//===- CallGraph.h - Build a Module's call graph -----------------*- C++ -*--=// // // This interface is used to build and manipulate a call graph, which is a very // useful tool for interprocedural optimization. // // Every function in a module is represented as a node in the call graph. The // callgraph node keeps track of which functions the are called by the function // corresponding to the node. // // A call graph will contain nodes where the function that they correspond to is // null. This 'external' node is used to represent control flow that is not // represented (or analyzable) in the module. As such, the external node will // have edges to functions with the following properties: // 1. All functions in the module without internal linkage, since they could // be called by functions outside of the our analysis capability. // 2. All functions whose address is used for something more than a direct // call, for example being stored into a memory location. Since they may // be called by an unknown caller later, they must be tracked as such. // // Similarly, functions have a call edge to the external node iff: // 1. The function is external, reflecting the fact that they could call // anything without internal linkage or that has its address taken. // 2. The function contains an indirect function call. // // As an extension in the future, there may be multiple nodes with a null // function. These will be used when we can prove (through pointer analysis) // that an indirect call site can call only a specific set of functions. // // Because of these properties, the CallGraph captures a conservative superset // of all of the caller-callee relationships, which is useful for // transformations. // // The CallGraph class also attempts to figure out what the root of the // CallGraph is, which is currently does by looking for a function named 'main'. // If no function named 'main' is found, the external node is used as the entry // node, reflecting the fact that any function without internal linkage could // be called into (which is common for libraries). // //===----------------------------------------------------------------------===// #ifndef LLVM_ANALYSIS_CALLGRAPH_H #define LLVM_ANALYSIS_CALLGRAPH_H #include "Support/GraphTraits.h" #include "Support/STLExtras.h" #include "llvm/Pass.h" class Function; class Module; class CallGraphNode; //===----------------------------------------------------------------------===// // CallGraph class definition // class CallGraph : public Pass { Module *Mod; // The module this call graph represents typedef std::map FunctionMapTy; FunctionMapTy FunctionMap; // Map from a function to its node // Root is root of the call graph, or the external node if a 'main' function // couldn't be found. ExternalNode is equivalent to (*this)[0]. // CallGraphNode *Root, *ExternalNode; public: //===--------------------------------------------------------------------- // Accessors... // typedef FunctionMapTy::iterator iterator; typedef FunctionMapTy::const_iterator const_iterator; // getExternalNode - Return the node that points to all functions that are // accessable from outside of the current program. // CallGraphNode *getExternalNode() { return ExternalNode; } const CallGraphNode *getExternalNode() const { return ExternalNode; } // getRoot - Return the root of the call graph, which is either main, or if // main cannot be found, the external node. // CallGraphNode *getRoot() { return Root; } const CallGraphNode *getRoot() const { return Root; } inline iterator begin() { return FunctionMap.begin(); } inline iterator end() { return FunctionMap.end(); } inline const_iterator begin() const { return FunctionMap.begin(); } inline const_iterator end() const { return FunctionMap.end(); } // Subscripting operators, return the call graph node for the provided // function inline const CallGraphNode *operator[](const Function *F) const { const_iterator I = FunctionMap.find(F); assert(I != FunctionMap.end() && "Function not in callgraph!"); return I->second; } inline CallGraphNode *operator[](const Function *F) { const_iterator I = FunctionMap.find(F); assert(I != FunctionMap.end() && "Function not in callgraph!"); return I->second; } //===--------------------------------------------------------------------- // Functions to keep a call graph up to date with a function that has been // modified // void addFunctionToModule(Function *Meth); // removeFunctionFromModule - Unlink the function from this module, returning // it. Because this removes the function from the module, the call graph node // is destroyed. This is only valid if the function does not call any other // functions (ie, there are no edges in it's CGN). The easiest way to do this // is to dropAllReferences before calling this. // Function *removeFunctionFromModule(CallGraphNode *CGN); Function *removeFunctionFromModule(Function *Meth) { return removeFunctionFromModule((*this)[Meth]); } //===--------------------------------------------------------------------- // Pass infrastructure interface glue code... // CallGraph() : Root(0) {} ~CallGraph() { destroy(); } // run - Compute the call graph for the specified module. virtual bool run(Module &M); // getAnalysisUsage - This obviously provides a call graph virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); } // releaseMemory - Data structures can be large, so free memory aggressively. virtual void releaseMemory() { destroy(); } /// Print the types found in the module. If the optional Module parameter is /// passed in, then the types are printed symbolically if possible, using the /// symbol table from the module. /// void print(std::ostream &o, const Module *M) const; private: //===--------------------------------------------------------------------- // Implementation of CallGraph construction // // getNodeFor - Return the node for the specified function or create one if it // does not already exist. // CallGraphNode *getNodeFor(Function *F); // addToCallGraph - Add a function to the call graph, and link the node to all // of the functions that it calls. // void addToCallGraph(Function *F); // destroy - Release memory for the call graph void destroy(); }; //===----------------------------------------------------------------------===// // CallGraphNode class definition // class CallGraphNode { Function *Meth; std::vector CalledFunctions; CallGraphNode(const CallGraphNode &); // Do not implement public: //===--------------------------------------------------------------------- // Accessor methods... // typedef std::vector::iterator iterator; typedef std::vector::const_iterator const_iterator; // getFunction - Return the function that this call graph node represents... Function *getFunction() const { return Meth; } inline iterator begin() { return CalledFunctions.begin(); } inline iterator end() { return CalledFunctions.end(); } inline const_iterator begin() const { return CalledFunctions.begin(); } inline const_iterator end() const { return CalledFunctions.end(); } inline unsigned size() const { return CalledFunctions.size(); } // Subscripting operator - Return the i'th called function... // CallGraphNode *operator[](unsigned i) const { return CalledFunctions[i];} //===--------------------------------------------------------------------- // Methods to keep a call graph up to date with a function that has been // modified // void removeAllCalledFunctions() { CalledFunctions.clear(); } private: // Stuff to construct the node, used by CallGraph friend class CallGraph; // CallGraphNode ctor - Create a node for the specified function... inline CallGraphNode(Function *F) : Meth(F) {} // addCalledFunction add a function to the list of functions called by this // one void addCalledFunction(CallGraphNode *M) { CalledFunctions.push_back(M); } }; //===----------------------------------------------------------------------===// // GraphTraits specializations for call graphs so that they can be treated as // graphs by the generic graph algorithms... // // Provide graph traits for tranversing call graphs using standard graph // traversals. template <> struct GraphTraits { typedef CallGraphNode NodeType; typedef NodeType::iterator ChildIteratorType; static NodeType *getEntryNode(CallGraphNode *CGN) { return CGN; } static inline ChildIteratorType child_begin(NodeType *N) { return N->begin();} static inline ChildIteratorType child_end (NodeType *N) { return N->end(); } }; template <> struct GraphTraits { typedef const CallGraphNode NodeType; typedef NodeType::const_iterator ChildIteratorType; static NodeType *getEntryNode(const CallGraphNode *CGN) { return CGN; } static inline ChildIteratorType child_begin(NodeType *N) { return N->begin();} static inline ChildIteratorType child_end (NodeType *N) { return N->end(); } }; template<> struct GraphTraits : public GraphTraits { static NodeType *getEntryNode(CallGraph *CGN) { return CGN->getExternalNode(); // Start at the external node! } typedef std::pair PairTy; typedef std::pointer_to_unary_function DerefFun; // nodes_iterator/begin/end - Allow iteration over all nodes in the graph typedef mapped_iterator nodes_iterator; static nodes_iterator nodes_begin(CallGraph *CG) { return map_iterator(CG->begin(), DerefFun(CGdereference)); } static nodes_iterator nodes_end (CallGraph *CG) { return map_iterator(CG->end(), DerefFun(CGdereference)); } static CallGraphNode &CGdereference (std::pair P) { return *P.second; } }; template<> struct GraphTraits : public GraphTraits { static NodeType *getEntryNode(const CallGraph *CGN) { return CGN->getExternalNode(); } // nodes_iterator/begin/end - Allow iteration over all nodes in the graph typedef CallGraph::const_iterator nodes_iterator; static nodes_iterator nodes_begin(const CallGraph *CG) { return CG->begin(); } static nodes_iterator nodes_end (const CallGraph *CG) { return CG->end(); } }; #endif