otherwise, analyze the /// expression and return a mask of KnownOne and KnownZero bits for the /// expression (used to simplify the caller). The KnownZero/One bits may only /// be accurate for those bits in the DemandedMask. bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask, APInt &KnownZero, APInt &KnownOne, TargetLoweringOpt &TLO, unsigned Depth = 0) const; /// Determine which of the bits specified in Mask are known to be either zero /// or one and return them in the KnownZero/KnownOne bitsets. virtual void computeMaskedBitsForTargetNode(const SDValue Op, APInt &KnownZero, APInt &KnownOne, const SelectionDAG &DAG, unsigned Depth = 0) const; /// This method can be implemented by targets that want to expose additional /// information about sign bits to the DAG Combiner. virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op, unsigned Depth = 0) const; struct DAGCombinerInfo { void *DC; // The DAG Combiner object. CombineLevel Level; bool CalledByLegalizer; public: SelectionDAG &DAG; DAGCombinerInfo(SelectionDAG &dag, CombineLevel level, bool cl, void *dc) : DC(dc), Level(level), CalledByLegalizer(cl), DAG(dag) {} bool isBeforeLegalize() const { return Level == BeforeLegalizeTypes; } bool isBeforeLegalizeOps() const { return Level < AfterLegalizeVectorOps; } bool isAfterLegalizeVectorOps() const { return Level == AfterLegalizeDAG; } CombineLevel getDAGCombineLevel() { return Level; } bool isCalledByLegalizer() const { return CalledByLegalizer; } void AddToWorklist(SDNode *N); void RemoveFromWorklist(SDNode *N); SDValue CombineTo(SDNode *N, const std::vector &To, bool AddTo = true); SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true); SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true); void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO); }; /// Try to simplify a setcc built with the specified operands and cc. If it is /// unable to simplify it, return a null SDValue. SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond, bool foldBooleans, DAGCombinerInfo &DCI, SDLoc dl) const; /// Returns true (and the GlobalValue and the offset) if the node is a /// GlobalAddress + offset. virtual bool isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const; /// This method will be invoked for all target nodes and for any /// target-independent nodes that the target has registered with invoke it /// for. /// /// The semantics are as follows: /// Return Value: /// SDValue.Val == 0 - No change was made /// SDValue.Val == N - N was replaced, is dead, and is already handled. /// otherwise - N should be replaced by the returned Operand. /// /// In addition, methods provided by DAGCombinerInfo may be used to perform /// more complex transformations. /// virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const; /// Return true if the target has native support for the specified value type /// and it is 'desirable' to use the type for the given node type. e.g. On x86 /// i16 is legal, but undesirable since i16 instruction encodings are longer /// and some i16 instructions are slow. virtual bool isTypeDesirableForOp(unsigned /*Opc*/, EVT VT) const { // By default, assume all legal types are desirable. return isTypeLegal(VT); } /// Return true if it is profitable for dag combiner to transform a floating /// point op of specified opcode to a equivalent op of an integer /// type. e.g. f32 load -> i32 load can be profitable on ARM. virtual bool isDesirableToTransformToIntegerOp(unsigned /*Opc*/, EVT /*VT*/) const { return false; } /// This method query the target whether it is beneficial for dag combiner to /// promote the specified node. If true, it should return the desired /// promotion type by reference. virtual bool IsDesirableToPromoteOp(SDValue /*Op*/, EVT &/*PVT*/) const { return false; } //===--------------------------------------------------------------------===// // Lowering methods - These methods must be implemented by targets so that // the SelectionDAGBuilder code knows how to lower these. // /// This hook must be implemented to lower the incoming (formal) arguments, /// described by the Ins array, into the specified DAG. The implementation /// should fill in the InVals array with legal-type argument values, and /// return the resulting token chain value. /// virtual SDValue LowerFormalArguments(SDValue /*Chain*/, CallingConv::ID /*CallConv*/, bool /*isVarArg*/, const SmallVectorImpl &/*Ins*/, SDLoc /*dl*/, SelectionDAG &/*DAG*/, SmallVectorImpl &/*InVals*/) const { llvm_unreachable("Not Implemented"); } struct ArgListEntry { SDValue Node; Type* Ty; bool isSExt : 1; bool isZExt : 1; bool isInReg : 1; bool isSRet : 1; bool isNest : 1; bool isByVal : 1; bool isInAlloca : 1; bool isReturned : 1; uint16_t Alignment; ArgListEntry() : isSExt(false), isZExt(false), isInReg(false), isSRet(false), isNest(false), isByVal(false), isInAlloca(false), isReturned(false), Alignment(0) { } void setAttributes(ImmutableCallSite *CS, unsigned AttrIdx); }; typedef std::vector ArgListTy; /// This structure contains all information that is necessary for lowering /// calls. It is passed to TLI::LowerCallTo when the SelectionDAG builder /// needs to lower a call, and targets will see this struct in their LowerCall /// implementation. struct CallLoweringInfo { SDValue Chain; Type *RetTy; bool RetSExt : 1; bool RetZExt : 1; bool IsVarArg : 1; bool IsInReg : 1; bool DoesNotReturn : 1; bool IsReturnValueUsed : 1; // IsTailCall should be modified by implementations of // TargetLowering::LowerCall that perform tail call conversions. bool IsTailCall; unsigned NumFixedArgs; CallingConv::ID CallConv; SDValue Callee; ArgListTy &Args; SelectionDAG &DAG; SDLoc DL; ImmutableCallSite *CS; SmallVector Outs; SmallVector OutVals; SmallVector Ins; /// Constructs a call lowering context based on the ImmutableCallSite \p cs. CallLoweringInfo(SDValue chain, Type *retTy, FunctionType *FTy, bool isTailCall, SDValue callee, ArgListTy &args, SelectionDAG &dag, SDLoc dl, ImmutableCallSite &cs) : Chain(chain), RetTy(retTy), RetSExt(cs.paramHasAttr(0, Attribute::SExt)), RetZExt(cs.paramHasAttr(0, Attribute::ZExt)), IsVarArg(FTy->isVarArg()), IsInReg(cs.paramHasAttr(0, Attribute::InReg)), DoesNotReturn(cs.doesNotReturn()), IsReturnValueUsed(!cs.getInstruction()->use_empty()), IsTailCall(isTailCall), NumFixedArgs(FTy->getNumParams()), CallConv(cs.getCallingConv()), Callee(callee), Args(args), DAG(dag), DL(dl), CS(&cs) {} /// Constructs a call lowering context based on the provided call /// information. CallLoweringInfo(SDValue chain, Type *retTy, bool retSExt, bool retZExt, bool isVarArg, bool isInReg, unsigned numFixedArgs, CallingConv::ID callConv, bool isTailCall, bool doesNotReturn, bool isReturnValueUsed, SDValue callee, ArgListTy &args, SelectionDAG &dag, SDLoc dl) : Chain(chain), RetTy(retTy), RetSExt(retSExt), RetZExt(retZExt), IsVarArg(isVarArg), IsInReg(isInReg), DoesNotReturn(doesNotReturn), IsReturnValueUsed(isReturnValueUsed), IsTailCall(isTailCall), NumFixedArgs(numFixedArgs), CallConv(callConv), Callee(callee), Args(args), DAG(dag), DL(dl), CS(NULL) {} }; /// This function lowers an abstract call to a function into an actual call. /// This returns a pair of operands. The first element is the return value /// for the function (if RetTy is not VoidTy). The second element is the /// outgoing token chain. It calls LowerCall to do the actual lowering. std::pair LowerCallTo(CallLoweringInfo &CLI) const; /// This hook must be implemented to lower calls into the the specified /// DAG. The outgoing arguments to the call are described by the Outs array, /// and the values to be returned by the call are described by the Ins /// array. The implementation should fill in the InVals array with legal-type /// return values from the call, and return the resulting token chain value. virtual SDValue LowerCall(CallLoweringInfo &/*CLI*/, SmallVectorImpl &/*InVals*/) const { llvm_unreachable("Not Implemented"); } /// Target-specific cleanup for formal ByVal parameters. virtual void HandleByVal(CCState *, unsigned &, unsigned) const {} /// This hook should be implemented to check whether the return values /// described by the Outs array can fit into the return registers. If false /// is returned, an sret-demotion is performed. virtual bool CanLowerReturn(CallingConv::ID /*CallConv*/, MachineFunction &/*MF*/, bool /*isVarArg*/, const SmallVectorImpl &/*Outs*/, LLVMContext &/*Context*/) const { // Return true by default to get preexisting behavior. return true; } /// This hook must be implemented to lower outgoing return values, described /// by the Outs array, into the specified DAG. The implementation should /// return the resulting token chain value. virtual SDValue LowerReturn(SDValue /*Chain*/, CallingConv::ID /*CallConv*/, bool /*isVarArg*/, const SmallVectorImpl &/*Outs*/, const SmallVectorImpl &/*OutVals*/, SDLoc /*dl*/, SelectionDAG &/*DAG*/) const { llvm_unreachable("Not Implemented"); } /// Return true if result of the specified node is used by a return node /// only. It also compute and return the input chain for the tail call. /// /// This is used to determine whether it is possible to codegen a libcall as /// tail call at legalization time. virtual bool isUsedByReturnOnly(SDNode *, SDValue &/*Chain*/) const { return false; } /// Return true if the target may be able emit the call instruction as a tail /// call. This is used by optimization passes to determine if it's profitable /// to duplicate return instructions to enable tailcall optimization. virtual bool mayBeEmittedAsTailCall(CallInst *) const { return false; } /// Return the type that should be used to zero or sign extend a /// zeroext/signext integer argument or return value. FIXME: Most C calling /// convention requires the return type to be promoted, but this is not true /// all the time, e.g. i1 on x86-64. It is also not necessary for non-C /// calling conventions. The frontend should handle this and include all of /// the necessary information. virtual MVT getTypeForExtArgOrReturn(MVT VT, ISD::NodeType /*ExtendKind*/) const { MVT MinVT = getRegisterType(MVT::i32); return VT.bitsLT(MinVT) ? MinVT : VT; } /// Returns a 0 terminated array of registers that can be safely used as /// scratch registers. virtual const uint16_t *getScratchRegisters(CallingConv::ID CC) const { return NULL; } /// This callback is used to prepare for a volatile or atomic load. /// It takes a chain node as input and returns the chain for the load itself. /// /// Having a callback like this is necessary for targets like SystemZ, /// which allows a CPU to reuse the result of a previous load indefinitely, /// even if a cache-coherent store is performed by another CPU. The default /// implementation does nothing. virtual SDValue prepareVolatileOrAtomicLoad(SDValue Chain, SDLoc DL, SelectionDAG &DAG) const { return Chain; } /// This callback is invoked by the type legalizer to legalize nodes with an /// illegal operand type but legal result types. It replaces the /// LowerOperation callback in the type Legalizer. The reason we can not do /// away with LowerOperation entirely is that LegalizeDAG isn't yet ready to /// use this callback. /// /// TODO: Consider merging with ReplaceNodeResults. /// /// The target places new result values for the node in Results (their number /// and types must exactly match those of the original return values of /// the node), or leaves Results empty, which indicates that the node is not /// to be custom lowered after all. /// The default implementation calls LowerOperation. virtual void LowerOperationWrapper(SDNode *N, SmallVectorImpl &Results, SelectionDAG &DAG) const; /// This callback is invoked for operations that are unsupported by the /// target, which are registered to use 'custom' lowering, and whose defined /// values are all legal. If the target has no operations that require custom /// lowering, it need not implement this. The default implementation of this /// aborts. virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const; /// This callback is invoked when a node result type is illegal for the /// target, and the operation was registered to use 'custom' lowering for that /// result type. The target places new result values for the node in Results /// (their number and types must exactly match those of the original return /// values of the node), or leaves Results empty, which indicates that the /// node is not to be custom lowered after all. /// /// If the target has no operations that require custom lowering, it need not /// implement this. The default implementation aborts. virtual void ReplaceNodeResults(SDNode * /*N*/, SmallVectorImpl &/*Results*/, SelectionDAG &/*DAG*/) const { llvm_unreachable("ReplaceNodeResults not implemented for this target!"); } /// This method returns the name of a target specific DAG node. virtual const char *getTargetNodeName(unsigned Opcode) const; /// This method returns a target specific FastISel object, or null if the /// target does not support "fast" ISel. virtual FastISel *createFastISel(FunctionLoweringInfo &, const TargetLibraryInfo *) const { return 0; } bool verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const; //===--------------------------------------------------------------------===// // Inline Asm Support hooks // /// This hook allows the target to expand an inline asm call to be explicit /// llvm code if it wants to. This is useful for turning simple inline asms /// into LLVM intrinsics, which gives the compiler more information about the /// behavior of the code. virtual bool ExpandInlineAsm(CallInst *) const { return false; } enum ConstraintType { C_Register, // Constraint represents specific register(s). C_RegisterClass, // Constraint represents any of register(s) in class. C_Memory, // Memory constraint. C_Other, // Something else. C_Unknown // Unsupported constraint. }; enum ConstraintWeight { // Generic weights. CW_Invalid = -1, // No match. CW_Okay = 0, // Acceptable. CW_Good = 1, // Good weight. CW_Better = 2, // Better weight. CW_Best = 3, // Best weight. // Well-known weights. CW_SpecificReg = CW_Okay, // Specific register operands. CW_Register = CW_Good, // Register operands. CW_Memory = CW_Better, // Memory operands. CW_Constant = CW_Best, // Constant operand. CW_Default = CW_Okay // Default or don't know type. }; /// This contains information for each constraint that we are lowering. struct AsmOperandInfo : public InlineAsm::ConstraintInfo { /// This contains the actual string for the code, like "m". TargetLowering /// picks the 'best' code from ConstraintInfo::Codes that most closely /// matches the operand. std::string ConstraintCode; /// Information about the constraint code, e.g. Register, RegisterClass, /// Memory, Other, Unknown. TargetLowering::ConstraintType ConstraintType; /// If this is the result output operand or a clobber, this is null, /// otherwise it is the incoming operand to the CallInst. This gets /// modified as the asm is processed. Value *CallOperandVal; /// The ValueType for the operand value. MVT ConstraintVT; /// Return true of this is an input operand that is a matching constraint /// like "4". bool isMatchingInputConstraint() const; /// If this is an input matching constraint, this method returns the output /// operand it matches. unsigned getMatchedOperand() const; /// Copy constructor for copying from a ConstraintInfo. AsmOperandInfo(const InlineAsm::ConstraintInfo &info) : InlineAsm::ConstraintInfo(info), ConstraintType(TargetLowering::C_Unknown), CallOperandVal(0), ConstraintVT(MVT::Other) { } }; typedef std::vector AsmOperandInfoVector; /// Split up the constraint string from the inline assembly value into the /// specific constraints and their prefixes, and also tie in the associated /// operand values. If this returns an empty vector, and if the constraint /// string itself isn't empty, there was an error parsing. virtual AsmOperandInfoVector ParseConstraints(ImmutableCallSite CS) const; /// Examine constraint type and operand type and determine a weight value. /// The operand object must already have been set up with the operand type. virtual ConstraintWeight getMultipleConstraintMatchWeight( AsmOperandInfo &info, int maIndex) const; /// Examine constraint string and operand type and determine a weight value. /// The operand object must already have been set up with the operand type. virtual ConstraintWeight getSingleConstraintMatchWeight( AsmOperandInfo &info, const char *constraint) const; /// Determines the constraint code and constraint type to use for the specific /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. /// If the actual operand being passed in is available, it can be passed in as /// Op, otherwise an empty SDValue can be passed. virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo, SDValue Op, SelectionDAG *DAG = 0) const; /// Given a constraint, return the type of constraint it is for this target. virtual ConstraintType getConstraintType(const std::string &Constraint) const; /// Given a physical register constraint (e.g. {edx}), return the register /// number and the register class for the register. /// /// Given a register class constraint, like 'r', if this corresponds directly /// to an LLVM register class, return a register of 0 and the register class /// pointer. /// /// This should only be used for C_Register constraints. On error, this /// returns a register number of 0 and a null register class pointer.. virtual std::pair getRegForInlineAsmConstraint(const std::string &Constraint, MVT VT) const; /// Try to replace an X constraint, which matches anything, with another that /// has more specific requirements based on the type of the corresponding /// operand. This returns null if there is no replacement to make. virtual const char *LowerXConstraint(EVT ConstraintVT) const; /// Lower the specified operand into the Ops vector. If it is invalid, don't /// add anything to Ops. virtual void LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, std::vector &Ops, SelectionDAG &DAG) const; //===--------------------------------------------------------------------===// // Div utility functions // SDValue BuildExactSDIV(SDValue Op1, SDValue Op2, SDLoc dl, SelectionDAG &DAG) const; SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization, std::vector *Created) const; SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization, std::vector *Created) const; //===--------------------------------------------------------------------===// // Instruction Emitting Hooks // /// This method should be implemented by targets that mark instructions with /// the 'usesCustomInserter' flag. These instructions are special in various /// ways, which require special support to insert. The specified MachineInstr /// is created but not inserted into any basic blocks, and this method is /// called to expand it into a sequence of instructions, potentially also /// creating new basic blocks and control flow. virtual MachineBasicBlock * EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const; /// This method should be implemented by targets that mark instructions with /// the 'hasPostISelHook' flag. These instructions must be adjusted after /// instruction selection by target hooks. e.g. To fill in optional defs for /// ARM 's' setting instructions. virtual void AdjustInstrPostInstrSelection(MachineInstr *MI, SDNode *Node) const; }; /// Given an LLVM IR type and return type attributes, compute the return value /// EVTs and flags, and optionally also the offsets, if the return value is /// being lowered to memory. void GetReturnInfo(Type* ReturnType, AttributeSet attr, SmallVectorImpl &Outs, const TargetLowering &TLI); } // end llvm namespace #endif