//===-- llvm/CodeGen/MachineBasicBlock.h ------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Collect the sequence of machine instructions for a basic block. // //===----------------------------------------------------------------------===// #ifndef LLVM_CODEGEN_MACHINEBASICBLOCK_H #define LLVM_CODEGEN_MACHINEBASICBLOCK_H #include "llvm/CodeGen/MachineInstr.h" #include "llvm/ADT/GraphTraits.h" namespace llvm { class BasicBlock; class MachineFunction; class raw_ostream; template <> struct ilist_traits : public ilist_default_traits { private: mutable ilist_half_node Sentinel; // this is only set by the MachineBasicBlock owning the LiveList friend class MachineBasicBlock; MachineBasicBlock* Parent; public: MachineInstr *createSentinel() const { return static_cast(&Sentinel); } void destroySentinel(MachineInstr *) const {} MachineInstr *provideInitialHead() const { return createSentinel(); } MachineInstr *ensureHead(MachineInstr*) const { return createSentinel(); } static void noteHead(MachineInstr*, MachineInstr*) {} void addNodeToList(MachineInstr* N); void removeNodeFromList(MachineInstr* N); void transferNodesFromList(ilist_traits &SrcTraits, ilist_iterator first, ilist_iterator last); void deleteNode(MachineInstr *N); private: void createNode(const MachineInstr &); }; class MachineBasicBlock : public ilist_node { typedef ilist Instructions; Instructions Insts; const BasicBlock *BB; int Number; MachineFunction *xParent; /// Predecessors/Successors - Keep track of the predecessor / successor /// basicblocks. std::vector Predecessors; std::vector Successors; /// LiveIns - Keep track of the physical registers that are livein of /// the basicblock. std::vector LiveIns; /// Alignment - Alignment of the basic block. Zero if the basic block does /// not need to be aligned. unsigned Alignment; /// IsLandingPad - Indicate that this basic block is entered via an /// exception handler. bool IsLandingPad; /// AddressTaken - Indicate that this basic block is potentially the /// target of an indirect branch. bool AddressTaken; // Intrusive list support MachineBasicBlock() {} explicit MachineBasicBlock(MachineFunction &mf, const BasicBlock *bb); ~MachineBasicBlock(); // MachineBasicBlocks are allocated and owned by MachineFunction. friend class MachineFunction; public: /// getBasicBlock - Return the LLVM basic block that this instance /// corresponded to originally. Note that this may be NULL if this instance /// does not correspond directly to an LLVM basic block. /// const BasicBlock *getBasicBlock() const { return BB; } /// getName - Return the name of the corresponding LLVM basic block, or /// "(null)". StringRef getName() const; /// hasAddressTaken - Test whether this block is potentially the target /// of an indirect branch. bool hasAddressTaken() const { return AddressTaken; } /// setHasAddressTaken - Set this block to reflect that it potentially /// is the target of an indirect branch. void setHasAddressTaken() { AddressTaken = true; } /// getParent - Return the MachineFunction containing this basic block. /// const MachineFunction *getParent() const { return xParent; } MachineFunction *getParent() { return xParent; } typedef Instructions::iterator iterator; typedef Instructions::const_iterator const_iterator; typedef std::reverse_iterator const_reverse_iterator; typedef std::reverse_iterator reverse_iterator; unsigned size() const { return (unsigned)Insts.size(); } bool empty() const { return Insts.empty(); } MachineInstr& front() { return Insts.front(); } MachineInstr& back() { return Insts.back(); } const MachineInstr& front() const { return Insts.front(); } const MachineInstr& back() const { return Insts.back(); } iterator begin() { return Insts.begin(); } const_iterator begin() const { return Insts.begin(); } iterator end() { return Insts.end(); } const_iterator end() const { return Insts.end(); } reverse_iterator rbegin() { return Insts.rbegin(); } const_reverse_iterator rbegin() const { return Insts.rbegin(); } reverse_iterator rend () { return Insts.rend(); } const_reverse_iterator rend () const { return Insts.rend(); } // Machine-CFG iterators typedef std::vector::iterator pred_iterator; typedef std::vector::const_iterator const_pred_iterator; typedef std::vector::iterator succ_iterator; typedef std::vector::const_iterator const_succ_iterator; typedef std::vector::reverse_iterator pred_reverse_iterator; typedef std::vector::const_reverse_iterator const_pred_reverse_iterator; typedef std::vector::reverse_iterator succ_reverse_iterator; typedef std::vector::const_reverse_iterator const_succ_reverse_iterator; pred_iterator pred_begin() { return Predecessors.begin(); } const_pred_iterator pred_begin() const { return Predecessors.begin(); } pred_iterator pred_end() { return Predecessors.end(); } const_pred_iterator pred_end() const { return Predecessors.end(); } pred_reverse_iterator pred_rbegin() { return Predecessors.rbegin();} const_pred_reverse_iterator pred_rbegin() const { return Predecessors.rbegin();} pred_reverse_iterator pred_rend() { return Predecessors.rend(); } const_pred_reverse_iterator pred_rend() const { return Predecessors.rend(); } unsigned pred_size() const { return (unsigned)Predecessors.size(); } bool pred_empty() const { return Predecessors.empty(); } succ_iterator succ_begin() { return Successors.begin(); } const_succ_iterator succ_begin() const { return Successors.begin(); } succ_iterator succ_end() { return Successors.end(); } const_succ_iterator succ_end() const { return Successors.end(); } succ_reverse_iterator succ_rbegin() { return Successors.rbegin(); } const_succ_reverse_iterator succ_rbegin() const { return Successors.rbegin(); } succ_reverse_iterator succ_rend() { return Successors.rend(); } const_succ_reverse_iterator succ_rend() const { return Successors.rend(); } unsigned succ_size() const { return (unsigned)Successors.size(); } bool succ_empty() const { return Successors.empty(); } // LiveIn management methods. /// addLiveIn - Add the specified register as a live in. Note that it /// is an error to add the same register to the same set more than once. void addLiveIn(unsigned Reg) { LiveIns.push_back(Reg); } /// removeLiveIn - Remove the specified register from the live in set. /// void removeLiveIn(unsigned Reg); /// isLiveIn - Return true if the specified register is in the live in set. /// bool isLiveIn(unsigned Reg) const; // Iteration support for live in sets. These sets are kept in sorted // order by their register number. typedef std::vector::iterator livein_iterator; typedef std::vector::const_iterator const_livein_iterator; livein_iterator livein_begin() { return LiveIns.begin(); } const_livein_iterator livein_begin() const { return LiveIns.begin(); } livein_iterator livein_end() { return LiveIns.end(); } const_livein_iterator livein_end() const { return LiveIns.end(); } bool livein_empty() const { return LiveIns.empty(); } /// getAlignment - Return alignment of the basic block. /// unsigned getAlignment() const { return Alignment; } /// setAlignment - Set alignment of the basic block. /// void setAlignment(unsigned Align) { Alignment = Align; } /// isLandingPad - Returns true if the block is a landing pad. That is /// this basic block is entered via an exception handler. bool isLandingPad() const { return IsLandingPad; } /// setIsLandingPad - Indicates the block is a landing pad. That is /// this basic block is entered via an exception handler. void setIsLandingPad() { IsLandingPad = true; } // Code Layout methods. /// moveBefore/moveAfter - move 'this' block before or after the specified /// block. This only moves the block, it does not modify the CFG or adjust /// potential fall-throughs at the end of the block. void moveBefore(MachineBasicBlock *NewAfter); void moveAfter(MachineBasicBlock *NewBefore); /// updateTerminator - Update the terminator instructions in block to account /// for changes to the layout. If the block previously used a fallthrough, /// it may now need a branch, and if it previously used branching it may now /// be able to use a fallthrough. void updateTerminator(); // Machine-CFG mutators /// addSuccessor - Add succ as a successor of this MachineBasicBlock. /// The Predecessors list of succ is automatically updated. /// void addSuccessor(MachineBasicBlock *succ); /// removeSuccessor - Remove successor from the successors list of this /// MachineBasicBlock. The Predecessors list of succ is automatically updated. /// void removeSuccessor(MachineBasicBlock *succ); /// removeSuccessor - Remove specified successor from the successors list of /// this MachineBasicBlock. The Predecessors list of succ is automatically /// updated. Return the iterator to the element after the one removed. /// succ_iterator removeSuccessor(succ_iterator I); /// transferSuccessors - Transfers all the successors from MBB to this /// machine basic block (i.e., copies all the successors fromMBB and /// remove all the successors from fromMBB). void transferSuccessors(MachineBasicBlock *fromMBB); /// isSuccessor - Return true if the specified MBB is a successor of this /// block. bool isSuccessor(const MachineBasicBlock *MBB) const; /// isLayoutSuccessor - Return true if the specified MBB will be emitted /// immediately after this block, such that if this block exits by /// falling through, control will transfer to the specified MBB. Note /// that MBB need not be a successor at all, for example if this block /// ends with an unconditional branch to some other block. bool isLayoutSuccessor(const MachineBasicBlock *MBB) const; /// canFallThrough - Return true if the block can implicitly transfer /// control to the block after it by falling off the end of it. This should /// return false if it can reach the block after it, but it uses an explicit /// branch to do so (e.g., a table jump). True is a conservative answer. bool canFallThrough(); /// getFirstTerminator - returns an iterator to the first terminator /// instruction of this basic block. If a terminator does not exist, /// it returns end() iterator getFirstTerminator(); /// isOnlyReachableViaFallthough - Return true if this basic block has /// exactly one predecessor and the control transfer mechanism between /// the predecessor and this block is a fall-through. bool isOnlyReachableByFallthrough() const; void pop_front() { Insts.pop_front(); } void pop_back() { Insts.pop_back(); } void push_back(MachineInstr *MI) { Insts.push_back(MI); } template void insert(iterator I, IT S, IT E) { Insts.insert(I, S, E); } iterator insert(iterator I, MachineInstr *M) { return Insts.insert(I, M); } // erase - Remove the specified element or range from the instruction list. // These functions delete any instructions removed. // iterator erase(iterator I) { return Insts.erase(I); } iterator erase(iterator I, iterator E) { return Insts.erase(I, E); } MachineInstr *remove(MachineInstr *I) { return Insts.remove(I); } void clear() { Insts.clear(); } /// splice - Take an instruction from MBB 'Other' at the position From, /// and insert it into this MBB right before 'where'. void splice(iterator where, MachineBasicBlock *Other, iterator From) { Insts.splice(where, Other->Insts, From); } /// splice - Take a block of instructions from MBB 'Other' in the range [From, /// To), and insert them into this MBB right before 'where'. void splice(iterator where, MachineBasicBlock *Other, iterator From, iterator To) { Insts.splice(where, Other->Insts, From, To); } /// removeFromParent - This method unlinks 'this' from the containing /// function, and returns it, but does not delete it. MachineBasicBlock *removeFromParent(); /// eraseFromParent - This method unlinks 'this' from the containing /// function and deletes it. void eraseFromParent(); /// ReplaceUsesOfBlockWith - Given a machine basic block that branched to /// 'Old', change the code and CFG so that it branches to 'New' instead. void ReplaceUsesOfBlockWith(MachineBasicBlock *Old, MachineBasicBlock *New); /// CorrectExtraCFGEdges - Various pieces of code can cause excess edges in /// the CFG to be inserted. If we have proven that MBB can only branch to /// DestA and DestB, remove any other MBB successors from the CFG. DestA and /// DestB can be null. Besides DestA and DestB, retain other edges leading /// to LandingPads (currently there can be only one; we don't check or require /// that here). Note it is possible that DestA and/or DestB are LandingPads. bool CorrectExtraCFGEdges(MachineBasicBlock *DestA, MachineBasicBlock *DestB, bool isCond); /// findDebugLoc - find the next valid DebugLoc starting at MBBI, skipping /// any DEBUG_VALUE instructions. Return UnknownLoc if there is none. DebugLoc findDebugLoc(MachineBasicBlock::iterator &MBBI); // Debugging methods. void dump() const; void print(raw_ostream &OS) const; /// getNumber - MachineBasicBlocks are uniquely numbered at the function /// level, unless they're not in a MachineFunction yet, in which case this /// will return -1. /// int getNumber() const { return Number; } void setNumber(int N) { Number = N; } private: // Methods used to maintain doubly linked list of blocks... friend struct ilist_traits; // Machine-CFG mutators /// addPredecessor - Remove pred as a predecessor of this MachineBasicBlock. /// Don't do this unless you know what you're doing, because it doesn't /// update pred's successors list. Use pred->addSuccessor instead. /// void addPredecessor(MachineBasicBlock *pred); /// removePredecessor - Remove pred as a predecessor of this /// MachineBasicBlock. Don't do this unless you know what you're /// doing, because it doesn't update pred's successors list. Use /// pred->removeSuccessor instead. /// void removePredecessor(MachineBasicBlock *pred); }; raw_ostream& operator<<(raw_ostream &OS, const MachineBasicBlock &MBB); void WriteAsOperand(raw_ostream &, const MachineBasicBlock*, bool t); //===--------------------------------------------------------------------===// // GraphTraits specializations for machine basic block graphs (machine-CFGs) //===--------------------------------------------------------------------===// // Provide specializations of GraphTraits to be able to treat a // MachineFunction as a graph of MachineBasicBlocks... // template <> struct GraphTraits { typedef MachineBasicBlock NodeType; typedef MachineBasicBlock::succ_iterator ChildIteratorType; static NodeType *getEntryNode(MachineBasicBlock *BB) { return BB; } static inline ChildIteratorType child_begin(NodeType *N) { return N->succ_begin(); } static inline ChildIteratorType child_end(NodeType *N) { return N->succ_end(); } }; template <> struct GraphTraits { typedef const MachineBasicBlock NodeType; typedef MachineBasicBlock::const_succ_iterator ChildIteratorType; static NodeType *getEntryNode(const MachineBasicBlock *BB) { return BB; } static inline ChildIteratorType child_begin(NodeType *N) { return N->succ_begin(); } static inline ChildIteratorType child_end(NodeType *N) { return N->succ_end(); } }; // Provide specializations of GraphTraits to be able to treat a // MachineFunction as a graph of MachineBasicBlocks... and to walk it // in inverse order. Inverse order for a function is considered // to be when traversing the predecessor edges of a MBB // instead of the successor edges. // template <> struct GraphTraits > { typedef MachineBasicBlock NodeType; typedef MachineBasicBlock::pred_iterator ChildIteratorType; static NodeType *getEntryNode(Inverse G) { return G.Graph; } static inline ChildIteratorType child_begin(NodeType *N) { return N->pred_begin(); } static inline ChildIteratorType child_end(NodeType *N) { return N->pred_end(); } }; template <> struct GraphTraits > { typedef const MachineBasicBlock NodeType; typedef MachineBasicBlock::const_pred_iterator ChildIteratorType; static NodeType *getEntryNode(Inverse G) { return G.Graph; } static inline ChildIteratorType child_begin(NodeType *N) { return N->pred_begin(); } static inline ChildIteratorType child_end(NodeType *N) { return N->pred_end(); } }; } // End llvm namespace #endif