//===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the common interface used by the various execution engine // subclasses. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "jit" #include "Interpreter/Interpreter.h" #include "JIT/JIT.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/IntrinsicLowering.h" #include "llvm/Module.h" #include "llvm/ModuleProvider.h" #include "llvm/ExecutionEngine/ExecutionEngine.h" #include "llvm/ExecutionEngine/GenericValue.h" #include "llvm/Target/TargetData.h" #include "Support/Debug.h" #include "Support/Statistic.h" #include "Support/DynamicLinker.h" #include "Config/dlfcn.h" using namespace llvm; namespace { Statistic<> NumInitBytes("lli", "Number of bytes of global vars initialized"); Statistic<> NumGlobals ("lli", "Number of global vars initialized"); } ExecutionEngine::ExecutionEngine(ModuleProvider *P) : CurMod(*P->getModule()), MP(P) { assert(P && "ModuleProvider is null?"); } ExecutionEngine::ExecutionEngine(Module *M) : CurMod(*M), MP(0) { assert(M && "Module is null?"); } ExecutionEngine::~ExecutionEngine() { delete MP; } /// getGlobalValueAtAddress - Return the LLVM global value object that starts /// at the specified address. /// const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { // If we haven't computed the reverse mapping yet, do so first. if (GlobalAddressReverseMap.empty()) { for (std::map::iterator I = GlobalAddressMap.begin(), E = GlobalAddressMap.end(); I != E; ++I) GlobalAddressReverseMap.insert(std::make_pair(I->second, I->first)); } std::map::iterator I = GlobalAddressReverseMap.find(Addr); return I != GlobalAddressReverseMap.end() ? I->second : 0; } // CreateArgv - Turn a vector of strings into a nice argv style array of // pointers to null terminated strings. // static void *CreateArgv(ExecutionEngine *EE, const std::vector &InputArgv) { unsigned PtrSize = EE->getTargetData().getPointerSize(); char *Result = new char[(InputArgv.size()+1)*PtrSize]; DEBUG(std::cerr << "ARGV = " << (void*)Result << "\n"); const Type *SBytePtr = PointerType::get(Type::SByteTy); for (unsigned i = 0; i != InputArgv.size(); ++i) { unsigned Size = InputArgv[i].size()+1; char *Dest = new char[Size]; DEBUG(std::cerr << "ARGV[" << i << "] = " << (void*)Dest << "\n"); std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest); Dest[Size-1] = 0; // Endian safe: Result[i] = (PointerTy)Dest; EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Result+i*PtrSize), SBytePtr); } // Null terminate it EE->StoreValueToMemory(PTOGV(0), (GenericValue*)(Result+InputArgv.size()*PtrSize), SBytePtr); return Result; } /// runFunctionAsMain - This is a helper function which wraps runFunction to /// handle the common task of starting up main with the specified argc, argv, /// and envp parameters. int ExecutionEngine::runFunctionAsMain(Function *Fn, const std::vector &argv, const char * const * envp) { std::vector GVArgs; GenericValue GVArgc; GVArgc.IntVal = argv.size(); GVArgs.push_back(GVArgc); // Arg #0 = argc. GVArgs.push_back(PTOGV(CreateArgv(this, argv))); // Arg #1 = argv. assert(((char **)GVTOP(GVArgs[1]))[0] && "argv[0] was null after CreateArgv"); std::vector EnvVars; for (unsigned i = 0; envp[i]; ++i) EnvVars.push_back(envp[i]); GVArgs.push_back(PTOGV(CreateArgv(this, EnvVars))); // Arg #2 = envp. return runFunction(Fn, GVArgs).IntVal; } /// If possible, create a JIT, unless the caller specifically requests an /// Interpreter or there's an error. If even an Interpreter cannot be created, /// NULL is returned. /// ExecutionEngine *ExecutionEngine::create(ModuleProvider *MP, bool ForceInterpreter, IntrinsicLowering *IL) { ExecutionEngine *EE = 0; // Unless the interpreter was explicitly selected, try making a JIT. if (!ForceInterpreter) EE = JIT::create(MP, IL); // If we can't make a JIT, make an interpreter instead. try { if (EE == 0) EE = Interpreter::create(MP->materializeModule(), IL); } catch (...) { EE = 0; } if (EE == 0) delete IL; return EE; } /// getPointerToGlobal - This returns the address of the specified global /// value. This may involve code generation if it's a function. /// void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { if (Function *F = const_cast(dyn_cast(GV))) return getPointerToFunction(F); assert(GlobalAddressMap[GV] && "Global hasn't had an address allocated yet?"); return GlobalAddressMap[GV]; } /// FIXME: document /// GenericValue ExecutionEngine::getConstantValue(const Constant *C) { GenericValue Result; if (ConstantExpr *CE = const_cast(dyn_cast(C))) { switch (CE->getOpcode()) { case Instruction::GetElementPtr: { Result = getConstantValue(CE->getOperand(0)); std::vector Indexes(CE->op_begin()+1, CE->op_end()); uint64_t Offset = TD->getIndexedOffset(CE->getOperand(0)->getType(), Indexes); Result.LongVal += Offset; return Result; } case Instruction::Cast: { // We only need to handle a few cases here. Almost all casts will // automatically fold, just the ones involving pointers won't. // Constant *Op = CE->getOperand(0); // Handle cast of pointer to pointer... if (Op->getType()->getPrimitiveID() == C->getType()->getPrimitiveID()) return getConstantValue(Op); // Handle a cast of pointer to any integral type... if (isa(Op->getType()) && C->getType()->isIntegral()) return getConstantValue(Op); // Handle cast of long to pointer... if (isa(C->getType()) && (Op->getType() == Type::LongTy || Op->getType() == Type::ULongTy)) return getConstantValue(Op); break; } case Instruction::Add: if (CE->getOperand(0)->getType() == Type::LongTy || CE->getOperand(0)->getType() == Type::ULongTy) Result.LongVal = getConstantValue(CE->getOperand(0)).LongVal + getConstantValue(CE->getOperand(1)).LongVal; else break; return Result; default: break; } std::cerr << "ConstantExpr not handled as global var init: " << *CE << "\n"; abort(); } switch (C->getType()->getPrimitiveID()) { #define GET_CONST_VAL(TY, CLASS) \ case Type::TY##TyID: Result.TY##Val = cast(C)->getValue(); break GET_CONST_VAL(Bool , ConstantBool); GET_CONST_VAL(UByte , ConstantUInt); GET_CONST_VAL(SByte , ConstantSInt); GET_CONST_VAL(UShort , ConstantUInt); GET_CONST_VAL(Short , ConstantSInt); GET_CONST_VAL(UInt , ConstantUInt); GET_CONST_VAL(Int , ConstantSInt); GET_CONST_VAL(ULong , ConstantUInt); GET_CONST_VAL(Long , ConstantSInt); GET_CONST_VAL(Float , ConstantFP); GET_CONST_VAL(Double , ConstantFP); #undef GET_CONST_VAL case Type::PointerTyID: if (isa(C)) { Result.PointerVal = 0; } else if (const ConstantPointerRef *CPR = dyn_cast(C)){ if (Function *F = const_cast(dyn_cast(CPR->getValue()))) Result = PTOGV(getPointerToFunctionOrStub(F)); else Result = PTOGV(getOrEmitGlobalVariable( cast(CPR->getValue()))); } else { assert(0 && "Unknown constant pointer type!"); } break; default: std::cout << "ERROR: Constant unimp for type: " << C->getType() << "\n"; abort(); } return Result; } /// FIXME: document /// void ExecutionEngine::StoreValueToMemory(GenericValue Val, GenericValue *Ptr, const Type *Ty) { if (getTargetData().isLittleEndian()) { switch (Ty->getPrimitiveID()) { case Type::BoolTyID: case Type::UByteTyID: case Type::SByteTyID: Ptr->Untyped[0] = Val.UByteVal; break; case Type::UShortTyID: case Type::ShortTyID: Ptr->Untyped[0] = Val.UShortVal & 255; Ptr->Untyped[1] = (Val.UShortVal >> 8) & 255; break; Store4BytesLittleEndian: case Type::FloatTyID: case Type::UIntTyID: case Type::IntTyID: Ptr->Untyped[0] = Val.UIntVal & 255; Ptr->Untyped[1] = (Val.UIntVal >> 8) & 255; Ptr->Untyped[2] = (Val.UIntVal >> 16) & 255; Ptr->Untyped[3] = (Val.UIntVal >> 24) & 255; break; case Type::PointerTyID: if (getTargetData().getPointerSize() == 4) goto Store4BytesLittleEndian; case Type::DoubleTyID: case Type::ULongTyID: case Type::LongTyID: Ptr->Untyped[0] = Val.ULongVal & 255; Ptr->Untyped[1] = (Val.ULongVal >> 8) & 255; Ptr->Untyped[2] = (Val.ULongVal >> 16) & 255; Ptr->Untyped[3] = (Val.ULongVal >> 24) & 255; Ptr->Untyped[4] = (Val.ULongVal >> 32) & 255; Ptr->Untyped[5] = (Val.ULongVal >> 40) & 255; Ptr->Untyped[6] = (Val.ULongVal >> 48) & 255; Ptr->Untyped[7] = (Val.ULongVal >> 56) & 255; break; default: std::cout << "Cannot store value of type " << Ty << "!\n"; } } else { switch (Ty->getPrimitiveID()) { case Type::BoolTyID: case Type::UByteTyID: case Type::SByteTyID: Ptr->Untyped[0] = Val.UByteVal; break; case Type::UShortTyID: case Type::ShortTyID: Ptr->Untyped[1] = Val.UShortVal & 255; Ptr->Untyped[0] = (Val.UShortVal >> 8) & 255; break; Store4BytesBigEndian: case Type::FloatTyID: case Type::UIntTyID: case Type::IntTyID: Ptr->Untyped[3] = Val.UIntVal & 255; Ptr->Untyped[2] = (Val.UIntVal >> 8) & 255; Ptr->Untyped[1] = (Val.UIntVal >> 16) & 255; Ptr->Untyped[0] = (Val.UIntVal >> 24) & 255; break; case Type::PointerTyID: if (getTargetData().getPointerSize() == 4) goto Store4BytesBigEndian; case Type::DoubleTyID: case Type::ULongTyID: case Type::LongTyID: Ptr->Untyped[7] = Val.ULongVal & 255; Ptr->Untyped[6] = (Val.ULongVal >> 8) & 255; Ptr->Untyped[5] = (Val.ULongVal >> 16) & 255; Ptr->Untyped[4] = (Val.ULongVal >> 24) & 255; Ptr->Untyped[3] = (Val.ULongVal >> 32) & 255; Ptr->Untyped[2] = (Val.ULongVal >> 40) & 255; Ptr->Untyped[1] = (Val.ULongVal >> 48) & 255; Ptr->Untyped[0] = (Val.ULongVal >> 56) & 255; break; default: std::cout << "Cannot store value of type " << Ty << "!\n"; } } } /// FIXME: document /// GenericValue ExecutionEngine::LoadValueFromMemory(GenericValue *Ptr, const Type *Ty) { GenericValue Result; if (getTargetData().isLittleEndian()) { switch (Ty->getPrimitiveID()) { case Type::BoolTyID: case Type::UByteTyID: case Type::SByteTyID: Result.UByteVal = Ptr->Untyped[0]; break; case Type::UShortTyID: case Type::ShortTyID: Result.UShortVal = (unsigned)Ptr->Untyped[0] | ((unsigned)Ptr->Untyped[1] << 8); break; Load4BytesLittleEndian: case Type::FloatTyID: case Type::UIntTyID: case Type::IntTyID: Result.UIntVal = (unsigned)Ptr->Untyped[0] | ((unsigned)Ptr->Untyped[1] << 8) | ((unsigned)Ptr->Untyped[2] << 16) | ((unsigned)Ptr->Untyped[3] << 24); break; case Type::PointerTyID: if (getTargetData().getPointerSize() == 4) goto Load4BytesLittleEndian; case Type::DoubleTyID: case Type::ULongTyID: case Type::LongTyID: Result.ULongVal = (uint64_t)Ptr->Untyped[0] | ((uint64_t)Ptr->Untyped[1] << 8) | ((uint64_t)Ptr->Untyped[2] << 16) | ((uint64_t)Ptr->Untyped[3] << 24) | ((uint64_t)Ptr->Untyped[4] << 32) | ((uint64_t)Ptr->Untyped[5] << 40) | ((uint64_t)Ptr->Untyped[6] << 48) | ((uint64_t)Ptr->Untyped[7] << 56); break; default: std::cout << "Cannot load value of type " << *Ty << "!\n"; abort(); } } else { switch (Ty->getPrimitiveID()) { case Type::BoolTyID: case Type::UByteTyID: case Type::SByteTyID: Result.UByteVal = Ptr->Untyped[0]; break; case Type::UShortTyID: case Type::ShortTyID: Result.UShortVal = (unsigned)Ptr->Untyped[1] | ((unsigned)Ptr->Untyped[0] << 8); break; Load4BytesBigEndian: case Type::FloatTyID: case Type::UIntTyID: case Type::IntTyID: Result.UIntVal = (unsigned)Ptr->Untyped[3] | ((unsigned)Ptr->Untyped[2] << 8) | ((unsigned)Ptr->Untyped[1] << 16) | ((unsigned)Ptr->Untyped[0] << 24); break; case Type::PointerTyID: if (getTargetData().getPointerSize() == 4) goto Load4BytesBigEndian; case Type::DoubleTyID: case Type::ULongTyID: case Type::LongTyID: Result.ULongVal = (uint64_t)Ptr->Untyped[7] | ((uint64_t)Ptr->Untyped[6] << 8) | ((uint64_t)Ptr->Untyped[5] << 16) | ((uint64_t)Ptr->Untyped[4] << 24) | ((uint64_t)Ptr->Untyped[3] << 32) | ((uint64_t)Ptr->Untyped[2] << 40) | ((uint64_t)Ptr->Untyped[1] << 48) | ((uint64_t)Ptr->Untyped[0] << 56); break; default: std::cout << "Cannot load value of type " << *Ty << "!\n"; abort(); } } return Result; } // InitializeMemory - Recursive function to apply a Constant value into the // specified memory location... // void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { if (Init->getType()->isFirstClassType()) { GenericValue Val = getConstantValue(Init); StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); return; } switch (Init->getType()->getPrimitiveID()) { case Type::ArrayTyID: { const ConstantArray *CPA = cast(Init); const std::vector &Val = CPA->getValues(); unsigned ElementSize = getTargetData().getTypeSize(cast(CPA->getType())->getElementType()); for (unsigned i = 0; i < Val.size(); ++i) InitializeMemory(cast(Val[i].get()), (char*)Addr+i*ElementSize); return; } case Type::StructTyID: { const ConstantStruct *CPS = cast(Init); const StructLayout *SL = getTargetData().getStructLayout(cast(CPS->getType())); const std::vector &Val = CPS->getValues(); for (unsigned i = 0; i < Val.size(); ++i) InitializeMemory(cast(Val[i].get()), (char*)Addr+SL->MemberOffsets[i]); return; } default: std::cerr << "Bad Type: " << Init->getType() << "\n"; assert(0 && "Unknown constant type to initialize memory with!"); } } /// EmitGlobals - Emit all of the global variables to memory, storing their /// addresses into GlobalAddress. This must make sure to copy the contents of /// their initializers into the memory. /// void ExecutionEngine::emitGlobals() { const TargetData &TD = getTargetData(); // Loop over all of the global variables in the program, allocating the memory // to hold them. for (Module::giterator I = getModule().gbegin(), E = getModule().gend(); I != E; ++I) if (!I->isExternal()) { // Get the type of the global... const Type *Ty = I->getType()->getElementType(); // Allocate some memory for it! unsigned Size = TD.getTypeSize(Ty); addGlobalMapping(I, new char[Size]); DEBUG(std::cerr << "Global '" << I->getName() << "' -> " << getPointerToGlobal(I) << "\n"); } else { // External variable reference. Try to use the dynamic loader to // get a pointer to it. if (void *SymAddr = GetAddressOfSymbol(I->getName().c_str())) addGlobalMapping(I, SymAddr); else { std::cerr << "Could not resolve external global address: " << I->getName() << "\n"; abort(); } } // Now that all of the globals are set up in memory, loop through them all and // initialize their contents. for (Module::giterator I = getModule().gbegin(), E = getModule().gend(); I != E; ++I) if (!I->isExternal()) EmitGlobalVariable(I); } // EmitGlobalVariable - This method emits the specified global variable to the // address specified in GlobalAddresses, or allocates new memory if it's not // already in the map. void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { void *GA = getPointerToGlobalIfAvailable(GV); const Type *ElTy = GV->getType()->getElementType(); if (GA == 0) { // If it's not already specified, allocate memory for the global. GA = new char[getTargetData().getTypeSize(ElTy)]; addGlobalMapping(GV, GA); } InitializeMemory(GV->getInitializer(), GA); NumInitBytes += getTargetData().getTypeSize(ElTy); ++NumGlobals; }