//===- llvm/Analysis/LoopInfoImpl.h - Natural Loop Calculator ---*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This is the generic implementation of LoopInfo used for both Loops and // MachineLoops. // //===----------------------------------------------------------------------===// #ifndef LLVM_ANALYSIS_LOOPINFOIMPL_H #define LLVM_ANALYSIS_LOOPINFOIMPL_H #include "llvm/ADT/PostOrderIterator.h" #include "llvm/Analysis/LoopInfo.h" namespace llvm { //===----------------------------------------------------------------------===// // APIs for simple analysis of the loop. See header notes. /// getExitingBlocks - Return all blocks inside the loop that have successors /// outside of the loop. These are the blocks _inside of the current loop_ /// which branch out. The returned list is always unique. /// template void LoopBase:: getExitingBlocks(SmallVectorImpl &ExitingBlocks) const { // Sort the blocks vector so that we can use binary search to do quick // lookups. SmallVector LoopBBs(block_begin(), block_end()); std::sort(LoopBBs.begin(), LoopBBs.end()); typedef GraphTraits BlockTraits; for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI) for (typename BlockTraits::ChildIteratorType I = BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI); I != E; ++I) if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I)) { // Not in current loop? It must be an exit block. ExitingBlocks.push_back(*BI); break; } } /// getExitingBlock - If getExitingBlocks would return exactly one block, /// return that block. Otherwise return null. template BlockT *LoopBase::getExitingBlock() const { SmallVector ExitingBlocks; getExitingBlocks(ExitingBlocks); if (ExitingBlocks.size() == 1) return ExitingBlocks[0]; return 0; } /// getExitBlocks - Return all of the successor blocks of this loop. These /// are the blocks _outside of the current loop_ which are branched to. /// template void LoopBase:: getExitBlocks(SmallVectorImpl &ExitBlocks) const { // Sort the blocks vector so that we can use binary search to do quick // lookups. SmallVector LoopBBs(block_begin(), block_end()); std::sort(LoopBBs.begin(), LoopBBs.end()); typedef GraphTraits BlockTraits; for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI) for (typename BlockTraits::ChildIteratorType I = BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI); I != E; ++I) if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I)) // Not in current loop? It must be an exit block. ExitBlocks.push_back(*I); } /// getExitBlock - If getExitBlocks would return exactly one block, /// return that block. Otherwise return null. template BlockT *LoopBase::getExitBlock() const { SmallVector ExitBlocks; getExitBlocks(ExitBlocks); if (ExitBlocks.size() == 1) return ExitBlocks[0]; return 0; } /// getExitEdges - Return all pairs of (_inside_block_,_outside_block_). template void LoopBase:: getExitEdges(SmallVectorImpl &ExitEdges) const { // Sort the blocks vector so that we can use binary search to do quick // lookups. SmallVector LoopBBs(block_begin(), block_end()); array_pod_sort(LoopBBs.begin(), LoopBBs.end()); typedef GraphTraits BlockTraits; for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI) for (typename BlockTraits::ChildIteratorType I = BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI); I != E; ++I) if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I)) // Not in current loop? It must be an exit block. ExitEdges.push_back(Edge(*BI, *I)); } /// getLoopPreheader - If there is a preheader for this loop, return it. A /// loop has a preheader if there is only one edge to the header of the loop /// from outside of the loop. If this is the case, the block branching to the /// header of the loop is the preheader node. /// /// This method returns null if there is no preheader for the loop. /// template BlockT *LoopBase::getLoopPreheader() const { // Keep track of nodes outside the loop branching to the header... BlockT *Out = getLoopPredecessor(); if (!Out) return 0; // Make sure there is only one exit out of the preheader. typedef GraphTraits BlockTraits; typename BlockTraits::ChildIteratorType SI = BlockTraits::child_begin(Out); ++SI; if (SI != BlockTraits::child_end(Out)) return 0; // Multiple exits from the block, must not be a preheader. // The predecessor has exactly one successor, so it is a preheader. return Out; } /// getLoopPredecessor - If the given loop's header has exactly one unique /// predecessor outside the loop, return it. Otherwise return null. /// This is less strict that the loop "preheader" concept, which requires /// the predecessor to have exactly one successor. /// template BlockT *LoopBase::getLoopPredecessor() const { // Keep track of nodes outside the loop branching to the header... BlockT *Out = 0; // Loop over the predecessors of the header node... BlockT *Header = getHeader(); typedef GraphTraits > InvBlockTraits; for (typename InvBlockTraits::ChildIteratorType PI = InvBlockTraits::child_begin(Header), PE = InvBlockTraits::child_end(Header); PI != PE; ++PI) { typename InvBlockTraits::NodeType *N = *PI; if (!contains(N)) { // If the block is not in the loop... if (Out && Out != N) return 0; // Multiple predecessors outside the loop Out = N; } } // Make sure there is only one exit out of the preheader. assert(Out && "Header of loop has no predecessors from outside loop?"); return Out; } /// getLoopLatch - If there is a single latch block for this loop, return it. /// A latch block is a block that contains a branch back to the header. template BlockT *LoopBase::getLoopLatch() const { BlockT *Header = getHeader(); typedef GraphTraits > InvBlockTraits; typename InvBlockTraits::ChildIteratorType PI = InvBlockTraits::child_begin(Header); typename InvBlockTraits::ChildIteratorType PE = InvBlockTraits::child_end(Header); BlockT *Latch = 0; for (; PI != PE; ++PI) { typename InvBlockTraits::NodeType *N = *PI; if (contains(N)) { if (Latch) return 0; Latch = N; } } return Latch; } //===----------------------------------------------------------------------===// // APIs for updating loop information after changing the CFG // /// addBasicBlockToLoop - This method is used by other analyses to update loop /// information. NewBB is set to be a new member of the current loop. /// Because of this, it is added as a member of all parent loops, and is added /// to the specified LoopInfo object as being in the current basic block. It /// is not valid to replace the loop header with this method. /// template void LoopBase:: addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase &LIB) { assert((Blocks.empty() || LIB[getHeader()] == this) && "Incorrect LI specified for this loop!"); assert(NewBB && "Cannot add a null basic block to the loop!"); assert(LIB[NewBB] == 0 && "BasicBlock already in the loop!"); LoopT *L = static_cast(this); // Add the loop mapping to the LoopInfo object... LIB.BBMap[NewBB] = L; // Add the basic block to this loop and all parent loops... while (L) { L->Blocks.push_back(NewBB); L = L->getParentLoop(); } } /// replaceChildLoopWith - This is used when splitting loops up. It replaces /// the OldChild entry in our children list with NewChild, and updates the /// parent pointer of OldChild to be null and the NewChild to be this loop. /// This updates the loop depth of the new child. template void LoopBase:: replaceChildLoopWith(LoopT *OldChild, LoopT *NewChild) { assert(OldChild->ParentLoop == this && "This loop is already broken!"); assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!"); typename std::vector::iterator I = std::find(SubLoops.begin(), SubLoops.end(), OldChild); assert(I != SubLoops.end() && "OldChild not in loop!"); *I = NewChild; OldChild->ParentLoop = 0; NewChild->ParentLoop = static_cast(this); } /// verifyLoop - Verify loop structure template void LoopBase::verifyLoop() const { #ifndef NDEBUG assert(!Blocks.empty() && "Loop header is missing"); // Setup for using a depth-first iterator to visit every block in the loop. SmallVector ExitBBs; getExitBlocks(ExitBBs); llvm::SmallPtrSet VisitSet; VisitSet.insert(ExitBBs.begin(), ExitBBs.end()); df_ext_iterator > BI = df_ext_begin(getHeader(), VisitSet), BE = df_ext_end(getHeader(), VisitSet); // Keep track of the number of BBs visited. unsigned NumVisited = 0; // Sort the blocks vector so that we can use binary search to do quick // lookups. SmallVector LoopBBs(block_begin(), block_end()); std::sort(LoopBBs.begin(), LoopBBs.end()); // Check the individual blocks. for ( ; BI != BE; ++BI) { BlockT *BB = *BI; bool HasInsideLoopSuccs = false; bool HasInsideLoopPreds = false; SmallVector OutsideLoopPreds; typedef GraphTraits BlockTraits; for (typename BlockTraits::ChildIteratorType SI = BlockTraits::child_begin(BB), SE = BlockTraits::child_end(BB); SI != SE; ++SI) if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), *SI)) { HasInsideLoopSuccs = true; break; } typedef GraphTraits > InvBlockTraits; for (typename InvBlockTraits::ChildIteratorType PI = InvBlockTraits::child_begin(BB), PE = InvBlockTraits::child_end(BB); PI != PE; ++PI) { BlockT *N = *PI; if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), N)) HasInsideLoopPreds = true; else OutsideLoopPreds.push_back(N); } if (BB == getHeader()) { assert(!OutsideLoopPreds.empty() && "Loop is unreachable!"); } else if (!OutsideLoopPreds.empty()) { // A non-header loop shouldn't be reachable from outside the loop, // though it is permitted if the predecessor is not itself actually // reachable. BlockT *EntryBB = BB->getParent()->begin(); for (df_iterator NI = df_begin(EntryBB), NE = df_end(EntryBB); NI != NE; ++NI) for (unsigned i = 0, e = OutsideLoopPreds.size(); i != e; ++i) assert(*NI != OutsideLoopPreds[i] && "Loop has multiple entry points!"); } assert(HasInsideLoopPreds && "Loop block has no in-loop predecessors!"); assert(HasInsideLoopSuccs && "Loop block has no in-loop successors!"); assert(BB != getHeader()->getParent()->begin() && "Loop contains function entry block!"); NumVisited++; } assert(NumVisited == getNumBlocks() && "Unreachable block in loop"); // Check the subloops. for (iterator I = begin(), E = end(); I != E; ++I) // Each block in each subloop should be contained within this loop. for (block_iterator BI = (*I)->block_begin(), BE = (*I)->block_end(); BI != BE; ++BI) { assert(std::binary_search(LoopBBs.begin(), LoopBBs.end(), *BI) && "Loop does not contain all the blocks of a subloop!"); } // Check the parent loop pointer. if (ParentLoop) { assert(std::find(ParentLoop->begin(), ParentLoop->end(), this) != ParentLoop->end() && "Loop is not a subloop of its parent!"); } #endif } /// verifyLoop - Verify loop structure of this loop and all nested loops. template void LoopBase::verifyLoopNest( DenseSet *Loops) const { Loops->insert(static_cast(this)); // Verify this loop. verifyLoop(); // Verify the subloops. for (iterator I = begin(), E = end(); I != E; ++I) (*I)->verifyLoopNest(Loops); } template void LoopBase::print(raw_ostream &OS, unsigned Depth) const { OS.indent(Depth*2) << "Loop at depth " << getLoopDepth() << " containing: "; for (unsigned i = 0; i < getBlocks().size(); ++i) { if (i) OS << ","; BlockT *BB = getBlocks()[i]; WriteAsOperand(OS, BB, false); if (BB == getHeader()) OS << "
"; if (BB == getLoopLatch()) OS << ""; if (isLoopExiting(BB)) OS << ""; } OS << "\n"; for (iterator I = begin(), E = end(); I != E; ++I) (*I)->print(OS, Depth+2); } //===----------------------------------------------------------------------===// /// Stable LoopInfo Analysis - Build a loop tree using stable iterators so the /// result does / not depend on use list (block predecessor) order. /// /// Discover a subloop with the specified backedges such that: All blocks within /// this loop are mapped to this loop or a subloop. And all subloops within this /// loop have their parent loop set to this loop or a subloop. template static void discoverAndMapSubloop(LoopT *L, ArrayRef Backedges, LoopInfoBase *LI, DominatorTreeBase &DomTree) { typedef GraphTraits > InvBlockTraits; unsigned NumBlocks = 0; unsigned NumSubloops = 0; // Perform a backward CFG traversal using a worklist. std::vector ReverseCFGWorklist(Backedges.begin(), Backedges.end()); while (!ReverseCFGWorklist.empty()) { BlockT *PredBB = ReverseCFGWorklist.back(); ReverseCFGWorklist.pop_back(); LoopT *Subloop = LI->getLoopFor(PredBB); if (!Subloop) { if (!DomTree.isReachableFromEntry(PredBB)) continue; // This is an undiscovered block. Map it to the current loop. LI->changeLoopFor(PredBB, L); ++NumBlocks; if (PredBB == L->getHeader()) continue; // Push all block predecessors on the worklist. ReverseCFGWorklist.insert(ReverseCFGWorklist.end(), InvBlockTraits::child_begin(PredBB), InvBlockTraits::child_end(PredBB)); } else { // This is a discovered block. Find its outermost discovered loop. while (LoopT *Parent = Subloop->getParentLoop()) Subloop = Parent; // If it is already discovered to be a subloop of this loop, continue. if (Subloop == L) continue; // Discover a subloop of this loop. Subloop->setParentLoop(L); ++NumSubloops; NumBlocks += Subloop->getBlocks().capacity(); PredBB = Subloop->getHeader(); // Continue traversal along predecessors that are not loop-back edges from // within this subloop tree itself. Note that a predecessor may directly // reach another subloop that is not yet discovered to be a subloop of // this loop, which we must traverse. for (typename InvBlockTraits::ChildIteratorType PI = InvBlockTraits::child_begin(PredBB), PE = InvBlockTraits::child_end(PredBB); PI != PE; ++PI) { if (LI->getLoopFor(*PI) != Subloop) ReverseCFGWorklist.push_back(*PI); } } } L->getSubLoopsVector().reserve(NumSubloops); L->getBlocksVector().reserve(NumBlocks); } namespace { /// Populate all loop data in a stable order during a single forward DFS. template class PopulateLoopsDFS { typedef GraphTraits BlockTraits; typedef typename BlockTraits::ChildIteratorType SuccIterTy; LoopInfoBase *LI; DenseSet VisitedBlocks; std::vector > DFSStack; public: PopulateLoopsDFS(LoopInfoBase *li): LI(li) {} void traverse(BlockT *EntryBlock); protected: void insertIntoLoop(BlockT *Block); BlockT *dfsSource() { return DFSStack.back().first; } SuccIterTy &dfsSucc() { return DFSStack.back().second; } SuccIterTy dfsSuccEnd() { return BlockTraits::child_end(dfsSource()); } void pushBlock(BlockT *Block) { DFSStack.push_back(std::make_pair(Block, BlockTraits::child_begin(Block))); } }; } // anonymous /// Top-level driver for the forward DFS within the loop. template void PopulateLoopsDFS::traverse(BlockT *EntryBlock) { pushBlock(EntryBlock); VisitedBlocks.insert(EntryBlock); while (!DFSStack.empty()) { // Traverse the leftmost path as far as possible. while (dfsSucc() != dfsSuccEnd()) { BlockT *BB = *dfsSucc(); ++dfsSucc(); if (!VisitedBlocks.insert(BB).second) continue; // Push the next DFS successor onto the stack. pushBlock(BB); } // Visit the top of the stack in postorder and backtrack. insertIntoLoop(dfsSource()); DFSStack.pop_back(); } } /// Add a single Block to its ancestor loops in PostOrder. If the block is a /// subloop header, add the subloop to its parent in PostOrder, then reverse the /// Block and Subloop vectors of the now complete subloop to achieve RPO. template void PopulateLoopsDFS::insertIntoLoop(BlockT *Block) { LoopT *Subloop = LI->getLoopFor(Block); if (Subloop && Block == Subloop->getHeader()) { // We reach this point once per subloop after processing all the blocks in // the subloop. if (Subloop->getParentLoop()) Subloop->getParentLoop()->getSubLoopsVector().push_back(Subloop); else LI->addTopLevelLoop(Subloop); // For convenience, Blocks and Subloops are inserted in postorder. Reverse // the lists, except for the loop header, which is always at the beginning. std::reverse(Subloop->getBlocksVector().begin()+1, Subloop->getBlocksVector().end()); std::reverse(Subloop->getSubLoopsVector().begin(), Subloop->getSubLoopsVector().end()); Subloop = Subloop->getParentLoop(); } for (; Subloop; Subloop = Subloop->getParentLoop()) Subloop->getBlocksVector().push_back(Block); } /// Analyze LoopInfo discovers loops during a postorder DominatorTree traversal /// interleaved with backward CFG traversals within each subloop /// (discoverAndMapSubloop). The backward traversal skips inner subloops, so /// this part of the algorithm is linear in the number of CFG edges. Subloop and /// Block vectors are then populated during a single forward CFG traversal /// (PopulateLoopDFS). /// /// During the two CFG traversals each block is seen three times: /// 1) Discovered and mapped by a reverse CFG traversal. /// 2) Visited during a forward DFS CFG traversal. /// 3) Reverse-inserted in the loop in postorder following forward DFS. /// /// The Block vectors are inclusive, so step 3 requires loop-depth number of /// insertions per block. template void LoopInfoBase:: Analyze(DominatorTreeBase &DomTree) { // Postorder traversal of the dominator tree. DomTreeNodeBase* DomRoot = DomTree.getRootNode(); for (po_iterator*> DomIter = po_begin(DomRoot), DomEnd = po_end(DomRoot); DomIter != DomEnd; ++DomIter) { BlockT *Header = DomIter->getBlock(); SmallVector Backedges; // Check each predecessor of the potential loop header. typedef GraphTraits > InvBlockTraits; for (typename InvBlockTraits::ChildIteratorType PI = InvBlockTraits::child_begin(Header), PE = InvBlockTraits::child_end(Header); PI != PE; ++PI) { BlockT *Backedge = *PI; // If Header dominates predBB, this is a new loop. Collect the backedges. if (DomTree.dominates(Header, Backedge) && DomTree.isReachableFromEntry(Backedge)) { Backedges.push_back(Backedge); } } // Perform a backward CFG traversal to discover and map blocks in this loop. if (!Backedges.empty()) { LoopT *L = new LoopT(Header); discoverAndMapSubloop(L, ArrayRef(Backedges), this, DomTree); } } // Perform a single forward CFG traversal to populate block and subloop // vectors for all loops. PopulateLoopsDFS DFS(this); DFS.traverse(DomRoot->getBlock()); } // Debugging template void LoopInfoBase::print(raw_ostream &OS) const { for (unsigned i = 0; i < TopLevelLoops.size(); ++i) TopLevelLoops[i]->print(OS); #if 0 for (DenseMap::const_iterator I = BBMap.begin(), E = BBMap.end(); I != E; ++I) OS << "BB '" << I->first->getName() << "' level = " << I->second->getLoopDepth() << "\n"; #endif } } // End llvm namespace #endif