//===- ExecutionDriver.cpp - Allow execution of LLVM program --------------===// // // This file contains code used to execute the program utilizing one of the // various ways of running LLVM bytecode. // //===----------------------------------------------------------------------===// /* BUGPOINT NOTES: 1. Bugpoint should not leave any files behind if the program works properly 2. There should be an option to specify the program name, which specifies a unique string to put into output files. This allows operation in the SingleSource directory f.e. Default to the first input filename. */ #include "BugDriver.h" #include "SystemUtils.h" #include "Support/CommandLine.h" #include #include namespace { // OutputType - Allow the user to specify the way code should be run, to test // for miscompilation. // enum OutputType { RunLLI, RunJIT, RunLLC, RunCBE }; cl::opt InterpreterSel(cl::desc("Specify how LLVM code should be executed:"), cl::values(clEnumValN(RunLLI, "run-lli", "Execute with LLI"), clEnumValN(RunJIT, "run-jit", "Execute with JIT"), clEnumValN(RunLLC, "run-llc", "Compile with LLC"), clEnumValN(RunCBE, "run-cbe", "Compile with CBE"), 0)); cl::opt InputFile("input", cl::init("/dev/null"), cl::desc("Filename to pipe in as stdin (default: /dev/null)")); } /// AbstractInterpreter Class - Subclasses of this class are used to execute /// LLVM bytecode in a variety of ways. This abstract interface hides this /// complexity behind a simple interface. /// struct AbstractInterpreter { virtual ~AbstractInterpreter() {} /// ExecuteProgram - Run the specified bytecode file, emitting output to the /// specified filename. This returns the exit code of the program. /// virtual int ExecuteProgram(const std::string &Bytecode, const std::string &OutputFile) = 0; }; //===----------------------------------------------------------------------===// // LLI Implementation of AbstractIntepreter interface // class LLI : public AbstractInterpreter { std::string LLIPath; // The path to the LLI executable public: LLI(const std::string &Path) : LLIPath(Path) { } // LLI create method - Try to find the LLI executable static LLI *create(BugDriver *BD, std::string &Message) { std::string LLIPath = FindExecutable("lli", BD->getToolName()); if (!LLIPath.empty()) { Message = "Found lli: " + LLIPath + "\n"; return new LLI(LLIPath); } Message = "Cannot find 'lli' in bugpoint executable directory or PATH!\n"; return 0; } virtual int ExecuteProgram(const std::string &Bytecode, const std::string &OutputFile); }; int LLI::ExecuteProgram(const std::string &Bytecode, const std::string &OutputFile) { const char *Args[] = { "lli", "-abort-on-exception", "-quiet", "-force-interpreter=true", Bytecode.c_str(), 0 }; return RunProgramWithTimeout(LLIPath, Args, InputFile, OutputFile, OutputFile); } //===----------------------------------------------------------------------===// // JIT Implementation of AbstractIntepreter interface // class JIT : public AbstractInterpreter { std::string LLIPath; // The path to the LLI executable public: JIT(const std::string &Path) : LLIPath(Path) { } // JIT create method - Try to find the LLI executable static JIT *create(BugDriver *BD, std::string &Message) { std::string LLIPath = FindExecutable("lli", BD->getToolName()); if (!LLIPath.empty()) { Message = "Found lli: " + LLIPath + "\n"; return new JIT(LLIPath); } Message = "Cannot find 'lli' in bugpoint executable directory or PATH!\n"; return 0; } virtual int ExecuteProgram(const std::string &Bytecode, const std::string &OutputFile); }; int JIT::ExecuteProgram(const std::string &Bytecode, const std::string &OutputFile) { const char *Args[] = { "-lli", "-quiet", "-force-interpreter=false", Bytecode.c_str(), 0 }; return RunProgramWithTimeout(LLIPath, Args, InputFile, OutputFile, OutputFile); } //===----------------------------------------------------------------------===// // CBE Implementation of AbstractIntepreter interface // class CBE : public AbstractInterpreter { std::string DISPath; // The path to the LLVM 'dis' executable std::string GCCPath; // The path to the gcc executable public: CBE(const std::string &disPath, const std::string &gccPath) : DISPath(disPath), GCCPath(gccPath) { } // CBE create method - Try to find the 'dis' executable static CBE *create(BugDriver *BD, std::string &Message) { std::string DISPath = FindExecutable("dis", BD->getToolName()); if (DISPath.empty()) { Message = "Cannot find 'dis' in bugpoint executable directory or PATH!\n"; return 0; } Message = "Found dis: " + DISPath + "\n"; std::string GCCPath = FindExecutable("gcc", BD->getToolName()); if (GCCPath.empty()) { Message = "Cannot find 'gcc' in bugpoint executable directory or PATH!\n"; return 0; } Message += "Found gcc: " + GCCPath + "\n"; return new CBE(DISPath, GCCPath); } virtual int ExecuteProgram(const std::string &Bytecode, const std::string &OutputFile); }; int CBE::ExecuteProgram(const std::string &Bytecode, const std::string &OutputFile) { std::string OutputCFile = getUniqueFilename("bugpoint.cbe.c"); const char *DisArgs[] = { DISPath.c_str(), "-o", OutputCFile.c_str(), // Output to the C file "-c", // Output to C "-f", // Overwrite as necessary... Bytecode.c_str(), // This is the input bytecode 0 }; std::cout << ""; if (RunProgramWithTimeout(DISPath, DisArgs, "/dev/null", "/dev/null", "/dev/null")) { // If dis failed on the bytecode, print error... std::cerr << "bugpoint error: dis -c failed!?\n"; removeFile(OutputCFile); return 1; } // Assuming the c backend worked, compile the result with GCC... std::string OutputBinary = getUniqueFilename("bugpoint.cbe.exe"); const char *GCCArgs[] = { GCCPath.c_str(), "-x", "c", // Force recognition as a C file "-o", OutputBinary.c_str(), // Output to the right filename... OutputCFile.c_str(), // Specify the input filename... "-O2", // Optimize the program a bit... 0 }; // FIXME: Eventually the CC program and arguments for it should be settable on // the bugpoint command line! std::cout << ""; // Run the C compiler on the output of the C backend... if (RunProgramWithTimeout(GCCPath, GCCArgs, "/dev/null", "/dev/null", "/dev/null")) { std::cerr << "\n*** bugpoint error: invocation of the C compiler " "failed on CBE result!\n"; for (const char **Arg = DisArgs; *Arg; ++Arg) std::cerr << " " << *Arg; std::cerr << "\n"; for (const char **Arg = GCCArgs; *Arg; ++Arg) std::cerr << " " << *Arg; std::cerr << "\n"; // Rerun the compiler, capturing any error messages to print them. std::string ErrorFilename = getUniqueFilename("bugpoint.cbe.errors"); RunProgramWithTimeout(GCCPath, GCCArgs, "/dev/null", ErrorFilename.c_str(), ErrorFilename.c_str()); // Print out the error messages generated by GCC if possible... std::ifstream ErrorFile(ErrorFilename.c_str()); if (ErrorFile) { std::copy(std::istreambuf_iterator(ErrorFile), std::istreambuf_iterator(), std::ostreambuf_iterator(std::cerr)); ErrorFile.close(); std::cerr << "\n"; } removeFile(ErrorFilename); exit(1); // Leave stuff around for the user to inspect or debug the CBE } const char *ProgramArgs[] = { OutputBinary.c_str(), 0 }; std::cout << ""; // Now that we have a binary, run it! int Result = RunProgramWithTimeout(OutputBinary, ProgramArgs, InputFile, OutputFile, OutputFile); std::cout << " "; removeFile(OutputCFile); removeFile(OutputBinary); return Result; } //===----------------------------------------------------------------------===// // BugDriver method implementation // /// initializeExecutionEnvironment - This method is used to set up the /// environment for executing LLVM programs. /// bool BugDriver::initializeExecutionEnvironment() { std::cout << "Initializing execution environment: "; // FIXME: This should default to searching for the best interpreter to use on // this platform, which would be JIT, then LLC, then CBE, then LLI. // Create an instance of the AbstractInterpreter interface as specified on the // command line std::string Message; switch (InterpreterSel) { case RunLLI: Interpreter = LLI::create(this, Message); break; case RunJIT: Interpreter = JIT::create(this, Message); break; case RunCBE: Interpreter = CBE::create(this, Message); break; default: Message = " Sorry, this back-end is not supported by bugpoint right now!\n"; break; } std::cout << Message; // If there was an error creating the selected interpreter, quit with error. return Interpreter == 0; } /// executeProgram - This method runs "Program", capturing the output of the /// program to a file, returning the filename of the file. A recommended /// filename may be optionally specified. /// std::string BugDriver::executeProgram(std::string OutputFile, std::string BytecodeFile) { assert(Interpreter && "Interpreter should have been created already!"); bool CreatedBytecode = false; if (BytecodeFile.empty()) { // Emit the program to a bytecode file... BytecodeFile = getUniqueFilename("bugpoint-test-program.bc"); if (writeProgramToFile(BytecodeFile, Program)) { std::cerr << ToolName << ": Error emitting bytecode to file '" << BytecodeFile << "'!\n"; exit(1); } CreatedBytecode = true; } if (OutputFile.empty()) OutputFile = "bugpoint-execution-output"; // Check to see if this is a valid output filename... OutputFile = getUniqueFilename(OutputFile); // Actually execute the program! int RetVal = Interpreter->ExecuteProgram(BytecodeFile, OutputFile); // Remove the temporary bytecode file. if (CreatedBytecode) removeFile(BytecodeFile); // Return the filename we captured the output to. return OutputFile; } /// diffProgram - This method executes the specified module and diffs the output /// against the file specified by ReferenceOutputFile. If the output is /// different, true is returned. /// bool BugDriver::diffProgram(const std::string &ReferenceOutputFile, const std::string &BytecodeFile, bool RemoveBytecode) { // Execute the program, generating an output file... std::string Output = executeProgram("", BytecodeFile); std::ifstream ReferenceFile(ReferenceOutputFile.c_str()); if (!ReferenceFile) { std::cerr << "Couldn't open reference output file '" << ReferenceOutputFile << "'\n"; exit(1); } std::ifstream OutputFile(Output.c_str()); if (!OutputFile) { std::cerr << "Couldn't open output file: " << Output << "'!\n"; exit(1); } bool FilesDifferent = false; // Compare the two files... int C1, C2; do { C1 = ReferenceFile.get(); C2 = OutputFile.get(); if (C1 != C2) { FilesDifferent = true; break; } } while (C1 != EOF); removeFile(Output); if (RemoveBytecode) removeFile(BytecodeFile); return FilesDifferent; }