//===-- llvm/Attributes.h - Container for Attributes ------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the simple types necessary to represent the // attributes associated with functions and their calls. // //===----------------------------------------------------------------------===// #ifndef LLVM_ATTRIBUTES_H #define LLVM_ATTRIBUTES_H #include "llvm/Support/MathExtras.h" #include "llvm/ADT/ArrayRef.h" #include #include namespace llvm { class LLVMContext; class Type; namespace Attribute { /// AttrConst - We use this proxy POD type to allow constructing Attributes /// constants using initializer lists. Do not use this class directly. struct AttrConst { uint64_t v; AttrConst operator | (const AttrConst Attrs) const { AttrConst Res = {v | Attrs.v}; return Res; } AttrConst operator ~ () const { AttrConst Res = {~v}; return Res; } }; /// Function parameters and results can have attributes to indicate how they /// should be treated by optimizations and code generation. This enumeration /// lists the attributes that can be associated with parameters, function /// results or the function itself. /// @brief Function attributes. /// We declare AttrConst objects that will be used throughout the code and also /// raw uint64_t objects with _i suffix to be used below for other constant /// declarations. This is done to avoid static CTORs and at the same time to /// keep type-safety of Attributes. #define DECLARE_LLVM_ATTRIBUTE(name, value) \ const uint64_t name##_i = value; \ const AttrConst name = {value}; DECLARE_LLVM_ATTRIBUTE(None,0) ///< No attributes have been set DECLARE_LLVM_ATTRIBUTE(ZExt,1<<0) ///< Zero extended before/after call DECLARE_LLVM_ATTRIBUTE(SExt,1<<1) ///< Sign extended before/after call DECLARE_LLVM_ATTRIBUTE(NoReturn,1<<2) ///< Mark the function as not returning DECLARE_LLVM_ATTRIBUTE(InReg,1<<3) ///< Force argument to be passed in register DECLARE_LLVM_ATTRIBUTE(StructRet,1<<4) ///< Hidden pointer to structure to return DECLARE_LLVM_ATTRIBUTE(NoUnwind,1<<5) ///< Function doesn't unwind stack DECLARE_LLVM_ATTRIBUTE(NoAlias,1<<6) ///< Considered to not alias after call DECLARE_LLVM_ATTRIBUTE(ByVal,1<<7) ///< Pass structure by value DECLARE_LLVM_ATTRIBUTE(Nest,1<<8) ///< Nested function static chain DECLARE_LLVM_ATTRIBUTE(ReadNone,1<<9) ///< Function does not access memory DECLARE_LLVM_ATTRIBUTE(ReadOnly,1<<10) ///< Function only reads from memory DECLARE_LLVM_ATTRIBUTE(NoInline,1<<11) ///< inline=never DECLARE_LLVM_ATTRIBUTE(AlwaysInline,1<<12) ///< inline=always DECLARE_LLVM_ATTRIBUTE(OptimizeForSize,1<<13) ///< opt_size DECLARE_LLVM_ATTRIBUTE(StackProtect,1<<14) ///< Stack protection. DECLARE_LLVM_ATTRIBUTE(StackProtectReq,1<<15) ///< Stack protection required. DECLARE_LLVM_ATTRIBUTE(Alignment,31<<16) ///< Alignment of parameter (5 bits) // stored as log2 of alignment with +1 bias // 0 means unaligned different from align 1 DECLARE_LLVM_ATTRIBUTE(NoCapture,1<<21) ///< Function creates no aliases of pointer DECLARE_LLVM_ATTRIBUTE(NoRedZone,1<<22) /// disable redzone DECLARE_LLVM_ATTRIBUTE(NoImplicitFloat,1<<23) /// disable implicit floating point /// instructions. DECLARE_LLVM_ATTRIBUTE(Naked,1<<24) ///< Naked function DECLARE_LLVM_ATTRIBUTE(InlineHint,1<<25) ///< source said inlining was ///desirable DECLARE_LLVM_ATTRIBUTE(StackAlignment,7<<26) ///< Alignment of stack for ///function (3 bits) stored as log2 ///of alignment with +1 bias ///0 means unaligned (different from ///alignstack= {1)) DECLARE_LLVM_ATTRIBUTE(ReturnsTwice,1<<29) ///< Function can return twice DECLARE_LLVM_ATTRIBUTE(UWTable,1<<30) ///< Function must be in a unwind ///table DECLARE_LLVM_ATTRIBUTE(NonLazyBind,1U<<31) ///< Function is called early and/or /// often, so lazy binding isn't /// worthwhile. DECLARE_LLVM_ATTRIBUTE(AddressSafety,1ULL<<32) ///< Address safety checking is on. #undef DECLARE_LLVM_ATTRIBUTE /// Note that uwtable is about the ABI or the user mandating an entry in the /// unwind table. The nounwind attribute is about an exception passing by the /// function. /// In a theoretical system that uses tables for profiling and sjlj for /// exceptions, they would be fully independent. In a normal system that /// uses tables for both, the semantics are: /// nil = Needs an entry because an exception might pass by. /// nounwind = No need for an entry /// uwtable = Needs an entry because the ABI says so and because /// an exception might pass by. /// uwtable + nounwind = Needs an entry because the ABI says so. /// @brief Attributes that only apply to function parameters. const AttrConst ParameterOnly = {ByVal_i | Nest_i | StructRet_i | NoCapture_i}; /// @brief Attributes that may be applied to the function itself. These cannot /// be used on return values or function parameters. const AttrConst FunctionOnly = {NoReturn_i | NoUnwind_i | ReadNone_i | ReadOnly_i | NoInline_i | AlwaysInline_i | OptimizeForSize_i | StackProtect_i | StackProtectReq_i | NoRedZone_i | NoImplicitFloat_i | Naked_i | InlineHint_i | StackAlignment_i | UWTable_i | NonLazyBind_i | ReturnsTwice_i | AddressSafety_i}; /// @brief Parameter attributes that do not apply to vararg call arguments. const AttrConst VarArgsIncompatible = {StructRet_i}; /// @brief Attributes that are mutually incompatible. const AttrConst MutuallyIncompatible[5] = { {ByVal_i | Nest_i | StructRet_i}, {ByVal_i | Nest_i | InReg_i }, {ZExt_i | SExt_i}, {ReadNone_i | ReadOnly_i}, {NoInline_i | AlwaysInline_i} }; } // namespace Attribute /// AttributeImpl - The internal representation of the Attributes class. This is /// uniquified. class AttributesImpl; /// Attributes - A bitset of attributes. class Attributes { // Currently, we need less than 64 bits. uint64_t Bits; explicit Attributes(AttributesImpl *A); public: Attributes() : Bits(0) {} explicit Attributes(uint64_t Val) : Bits(Val) {} /*implicit*/ Attributes(Attribute::AttrConst Val) : Bits(Val.v) {} class Builder { friend class Attributes; uint64_t Bits; public: Builder() : Bits(0) {} Builder(const Attributes &A) : Bits(A.Bits) {} void addAddressSafetyAttr(); void addAlwaysInlineAttr(); void addByValAttr(); void addInlineHintAttr(); void addInRegAttr(); void addNakedAttr(); void addNestAttr(); void addNoAliasAttr(); void addNoCaptureAttr(); void addNoImplicitFloatAttr(); void addNoInlineAttr(); void addNonLazyBindAttr(); void addNoRedZoneAttr(); void addNoReturnAttr(); void addNoUnwindAttr(); void addOptimizeForSizeAttr(); void addReadNoneAttr(); void addReadOnlyAttr(); void addReturnsTwiceAttr(); void addSExtAttr(); void addStackProtectAttr(); void addStackProtectReqAttr(); void addStructRetAttr(); void addUWTableAttr(); void addZExtAttr(); void addAlignmentAttr(unsigned Align); void addStackAlignmentAttr(unsigned Align); }; /// get - Return a uniquified Attributes object. This takes the uniquified /// value from the Builder and wraps it in the Attributes class. static Attributes get(LLVMContext &Context, Builder &B); // Attribute query methods. // FIXME: StackAlignment & Alignment attributes have no predicate methods. bool hasAttributes() const { return Bits != 0; } bool hasAttributes(const Attributes &A) const { return Bits & A.Bits; } bool hasAddressSafetyAttr() const; bool hasAlignmentAttr() const; bool hasAlwaysInlineAttr() const; bool hasByValAttr() const; bool hasInRegAttr() const; bool hasInlineHintAttr() const; bool hasNakedAttr() const; bool hasNestAttr() const; bool hasNoAliasAttr() const; bool hasNoCaptureAttr() const; bool hasNoImplicitFloatAttr() const; bool hasNoInlineAttr() const; bool hasNonLazyBindAttr() const; bool hasNoRedZoneAttr() const; bool hasNoReturnAttr() const; bool hasNoUnwindAttr() const; bool hasOptimizeForSizeAttr() const; bool hasReadNoneAttr() const; bool hasReadOnlyAttr() const; bool hasReturnsTwiceAttr() const; bool hasSExtAttr() const; bool hasStackAlignmentAttr() const; bool hasStackProtectAttr() const; bool hasStackProtectReqAttr() const; bool hasStructRetAttr() const; bool hasUWTableAttr() const; bool hasZExtAttr() const; /// This returns the alignment field of an attribute as a byte alignment /// value. unsigned getAlignment() const; /// This returns the stack alignment field of an attribute as a byte alignment /// value. unsigned getStackAlignment() const; // This is a "safe bool() operator". operator const void *() const { return Bits ? this : 0; } bool isEmptyOrSingleton() const { return (Bits & (Bits - 1)) == 0; } bool operator == (const Attributes &Attrs) const { return Bits == Attrs.Bits; } bool operator != (const Attributes &Attrs) const { return Bits != Attrs.Bits; } Attributes operator | (const Attributes &Attrs) const { return Attributes(Bits | Attrs.Bits); } Attributes operator & (const Attributes &Attrs) const { return Attributes(Bits & Attrs.Bits); } Attributes operator ^ (const Attributes &Attrs) const { return Attributes(Bits ^ Attrs.Bits); } Attributes &operator |= (const Attributes &Attrs) { Bits |= Attrs.Bits; return *this; } Attributes &operator &= (const Attributes &Attrs) { Bits &= Attrs.Bits; return *this; } Attributes operator ~ () const { return Attributes(~Bits); } uint64_t Raw() const { return Bits; } /// constructAlignmentFromInt - This turns an int alignment (a power of 2, /// normally) into the form used internally in Attributes. static Attributes constructAlignmentFromInt(unsigned i) { // Default alignment, allow the target to define how to align it. if (i == 0) return Attribute::None; assert(isPowerOf2_32(i) && "Alignment must be a power of two."); assert(i <= 0x40000000 && "Alignment too large."); return Attributes((Log2_32(i)+1) << 16); } /// constructStackAlignmentFromInt - This turns an int stack alignment (which /// must be a power of 2) into the form used internally in Attributes. static Attributes constructStackAlignmentFromInt(unsigned i) { // Default alignment, allow the target to define how to align it. if (i == 0) return Attribute::None; assert(isPowerOf2_32(i) && "Alignment must be a power of two."); assert(i <= 0x100 && "Alignment too large."); return Attributes((Log2_32(i)+1) << 26); } /// @brief Which attributes cannot be applied to a type. static Attributes typeIncompatible(Type *Ty); /// encodeLLVMAttributesForBitcode - This returns an integer containing an /// encoding of all the LLVM attributes found in the given attribute bitset. /// Any change to this encoding is a breaking change to bitcode compatibility. static uint64_t encodeLLVMAttributesForBitcode(Attributes Attrs) { // FIXME: It doesn't make sense to store the alignment information as an // expanded out value, we should store it as a log2 value. However, we // can't just change that here without breaking bitcode compatibility. If // this ever becomes a problem in practice, we should introduce new tag // numbers in the bitcode file and have those tags use a more efficiently // encoded alignment field. // Store the alignment in the bitcode as a 16-bit raw value instead of a // 5-bit log2 encoded value. Shift the bits above the alignment up by 11 // bits. uint64_t EncodedAttrs = Attrs.Bits & 0xffff; if (Attrs.hasAlignmentAttr()) EncodedAttrs |= (1ULL << 16) << (((Attrs.Bits & Attribute::Alignment_i) - 1) >> 16); EncodedAttrs |= (Attrs.Bits & (0xfffULL << 21)) << 11; return EncodedAttrs; } /// decodeLLVMAttributesForBitcode - This returns an attribute bitset /// containing the LLVM attributes that have been decoded from the given /// integer. This function must stay in sync with /// 'encodeLLVMAttributesForBitcode'. static Attributes decodeLLVMAttributesForBitcode(uint64_t EncodedAttrs) { // The alignment is stored as a 16-bit raw value from bits 31--16. We shift // the bits above 31 down by 11 bits. unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; assert((!Alignment || isPowerOf2_32(Alignment)) && "Alignment must be a power of two."); Attributes Attrs(EncodedAttrs & 0xffff); if (Alignment) Attrs |= Attributes::constructAlignmentFromInt(Alignment); Attrs |= Attributes((EncodedAttrs & (0xfffULL << 32)) >> 11); return Attrs; } /// getAsString - The set of Attributes set in Attributes is converted to a /// string of equivalent mnemonics. This is, presumably, for writing out the /// mnemonics for the assembly writer. /// @brief Convert attribute bits to text std::string getAsString() const; }; //===----------------------------------------------------------------------===// // AttributeWithIndex //===----------------------------------------------------------------------===// /// AttributeWithIndex - This is just a pair of values to associate a set of /// attributes with an index. struct AttributeWithIndex { Attributes Attrs; ///< The attributes that are set, or'd together. unsigned Index; ///< Index of the parameter for which the attributes apply. ///< Index 0 is used for return value attributes. ///< Index ~0U is used for function attributes. static AttributeWithIndex get(unsigned Idx, Attributes Attrs) { AttributeWithIndex P; P.Index = Idx; P.Attrs = Attrs; return P; } }; //===----------------------------------------------------------------------===// // AttrListPtr Smart Pointer //===----------------------------------------------------------------------===// class AttributeListImpl; /// AttrListPtr - This class manages the ref count for the opaque /// AttributeListImpl object and provides accessors for it. class AttrListPtr { /// AttrList - The attributes that we are managing. This can be null /// to represent the empty attributes list. AttributeListImpl *AttrList; public: AttrListPtr() : AttrList(0) {} AttrListPtr(const AttrListPtr &P); const AttrListPtr &operator=(const AttrListPtr &RHS); ~AttrListPtr(); //===--------------------------------------------------------------------===// // Attribute List Construction and Mutation //===--------------------------------------------------------------------===// /// get - Return a Attributes list with the specified parameters in it. static AttrListPtr get(ArrayRef Attrs); /// addAttr - Add the specified attribute at the specified index to this /// attribute list. Since attribute lists are immutable, this /// returns the new list. AttrListPtr addAttr(unsigned Idx, Attributes Attrs) const; /// removeAttr - Remove the specified attribute at the specified index from /// this attribute list. Since attribute lists are immutable, this /// returns the new list. AttrListPtr removeAttr(unsigned Idx, Attributes Attrs) const; //===--------------------------------------------------------------------===// // Attribute List Accessors //===--------------------------------------------------------------------===// /// getParamAttributes - The attributes for the specified index are /// returned. Attributes getParamAttributes(unsigned Idx) const { return getAttributes(Idx); } /// getRetAttributes - The attributes for the ret value are /// returned. Attributes getRetAttributes() const { return getAttributes(0); } /// getFnAttributes - The function attributes are returned. Attributes getFnAttributes() const { return getAttributes(~0U); } /// paramHasAttr - Return true if the specified parameter index has the /// specified attribute set. bool paramHasAttr(unsigned Idx, Attributes Attr) const { return getAttributes(Idx).hasAttributes(Attr); } /// getParamAlignment - Return the alignment for the specified function /// parameter. unsigned getParamAlignment(unsigned Idx) const { return getAttributes(Idx).getAlignment(); } /// hasAttrSomewhere - Return true if the specified attribute is set for at /// least one parameter or for the return value. bool hasAttrSomewhere(Attributes Attr) const; /// operator==/!= - Provide equality predicates. bool operator==(const AttrListPtr &RHS) const { return AttrList == RHS.AttrList; } bool operator!=(const AttrListPtr &RHS) const { return AttrList != RHS.AttrList; } void dump() const; //===--------------------------------------------------------------------===// // Attribute List Introspection //===--------------------------------------------------------------------===// /// getRawPointer - Return a raw pointer that uniquely identifies this /// attribute list. void *getRawPointer() const { return AttrList; } // Attributes are stored as a dense set of slots, where there is one // slot for each argument that has an attribute. This allows walking over the // dense set instead of walking the sparse list of attributes. /// isEmpty - Return true if there are no attributes. /// bool isEmpty() const { return AttrList == 0; } /// getNumSlots - Return the number of slots used in this attribute list. /// This is the number of arguments that have an attribute set on them /// (including the function itself). unsigned getNumSlots() const; /// getSlot - Return the AttributeWithIndex at the specified slot. This /// holds a index number plus a set of attributes. const AttributeWithIndex &getSlot(unsigned Slot) const; private: explicit AttrListPtr(AttributeListImpl *L); /// getAttributes - The attributes for the specified index are /// returned. Attributes for the result are denoted with Idx = 0. Attributes getAttributes(unsigned Idx) const; }; } // End llvm namespace #endif