//===- Dominators.cpp - Dominator Calculation -----------------------------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements simple dominator construction algorithms for finding // forward dominators. Postdominators are available in libanalysis, but are not // included in libvmcore, because it's not needed. Forward dominators are // needed to support the Verifier pass. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/Dominators.h" #include "llvm/Support/CFG.h" #include "llvm/Assembly/Writer.h" #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/ADT/SetOperations.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/Instructions.h" #include "llvm/Support/Streams.h" #include using namespace llvm; namespace llvm { static std::ostream &operator<<(std::ostream &o, const std::set &BBs) { for (std::set::const_iterator I = BBs.begin(), E = BBs.end(); I != E; ++I) if (*I) WriteAsOperand(o, *I, false); else o << " <>"; return o; } } //===----------------------------------------------------------------------===// // DominatorTree Implementation //===----------------------------------------------------------------------===// // // DominatorTree construction - This pass constructs immediate dominator // information for a flow-graph based on the algorithm described in this // document: // // A Fast Algorithm for Finding Dominators in a Flowgraph // T. Lengauer & R. Tarjan, ACM TOPLAS July 1979, pgs 121-141. // // This implements both the O(n*ack(n)) and the O(n*log(n)) versions of EVAL and // LINK, but it turns out that the theoretically slower O(n*log(n)) // implementation is actually faster than the "efficient" algorithm (even for // large CFGs) because the constant overheads are substantially smaller. The // lower-complexity version can be enabled with the following #define: // #define BALANCE_IDOM_TREE 0 // //===----------------------------------------------------------------------===// char DominatorTree::ID = 0; static RegisterPass E("domtree", "Dominator Tree Construction", true); // NewBB is split and now it has one successor. Update dominator tree to // reflect this change. void DominatorTree::splitBlock(BasicBlock *NewBB) { assert(NewBB->getTerminator()->getNumSuccessors() == 1 && "NewBB should have a single successor!"); BasicBlock *NewBBSucc = NewBB->getTerminator()->getSuccessor(0); std::vector PredBlocks; for (pred_iterator PI = pred_begin(NewBB), PE = pred_end(NewBB); PI != PE; ++PI) PredBlocks.push_back(*PI); assert(!PredBlocks.empty() && "No predblocks??"); // The newly inserted basic block will dominate existing basic blocks iff the // PredBlocks dominate all of the non-pred blocks. If all predblocks dominate // the non-pred blocks, then they all must be the same block! // bool NewBBDominatesNewBBSucc = true; { BasicBlock *OnePred = PredBlocks[0]; unsigned i = 1, e = PredBlocks.size(); for (i = 1; !isReachableFromEntry(OnePred); ++i) { assert(i != e && "Didn't find reachable pred?"); OnePred = PredBlocks[i]; } for (; i != e; ++i) if (PredBlocks[i] != OnePred && isReachableFromEntry(OnePred)){ NewBBDominatesNewBBSucc = false; break; } if (NewBBDominatesNewBBSucc) for (pred_iterator PI = pred_begin(NewBBSucc), E = pred_end(NewBBSucc); PI != E; ++PI) if (*PI != NewBB && !dominates(NewBBSucc, *PI)) { NewBBDominatesNewBBSucc = false; break; } } // The other scenario where the new block can dominate its successors are when // all predecessors of NewBBSucc that are not NewBB are dominated by NewBBSucc // already. if (!NewBBDominatesNewBBSucc) { NewBBDominatesNewBBSucc = true; for (pred_iterator PI = pred_begin(NewBBSucc), E = pred_end(NewBBSucc); PI != E; ++PI) if (*PI != NewBB && !dominates(NewBBSucc, *PI)) { NewBBDominatesNewBBSucc = false; break; } } // Find NewBB's immediate dominator and create new dominator tree node for NewBB. BasicBlock *NewBBIDom = 0; unsigned i = 0; for (i = 0; i < PredBlocks.size(); ++i) if (isReachableFromEntry(PredBlocks[i])) { NewBBIDom = PredBlocks[i]; break; } assert(i != PredBlocks.size() && "No reachable preds?"); for (i = i + 1; i < PredBlocks.size(); ++i) { if (isReachableFromEntry(PredBlocks[i])) NewBBIDom = findNearestCommonDominator(NewBBIDom, PredBlocks[i]); } assert(NewBBIDom && "No immediate dominator found??"); // Create the new dominator tree node... and set the idom of NewBB. DomTreeNode *NewBBNode = addNewBlock(NewBB, NewBBIDom); // If NewBB strictly dominates other blocks, then it is now the immediate // dominator of NewBBSucc. Update the dominator tree as appropriate. if (NewBBDominatesNewBBSucc) { DomTreeNode *NewBBSuccNode = getNode(NewBBSucc); changeImmediateDominator(NewBBSuccNode, NewBBNode); } } unsigned DominatorTree::DFSPass(BasicBlock *V, InfoRec &VInfo, unsigned N) { // This is more understandable as a recursive algorithm, but we can't use the // recursive algorithm due to stack depth issues. Keep it here for // documentation purposes. #if 0 VInfo.Semi = ++N; VInfo.Label = V; Vertex.push_back(V); // Vertex[n] = V; //Info[V].Ancestor = 0; // Ancestor[n] = 0 //Info[V].Child = 0; // Child[v] = 0 VInfo.Size = 1; // Size[v] = 1 for (succ_iterator SI = succ_begin(V), E = succ_end(V); SI != E; ++SI) { InfoRec &SuccVInfo = Info[*SI]; if (SuccVInfo.Semi == 0) { SuccVInfo.Parent = V; N = DFSPass(*SI, SuccVInfo, N); } } #else std::vector > Worklist; Worklist.push_back(std::make_pair(V, 0U)); while (!Worklist.empty()) { BasicBlock *BB = Worklist.back().first; unsigned NextSucc = Worklist.back().second; // First time we visited this BB? if (NextSucc == 0) { InfoRec &BBInfo = Info[BB]; BBInfo.Semi = ++N; BBInfo.Label = BB; Vertex.push_back(BB); // Vertex[n] = V; //BBInfo[V].Ancestor = 0; // Ancestor[n] = 0 //BBInfo[V].Child = 0; // Child[v] = 0 BBInfo.Size = 1; // Size[v] = 1 } // If we are done with this block, remove it from the worklist. if (NextSucc == BB->getTerminator()->getNumSuccessors()) { Worklist.pop_back(); continue; } // Otherwise, increment the successor number for the next time we get to it. ++Worklist.back().second; // Visit the successor next, if it isn't already visited. BasicBlock *Succ = BB->getTerminator()->getSuccessor(NextSucc); InfoRec &SuccVInfo = Info[Succ]; if (SuccVInfo.Semi == 0) { SuccVInfo.Parent = BB; Worklist.push_back(std::make_pair(Succ, 0U)); } } #endif return N; } void DominatorTree::Compress(BasicBlock *VIn) { std::vector Work; std::set Visited; InfoRec &VInInfo = Info[VIn]; BasicBlock *VInAncestor = VInInfo.Ancestor; InfoRec &VInVAInfo = Info[VInAncestor]; if (VInVAInfo.Ancestor != 0) Work.push_back(VIn); while (!Work.empty()) { BasicBlock *V = Work.back(); InfoRec &VInfo = Info[V]; BasicBlock *VAncestor = VInfo.Ancestor; InfoRec &VAInfo = Info[VAncestor]; // Process Ancestor first if (Visited.count(VAncestor) == 0 && VAInfo.Ancestor != 0) { Work.push_back(VAncestor); Visited.insert(VAncestor); continue; } Work.pop_back(); // Update VINfo based on Ancestor info if (VAInfo.Ancestor == 0) continue; BasicBlock *VAncestorLabel = VAInfo.Label; BasicBlock *VLabel = VInfo.Label; if (Info[VAncestorLabel].Semi < Info[VLabel].Semi) VInfo.Label = VAncestorLabel; VInfo.Ancestor = VAInfo.Ancestor; } } BasicBlock *DominatorTree::Eval(BasicBlock *V) { InfoRec &VInfo = Info[V]; #if !BALANCE_IDOM_TREE // Higher-complexity but faster implementation if (VInfo.Ancestor == 0) return V; Compress(V); return VInfo.Label; #else // Lower-complexity but slower implementation if (VInfo.Ancestor == 0) return VInfo.Label; Compress(V); BasicBlock *VLabel = VInfo.Label; BasicBlock *VAncestorLabel = Info[VInfo.Ancestor].Label; if (Info[VAncestorLabel].Semi >= Info[VLabel].Semi) return VLabel; else return VAncestorLabel; #endif } void DominatorTree::Link(BasicBlock *V, BasicBlock *W, InfoRec &WInfo){ #if !BALANCE_IDOM_TREE // Higher-complexity but faster implementation WInfo.Ancestor = V; #else // Lower-complexity but slower implementation BasicBlock *WLabel = WInfo.Label; unsigned WLabelSemi = Info[WLabel].Semi; BasicBlock *S = W; InfoRec *SInfo = &Info[S]; BasicBlock *SChild = SInfo->Child; InfoRec *SChildInfo = &Info[SChild]; while (WLabelSemi < Info[SChildInfo->Label].Semi) { BasicBlock *SChildChild = SChildInfo->Child; if (SInfo->Size+Info[SChildChild].Size >= 2*SChildInfo->Size) { SChildInfo->Ancestor = S; SInfo->Child = SChild = SChildChild; SChildInfo = &Info[SChild]; } else { SChildInfo->Size = SInfo->Size; S = SInfo->Ancestor = SChild; SInfo = SChildInfo; SChild = SChildChild; SChildInfo = &Info[SChild]; } } InfoRec &VInfo = Info[V]; SInfo->Label = WLabel; assert(V != W && "The optimization here will not work in this case!"); unsigned WSize = WInfo.Size; unsigned VSize = (VInfo.Size += WSize); if (VSize < 2*WSize) std::swap(S, VInfo.Child); while (S) { SInfo = &Info[S]; SInfo->Ancestor = V; S = SInfo->Child; } #endif } void DominatorTree::calculate(Function& F) { BasicBlock* Root = Roots[0]; // Add a node for the root... DomTreeNodes[Root] = RootNode = new DomTreeNode(Root, 0); Vertex.push_back(0); // Step #1: Number blocks in depth-first order and initialize variables used // in later stages of the algorithm. unsigned N = 0; for (unsigned i = 0, e = Roots.size(); i != e; ++i) N = DFSPass(Roots[i], Info[Roots[i]], 0); for (unsigned i = N; i >= 2; --i) { BasicBlock *W = Vertex[i]; InfoRec &WInfo = Info[W]; // Step #2: Calculate the semidominators of all vertices for (pred_iterator PI = pred_begin(W), E = pred_end(W); PI != E; ++PI) if (Info.count(*PI)) { // Only if this predecessor is reachable! unsigned SemiU = Info[Eval(*PI)].Semi; if (SemiU < WInfo.Semi) WInfo.Semi = SemiU; } Info[Vertex[WInfo.Semi]].Bucket.push_back(W); BasicBlock *WParent = WInfo.Parent; Link(WParent, W, WInfo); // Step #3: Implicitly define the immediate dominator of vertices std::vector &WParentBucket = Info[WParent].Bucket; while (!WParentBucket.empty()) { BasicBlock *V = WParentBucket.back(); WParentBucket.pop_back(); BasicBlock *U = Eval(V); IDoms[V] = Info[U].Semi < Info[V].Semi ? U : WParent; } } // Step #4: Explicitly define the immediate dominator of each vertex for (unsigned i = 2; i <= N; ++i) { BasicBlock *W = Vertex[i]; BasicBlock *&WIDom = IDoms[W]; if (WIDom != Vertex[Info[W].Semi]) WIDom = IDoms[WIDom]; } // Loop over all of the reachable blocks in the function... for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) if (BasicBlock *ImmDom = getIDom(I)) { // Reachable block. DomTreeNode *&BBNode = DomTreeNodes[I]; if (!BBNode) { // Haven't calculated this node yet? // Get or calculate the node for the immediate dominator DomTreeNode *IDomNode = getNodeForBlock(ImmDom); // Add a new tree node for this BasicBlock, and link it as a child of // IDomNode DomTreeNode *C = new DomTreeNode(I, IDomNode); DomTreeNodes[I] = C; BBNode = IDomNode->addChild(C); } } // Free temporary memory used to construct idom's Info.clear(); IDoms.clear(); std::vector().swap(Vertex); updateDFSNumbers(); } void DominatorTreeBase::updateDFSNumbers() { int dfsnum = 0; // Iterate over all nodes in depth first order. for (unsigned i = 0, e = Roots.size(); i != e; ++i) for (df_iterator I = df_begin(Roots[i]), E = df_end(Roots[i]); I != E; ++I) { BasicBlock *BB = *I; DomTreeNode *BBNode = getNode(BB); if (BBNode) { if (!BBNode->getIDom()) BBNode->assignDFSNumber(dfsnum); } } SlowQueries = 0; DFSInfoValid = true; } /// isReachableFromEntry - Return true if A is dominated by the entry /// block of the function containing it. const bool DominatorTreeBase::isReachableFromEntry(BasicBlock* A) { assert (!isPostDominator() && "This is not implemented for post dominators"); return dominates(&A->getParent()->getEntryBlock(), A); } // dominates - Return true if A dominates B. THis performs the // special checks necessary if A and B are in the same basic block. bool DominatorTreeBase::dominates(Instruction *A, Instruction *B) { BasicBlock *BBA = A->getParent(), *BBB = B->getParent(); if (BBA != BBB) return dominates(BBA, BBB); // It is not possible to determine dominance between two PHI nodes // based on their ordering. if (isa(A) && isa(B)) return false; // Loop through the basic block until we find A or B. BasicBlock::iterator I = BBA->begin(); for (; &*I != A && &*I != B; ++I) /*empty*/; if(!IsPostDominators) { // A dominates B if it is found first in the basic block. return &*I == A; } else { // A post-dominates B if B is found first in the basic block. return &*I == B; } } // DominatorTreeBase::reset - Free all of the tree node memory. // void DominatorTreeBase::reset() { for (DomTreeNodeMapType::iterator I = DomTreeNodes.begin(), E = DomTreeNodes.end(); I != E; ++I) delete I->second; DomTreeNodes.clear(); IDoms.clear(); Roots.clear(); Vertex.clear(); RootNode = 0; } /// findNearestCommonDominator - Find nearest common dominator basic block /// for basic block A and B. If there is no such block then return NULL. BasicBlock *DominatorTreeBase::findNearestCommonDominator(BasicBlock *A, BasicBlock *B) { assert (!isPostDominator() && "This is not implemented for post dominators"); assert (A->getParent() == B->getParent() && "Two blocks are not in same function"); // If either A or B is a entry block then it is nearest common dominator. BasicBlock &Entry = A->getParent()->getEntryBlock(); if (A == &Entry || B == &Entry) return &Entry; // If B dominates A then B is nearest common dominator. if (dominates(B,A)) return B; // If A dominates B then A is nearest common dominator. if (dominates(A,B)) return A; DomTreeNode *NodeA = getNode(A); DomTreeNode *NodeB = getNode(B); // Collect NodeA dominators set. SmallPtrSet NodeADoms; NodeADoms.insert(NodeA); DomTreeNode *IDomA = NodeA->getIDom(); while(IDomA) { NodeADoms.insert(IDomA); IDomA = IDomA->getIDom(); } // Walk NodeB immediate dominators chain and find common dominator node. DomTreeNode *IDomB = NodeB->getIDom(); while(IDomB) { if (NodeADoms.count(IDomB) != 0) return IDomB->getBlock(); IDomB = IDomB->getIDom(); } return NULL; } /// assignDFSNumber - Assign In and Out numbers while walking dominator tree /// in dfs order. void DomTreeNode::assignDFSNumber(int num) { std::vector workStack; std::set visitedNodes; workStack.push_back(this); visitedNodes.insert(this); this->DFSNumIn = num++; while (!workStack.empty()) { DomTreeNode *Node = workStack.back(); bool visitChild = false; for (std::vector::iterator DI = Node->begin(), E = Node->end(); DI != E && !visitChild; ++DI) { DomTreeNode *Child = *DI; if (visitedNodes.count(Child) == 0) { visitChild = true; Child->DFSNumIn = num++; workStack.push_back(Child); visitedNodes.insert(Child); } } if (!visitChild) { // If we reach here means all children are visited Node->DFSNumOut = num++; workStack.pop_back(); } } } void DomTreeNode::setIDom(DomTreeNode *NewIDom) { assert(IDom && "No immediate dominator?"); if (IDom != NewIDom) { std::vector::iterator I = std::find(IDom->Children.begin(), IDom->Children.end(), this); assert(I != IDom->Children.end() && "Not in immediate dominator children set!"); // I am no longer your child... IDom->Children.erase(I); // Switch to new dominator IDom = NewIDom; IDom->Children.push_back(this); } } DomTreeNode *DominatorTree::getNodeForBlock(BasicBlock *BB) { DomTreeNode *&BBNode = DomTreeNodes[BB]; if (BBNode) return BBNode; // Haven't calculated this node yet? Get or calculate the node for the // immediate dominator. BasicBlock *IDom = getIDom(BB); DomTreeNode *IDomNode = getNodeForBlock(IDom); // Add a new tree node for this BasicBlock, and link it as a child of // IDomNode DomTreeNode *C = new DomTreeNode(BB, IDomNode); DomTreeNodes[BB] = C; return BBNode = IDomNode->addChild(C); } static std::ostream &operator<<(std::ostream &o, const DomTreeNode *Node) { if (Node->getBlock()) WriteAsOperand(o, Node->getBlock(), false); else o << " <>"; return o << "\n"; } static void PrintDomTree(const DomTreeNode *N, std::ostream &o, unsigned Lev) { o << std::string(2*Lev, ' ') << "[" << Lev << "] " << N; for (DomTreeNode::const_iterator I = N->begin(), E = N->end(); I != E; ++I) PrintDomTree(*I, o, Lev+1); } void DominatorTreeBase::print(std::ostream &o, const Module* ) const { o << "=============================--------------------------------\n" << "Inorder Dominator Tree:\n"; PrintDomTree(getRootNode(), o, 1); } void DominatorTreeBase::dump() { print (llvm::cerr); } bool DominatorTree::runOnFunction(Function &F) { reset(); // Reset from the last time we were run... Roots.push_back(&F.getEntryBlock()); calculate(F); return false; } //===----------------------------------------------------------------------===// // DominanceFrontier Implementation //===----------------------------------------------------------------------===// char DominanceFrontier::ID = 0; static RegisterPass G("domfrontier", "Dominance Frontier Construction", true); // NewBB is split and now it has one successor. Update dominace frontier to // reflect this change. void DominanceFrontier::splitBlock(BasicBlock *NewBB) { assert(NewBB->getTerminator()->getNumSuccessors() == 1 && "NewBB should have a single successor!"); BasicBlock *NewBBSucc = NewBB->getTerminator()->getSuccessor(0); std::vector PredBlocks; for (pred_iterator PI = pred_begin(NewBB), PE = pred_end(NewBB); PI != PE; ++PI) PredBlocks.push_back(*PI); if (PredBlocks.empty()) // If NewBB does not have any predecessors then it is a entry block. // In this case, NewBB and its successor NewBBSucc dominates all // other blocks. return; DominatorTree &DT = getAnalysis(); bool NewBBDominatesNewBBSucc = true; if (!DT.dominates(NewBB, NewBBSucc)) NewBBDominatesNewBBSucc = false; // If NewBB dominates NewBBSucc, then DF(NewBB) is now going to be the // DF(PredBlocks[0]) without the stuff that the new block does not dominate // a predecessor of. if (NewBBDominatesNewBBSucc) { DominanceFrontier::iterator DFI = find(PredBlocks[0]); if (DFI != end()) { DominanceFrontier::DomSetType Set = DFI->second; // Filter out stuff in Set that we do not dominate a predecessor of. for (DominanceFrontier::DomSetType::iterator SetI = Set.begin(), E = Set.end(); SetI != E;) { bool DominatesPred = false; for (pred_iterator PI = pred_begin(*SetI), E = pred_end(*SetI); PI != E; ++PI) if (DT.dominates(NewBB, *PI)) DominatesPred = true; if (!DominatesPred) Set.erase(SetI++); else ++SetI; } DominanceFrontier::iterator NewBBI = find(NewBB); if (NewBBI != end()) { DominanceFrontier::DomSetType NewBBSet = NewBBI->second; NewBBSet.insert(Set.begin(), Set.end()); } else addBasicBlock(NewBB, Set); } } else { // DF(NewBB) is {NewBBSucc} because NewBB does not strictly dominate // NewBBSucc, but it does dominate itself (and there is an edge (NewBB -> // NewBBSucc)). NewBBSucc is the single successor of NewBB. DominanceFrontier::DomSetType NewDFSet; NewDFSet.insert(NewBBSucc); addBasicBlock(NewBB, NewDFSet); } // Now we must loop over all of the dominance frontiers in the function, // replacing occurrences of NewBBSucc with NewBB in some cases. All // blocks that dominate a block in PredBlocks and contained NewBBSucc in // their dominance frontier must be updated to contain NewBB instead. // for (Function::iterator FI = NewBB->getParent()->begin(), FE = NewBB->getParent()->end(); FI != FE; ++FI) { DominanceFrontier::iterator DFI = find(FI); if (DFI == end()) continue; // unreachable block. // Only consider dominators of NewBBSucc if (!DFI->second.count(NewBBSucc)) continue; bool BlockDominatesAny = false; for (std::vector::const_iterator BI = PredBlocks.begin(), BE = PredBlocks.end(); BI != BE; ++BI) { if (DT.dominates(FI, *BI)) { BlockDominatesAny = true; break; } } if (BlockDominatesAny) { // If NewBBSucc should not stay in our dominator frontier, remove it. // We remove it unless there is a predecessor of NewBBSucc that we // dominate, but we don't strictly dominate NewBBSucc. bool ShouldRemove = true; if ((BasicBlock*)FI == NewBBSucc || !DT.dominates(FI, NewBBSucc)) { // Okay, we know that PredDom does not strictly dominate NewBBSucc. // Check to see if it dominates any predecessors of NewBBSucc. for (pred_iterator PI = pred_begin(NewBBSucc), E = pred_end(NewBBSucc); PI != E; ++PI) if (DT.dominates(FI, *PI)) { ShouldRemove = false; break; } if (ShouldRemove) removeFromFrontier(DFI, NewBBSucc); addToFrontier(DFI, NewBB); break; } } } } namespace { class DFCalculateWorkObject { public: DFCalculateWorkObject(BasicBlock *B, BasicBlock *P, const DomTreeNode *N, const DomTreeNode *PN) : currentBB(B), parentBB(P), Node(N), parentNode(PN) {} BasicBlock *currentBB; BasicBlock *parentBB; const DomTreeNode *Node; const DomTreeNode *parentNode; }; } const DominanceFrontier::DomSetType & DominanceFrontier::calculate(const DominatorTree &DT, const DomTreeNode *Node) { BasicBlock *BB = Node->getBlock(); DomSetType *Result = NULL; std::vector workList; SmallPtrSet visited; workList.push_back(DFCalculateWorkObject(BB, NULL, Node, NULL)); do { DFCalculateWorkObject *currentW = &workList.back(); assert (currentW && "Missing work object."); BasicBlock *currentBB = currentW->currentBB; BasicBlock *parentBB = currentW->parentBB; const DomTreeNode *currentNode = currentW->Node; const DomTreeNode *parentNode = currentW->parentNode; assert (currentBB && "Invalid work object. Missing current Basic Block"); assert (currentNode && "Invalid work object. Missing current Node"); DomSetType &S = Frontiers[currentBB]; // Visit each block only once. if (visited.count(currentBB) == 0) { visited.insert(currentBB); // Loop over CFG successors to calculate DFlocal[currentNode] for (succ_iterator SI = succ_begin(currentBB), SE = succ_end(currentBB); SI != SE; ++SI) { // Does Node immediately dominate this successor? if (DT[*SI]->getIDom() != currentNode) S.insert(*SI); } } // At this point, S is DFlocal. Now we union in DFup's of our children... // Loop through and visit the nodes that Node immediately dominates (Node's // children in the IDomTree) bool visitChild = false; for (DomTreeNode::const_iterator NI = currentNode->begin(), NE = currentNode->end(); NI != NE; ++NI) { DomTreeNode *IDominee = *NI; BasicBlock *childBB = IDominee->getBlock(); if (visited.count(childBB) == 0) { workList.push_back(DFCalculateWorkObject(childBB, currentBB, IDominee, currentNode)); visitChild = true; } } // If all children are visited or there is any child then pop this block // from the workList. if (!visitChild) { if (!parentBB) { Result = &S; break; } DomSetType::const_iterator CDFI = S.begin(), CDFE = S.end(); DomSetType &parentSet = Frontiers[parentBB]; for (; CDFI != CDFE; ++CDFI) { if (!DT.properlyDominates(parentNode, DT[*CDFI])) parentSet.insert(*CDFI); } workList.pop_back(); } } while (!workList.empty()); return *Result; } void DominanceFrontierBase::print(std::ostream &o, const Module* ) const { for (const_iterator I = begin(), E = end(); I != E; ++I) { o << " DomFrontier for BB"; if (I->first) WriteAsOperand(o, I->first, false); else o << " <>"; o << " is:\t" << I->second << "\n"; } } void DominanceFrontierBase::dump() { print (llvm::cerr); }