//===-- DAGCombiner.cpp - Implement a DAG node combiner -------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass combines dag nodes to form fewer, simpler DAG nodes. It can be run // both before and after the DAG is legalized. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "dagcombine" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Target/TargetData.h" #include "llvm/Target/TargetFrameInfo.h" #include "llvm/Target/TargetLowering.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOptions.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/Statistic.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/MathExtras.h" #include #include using namespace llvm; STATISTIC(NodesCombined , "Number of dag nodes combined"); STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created"); STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created"); namespace { #ifndef NDEBUG static cl::opt ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden, cl::desc("Pop up a window to show dags before the first " "dag combine pass")); static cl::opt ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden, cl::desc("Pop up a window to show dags before the second " "dag combine pass")); #else static const bool ViewDAGCombine1 = false; static const bool ViewDAGCombine2 = false; #endif static cl::opt CombinerAA("combiner-alias-analysis", cl::Hidden, cl::desc("Turn on alias analysis during testing")); static cl::opt CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden, cl::desc("Include global information in alias analysis")); //------------------------------ DAGCombiner ---------------------------------// class VISIBILITY_HIDDEN DAGCombiner { SelectionDAG &DAG; TargetLowering &TLI; bool AfterLegalize; // Worklist of all of the nodes that need to be simplified. std::vector WorkList; // AA - Used for DAG load/store alias analysis. AliasAnalysis &AA; /// AddUsersToWorkList - When an instruction is simplified, add all users of /// the instruction to the work lists because they might get more simplified /// now. /// void AddUsersToWorkList(SDNode *N) { for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); UI != UE; ++UI) AddToWorkList(UI->getUser()); } /// visit - call the node-specific routine that knows how to fold each /// particular type of node. SDOperand visit(SDNode *N); public: /// AddToWorkList - Add to the work list making sure it's instance is at the /// the back (next to be processed.) void AddToWorkList(SDNode *N) { removeFromWorkList(N); WorkList.push_back(N); } /// removeFromWorkList - remove all instances of N from the worklist. /// void removeFromWorkList(SDNode *N) { WorkList.erase(std::remove(WorkList.begin(), WorkList.end(), N), WorkList.end()); } SDOperand CombineTo(SDNode *N, const SDOperand *To, unsigned NumTo, bool AddTo = true); SDOperand CombineTo(SDNode *N, SDOperand Res, bool AddTo = true) { return CombineTo(N, &Res, 1, AddTo); } SDOperand CombineTo(SDNode *N, SDOperand Res0, SDOperand Res1, bool AddTo = true) { SDOperand To[] = { Res0, Res1 }; return CombineTo(N, To, 2, AddTo); } private: /// SimplifyDemandedBits - Check the specified integer node value to see if /// it can be simplified or if things it uses can be simplified by bit /// propagation. If so, return true. bool SimplifyDemandedBits(SDOperand Op) { APInt Demanded = APInt::getAllOnesValue(Op.getValueSizeInBits()); return SimplifyDemandedBits(Op, Demanded); } bool SimplifyDemandedBits(SDOperand Op, const APInt &Demanded); bool CombineToPreIndexedLoadStore(SDNode *N); bool CombineToPostIndexedLoadStore(SDNode *N); /// combine - call the node-specific routine that knows how to fold each /// particular type of node. If that doesn't do anything, try the /// target-specific DAG combines. SDOperand combine(SDNode *N); // Visitation implementation - Implement dag node combining for different // node types. The semantics are as follows: // Return Value: // SDOperand.Val == 0 - No change was made // SDOperand.Val == N - N was replaced, is dead, and is already handled. // otherwise - N should be replaced by the returned Operand. // SDOperand visitTokenFactor(SDNode *N); SDOperand visitMERGE_VALUES(SDNode *N); SDOperand visitADD(SDNode *N); SDOperand visitSUB(SDNode *N); SDOperand visitADDC(SDNode *N); SDOperand visitADDE(SDNode *N); SDOperand visitMUL(SDNode *N); SDOperand visitSDIV(SDNode *N); SDOperand visitUDIV(SDNode *N); SDOperand visitSREM(SDNode *N); SDOperand visitUREM(SDNode *N); SDOperand visitMULHU(SDNode *N); SDOperand visitMULHS(SDNode *N); SDOperand visitSMUL_LOHI(SDNode *N); SDOperand visitUMUL_LOHI(SDNode *N); SDOperand visitSDIVREM(SDNode *N); SDOperand visitUDIVREM(SDNode *N); SDOperand visitAND(SDNode *N); SDOperand visitOR(SDNode *N); SDOperand visitXOR(SDNode *N); SDOperand SimplifyVBinOp(SDNode *N); SDOperand visitSHL(SDNode *N); SDOperand visitSRA(SDNode *N); SDOperand visitSRL(SDNode *N); SDOperand visitCTLZ(SDNode *N); SDOperand visitCTTZ(SDNode *N); SDOperand visitCTPOP(SDNode *N); SDOperand visitSELECT(SDNode *N); SDOperand visitSELECT_CC(SDNode *N); SDOperand visitSETCC(SDNode *N); SDOperand visitSIGN_EXTEND(SDNode *N); SDOperand visitZERO_EXTEND(SDNode *N); SDOperand visitANY_EXTEND(SDNode *N); SDOperand visitSIGN_EXTEND_INREG(SDNode *N); SDOperand visitTRUNCATE(SDNode *N); SDOperand visitBIT_CONVERT(SDNode *N); SDOperand visitBUILD_PAIR(SDNode *N); SDOperand visitFADD(SDNode *N); SDOperand visitFSUB(SDNode *N); SDOperand visitFMUL(SDNode *N); SDOperand visitFDIV(SDNode *N); SDOperand visitFREM(SDNode *N); SDOperand visitFCOPYSIGN(SDNode *N); SDOperand visitSINT_TO_FP(SDNode *N); SDOperand visitUINT_TO_FP(SDNode *N); SDOperand visitFP_TO_SINT(SDNode *N); SDOperand visitFP_TO_UINT(SDNode *N); SDOperand visitFP_ROUND(SDNode *N); SDOperand visitFP_ROUND_INREG(SDNode *N); SDOperand visitFP_EXTEND(SDNode *N); SDOperand visitFNEG(SDNode *N); SDOperand visitFABS(SDNode *N); SDOperand visitBRCOND(SDNode *N); SDOperand visitBR_CC(SDNode *N); SDOperand visitLOAD(SDNode *N); SDOperand visitSTORE(SDNode *N); SDOperand visitINSERT_VECTOR_ELT(SDNode *N); SDOperand visitEXTRACT_VECTOR_ELT(SDNode *N); SDOperand visitBUILD_VECTOR(SDNode *N); SDOperand visitCONCAT_VECTORS(SDNode *N); SDOperand visitVECTOR_SHUFFLE(SDNode *N); SDOperand XformToShuffleWithZero(SDNode *N); SDOperand ReassociateOps(unsigned Opc, SDOperand LHS, SDOperand RHS); SDOperand visitShiftByConstant(SDNode *N, unsigned Amt); bool SimplifySelectOps(SDNode *SELECT, SDOperand LHS, SDOperand RHS); SDOperand SimplifyBinOpWithSameOpcodeHands(SDNode *N); SDOperand SimplifySelect(SDOperand N0, SDOperand N1, SDOperand N2); SDOperand SimplifySelectCC(SDOperand N0, SDOperand N1, SDOperand N2, SDOperand N3, ISD::CondCode CC, bool NotExtCompare = false); SDOperand SimplifySetCC(MVT VT, SDOperand N0, SDOperand N1, ISD::CondCode Cond, bool foldBooleans = true); SDOperand SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp, unsigned HiOp); SDOperand CombineConsecutiveLoads(SDNode *N, MVT VT); SDOperand ConstantFoldBIT_CONVERTofBUILD_VECTOR(SDNode *, MVT); SDOperand BuildSDIV(SDNode *N); SDOperand BuildUDIV(SDNode *N); SDNode *MatchRotate(SDOperand LHS, SDOperand RHS); SDOperand ReduceLoadWidth(SDNode *N); SDOperand GetDemandedBits(SDOperand V, const APInt &Mask); /// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes, /// looking for aliasing nodes and adding them to the Aliases vector. void GatherAllAliases(SDNode *N, SDOperand OriginalChain, SmallVector &Aliases); /// isAlias - Return true if there is any possibility that the two addresses /// overlap. bool isAlias(SDOperand Ptr1, int64_t Size1, const Value *SrcValue1, int SrcValueOffset1, SDOperand Ptr2, int64_t Size2, const Value *SrcValue2, int SrcValueOffset2); /// FindAliasInfo - Extracts the relevant alias information from the memory /// node. Returns true if the operand was a load. bool FindAliasInfo(SDNode *N, SDOperand &Ptr, int64_t &Size, const Value *&SrcValue, int &SrcValueOffset); /// FindBetterChain - Walk up chain skipping non-aliasing memory nodes, /// looking for a better chain (aliasing node.) SDOperand FindBetterChain(SDNode *N, SDOperand Chain); public: DAGCombiner(SelectionDAG &D, AliasAnalysis &A) : DAG(D), TLI(D.getTargetLoweringInfo()), AfterLegalize(false), AA(A) {} /// Run - runs the dag combiner on all nodes in the work list void Run(bool RunningAfterLegalize); }; } namespace { /// WorkListRemover - This class is a DAGUpdateListener that removes any deleted /// nodes from the worklist. class VISIBILITY_HIDDEN WorkListRemover : public SelectionDAG::DAGUpdateListener { DAGCombiner &DC; public: explicit WorkListRemover(DAGCombiner &dc) : DC(dc) {} virtual void NodeDeleted(SDNode *N, SDNode *E) { DC.removeFromWorkList(N); } virtual void NodeUpdated(SDNode *N) { // Ignore updates. } }; } //===----------------------------------------------------------------------===// // TargetLowering::DAGCombinerInfo implementation //===----------------------------------------------------------------------===// void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) { ((DAGCombiner*)DC)->AddToWorkList(N); } SDOperand TargetLowering::DAGCombinerInfo:: CombineTo(SDNode *N, const std::vector &To) { return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size()); } SDOperand TargetLowering::DAGCombinerInfo:: CombineTo(SDNode *N, SDOperand Res) { return ((DAGCombiner*)DC)->CombineTo(N, Res); } SDOperand TargetLowering::DAGCombinerInfo:: CombineTo(SDNode *N, SDOperand Res0, SDOperand Res1) { return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1); } //===----------------------------------------------------------------------===// // Helper Functions //===----------------------------------------------------------------------===// /// isNegatibleForFree - Return 1 if we can compute the negated form of the /// specified expression for the same cost as the expression itself, or 2 if we /// can compute the negated form more cheaply than the expression itself. static char isNegatibleForFree(SDOperand Op, bool AfterLegalize, unsigned Depth = 0) { // No compile time optimizations on this type. if (Op.getValueType() == MVT::ppcf128) return 0; // fneg is removable even if it has multiple uses. if (Op.getOpcode() == ISD::FNEG) return 2; // Don't allow anything with multiple uses. if (!Op.hasOneUse()) return 0; // Don't recurse exponentially. if (Depth > 6) return 0; switch (Op.getOpcode()) { default: return false; case ISD::ConstantFP: // Don't invert constant FP values after legalize. The negated constant // isn't necessarily legal. return AfterLegalize ? 0 : 1; case ISD::FADD: // FIXME: determine better conditions for this xform. if (!UnsafeFPMath) return 0; // -(A+B) -> -A - B if (char V = isNegatibleForFree(Op.getOperand(0), AfterLegalize, Depth+1)) return V; // -(A+B) -> -B - A return isNegatibleForFree(Op.getOperand(1), AfterLegalize, Depth+1); case ISD::FSUB: // We can't turn -(A-B) into B-A when we honor signed zeros. if (!UnsafeFPMath) return 0; // -(A-B) -> B-A return 1; case ISD::FMUL: case ISD::FDIV: if (HonorSignDependentRoundingFPMath()) return 0; // -(X*Y) -> (-X * Y) or (X*-Y) if (char V = isNegatibleForFree(Op.getOperand(0), AfterLegalize, Depth+1)) return V; return isNegatibleForFree(Op.getOperand(1), AfterLegalize, Depth+1); case ISD::FP_EXTEND: case ISD::FP_ROUND: case ISD::FSIN: return isNegatibleForFree(Op.getOperand(0), AfterLegalize, Depth+1); } } /// GetNegatedExpression - If isNegatibleForFree returns true, this function /// returns the newly negated expression. static SDOperand GetNegatedExpression(SDOperand Op, SelectionDAG &DAG, bool AfterLegalize, unsigned Depth = 0) { // fneg is removable even if it has multiple uses. if (Op.getOpcode() == ISD::FNEG) return Op.getOperand(0); // Don't allow anything with multiple uses. assert(Op.hasOneUse() && "Unknown reuse!"); assert(Depth <= 6 && "GetNegatedExpression doesn't match isNegatibleForFree"); switch (Op.getOpcode()) { default: assert(0 && "Unknown code"); case ISD::ConstantFP: { APFloat V = cast(Op)->getValueAPF(); V.changeSign(); return DAG.getConstantFP(V, Op.getValueType()); } case ISD::FADD: // FIXME: determine better conditions for this xform. assert(UnsafeFPMath); // -(A+B) -> -A - B if (isNegatibleForFree(Op.getOperand(0), AfterLegalize, Depth+1)) return DAG.getNode(ISD::FSUB, Op.getValueType(), GetNegatedExpression(Op.getOperand(0), DAG, AfterLegalize, Depth+1), Op.getOperand(1)); // -(A+B) -> -B - A return DAG.getNode(ISD::FSUB, Op.getValueType(), GetNegatedExpression(Op.getOperand(1), DAG, AfterLegalize, Depth+1), Op.getOperand(0)); case ISD::FSUB: // We can't turn -(A-B) into B-A when we honor signed zeros. assert(UnsafeFPMath); // -(0-B) -> B if (ConstantFPSDNode *N0CFP = dyn_cast(Op.getOperand(0))) if (N0CFP->getValueAPF().isZero()) return Op.getOperand(1); // -(A-B) -> B-A return DAG.getNode(ISD::FSUB, Op.getValueType(), Op.getOperand(1), Op.getOperand(0)); case ISD::FMUL: case ISD::FDIV: assert(!HonorSignDependentRoundingFPMath()); // -(X*Y) -> -X * Y if (isNegatibleForFree(Op.getOperand(0), AfterLegalize, Depth+1)) return DAG.getNode(Op.getOpcode(), Op.getValueType(), GetNegatedExpression(Op.getOperand(0), DAG, AfterLegalize, Depth+1), Op.getOperand(1)); // -(X*Y) -> X * -Y return DAG.getNode(Op.getOpcode(), Op.getValueType(), Op.getOperand(0), GetNegatedExpression(Op.getOperand(1), DAG, AfterLegalize, Depth+1)); case ISD::FP_EXTEND: case ISD::FSIN: return DAG.getNode(Op.getOpcode(), Op.getValueType(), GetNegatedExpression(Op.getOperand(0), DAG, AfterLegalize, Depth+1)); case ISD::FP_ROUND: return DAG.getNode(ISD::FP_ROUND, Op.getValueType(), GetNegatedExpression(Op.getOperand(0), DAG, AfterLegalize, Depth+1), Op.getOperand(1)); } } // isSetCCEquivalent - Return true if this node is a setcc, or is a select_cc // that selects between the values 1 and 0, making it equivalent to a setcc. // Also, set the incoming LHS, RHS, and CC references to the appropriate // nodes based on the type of node we are checking. This simplifies life a // bit for the callers. static bool isSetCCEquivalent(SDOperand N, SDOperand &LHS, SDOperand &RHS, SDOperand &CC) { if (N.getOpcode() == ISD::SETCC) { LHS = N.getOperand(0); RHS = N.getOperand(1); CC = N.getOperand(2); return true; } if (N.getOpcode() == ISD::SELECT_CC && N.getOperand(2).getOpcode() == ISD::Constant && N.getOperand(3).getOpcode() == ISD::Constant && cast(N.getOperand(2))->getAPIntValue() == 1 && cast(N.getOperand(3))->isNullValue()) { LHS = N.getOperand(0); RHS = N.getOperand(1); CC = N.getOperand(4); return true; } return false; } // isOneUseSetCC - Return true if this is a SetCC-equivalent operation with only // one use. If this is true, it allows the users to invert the operation for // free when it is profitable to do so. static bool isOneUseSetCC(SDOperand N) { SDOperand N0, N1, N2; if (isSetCCEquivalent(N, N0, N1, N2) && N.Val->hasOneUse()) return true; return false; } SDOperand DAGCombiner::ReassociateOps(unsigned Opc, SDOperand N0, SDOperand N1){ MVT VT = N0.getValueType(); // reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one use // reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2)) if (N0.getOpcode() == Opc && isa(N0.getOperand(1))) { if (isa(N1)) { SDOperand OpNode = DAG.getNode(Opc, VT, N0.getOperand(1), N1); AddToWorkList(OpNode.Val); return DAG.getNode(Opc, VT, OpNode, N0.getOperand(0)); } else if (N0.hasOneUse()) { SDOperand OpNode = DAG.getNode(Opc, VT, N0.getOperand(0), N1); AddToWorkList(OpNode.Val); return DAG.getNode(Opc, VT, OpNode, N0.getOperand(1)); } } // reassoc. (op y, (op x, c1)) -> (op (op x, y), c1) iff x+c1 has one use // reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2)) if (N1.getOpcode() == Opc && isa(N1.getOperand(1))) { if (isa(N0)) { SDOperand OpNode = DAG.getNode(Opc, VT, N1.getOperand(1), N0); AddToWorkList(OpNode.Val); return DAG.getNode(Opc, VT, OpNode, N1.getOperand(0)); } else if (N1.hasOneUse()) { SDOperand OpNode = DAG.getNode(Opc, VT, N1.getOperand(0), N0); AddToWorkList(OpNode.Val); return DAG.getNode(Opc, VT, OpNode, N1.getOperand(1)); } } return SDOperand(); } SDOperand DAGCombiner::CombineTo(SDNode *N, const SDOperand *To, unsigned NumTo, bool AddTo) { assert(N->getNumValues() == NumTo && "Broken CombineTo call!"); ++NodesCombined; DOUT << "\nReplacing.1 "; DEBUG(N->dump(&DAG)); DOUT << "\nWith: "; DEBUG(To[0].Val->dump(&DAG)); DOUT << " and " << NumTo-1 << " other values\n"; WorkListRemover DeadNodes(*this); DAG.ReplaceAllUsesWith(N, To, &DeadNodes); if (AddTo) { // Push the new nodes and any users onto the worklist for (unsigned i = 0, e = NumTo; i != e; ++i) { AddToWorkList(To[i].Val); AddUsersToWorkList(To[i].Val); } } // Nodes can be reintroduced into the worklist. Make sure we do not // process a node that has been replaced. removeFromWorkList(N); // Finally, since the node is now dead, remove it from the graph. DAG.DeleteNode(N); return SDOperand(N, 0); } /// SimplifyDemandedBits - Check the specified integer node value to see if /// it can be simplified or if things it uses can be simplified by bit /// propagation. If so, return true. bool DAGCombiner::SimplifyDemandedBits(SDOperand Op, const APInt &Demanded) { TargetLowering::TargetLoweringOpt TLO(DAG, AfterLegalize); APInt KnownZero, KnownOne; if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO)) return false; // Revisit the node. AddToWorkList(Op.Val); // Replace the old value with the new one. ++NodesCombined; DOUT << "\nReplacing.2 "; DEBUG(TLO.Old.Val->dump(&DAG)); DOUT << "\nWith: "; DEBUG(TLO.New.Val->dump(&DAG)); DOUT << '\n'; // Replace all uses. If any nodes become isomorphic to other nodes and // are deleted, make sure to remove them from our worklist. WorkListRemover DeadNodes(*this); DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New, &DeadNodes); // Push the new node and any (possibly new) users onto the worklist. AddToWorkList(TLO.New.Val); AddUsersToWorkList(TLO.New.Val); // Finally, if the node is now dead, remove it from the graph. The node // may not be dead if the replacement process recursively simplified to // something else needing this node. if (TLO.Old.Val->use_empty()) { removeFromWorkList(TLO.Old.Val); // If the operands of this node are only used by the node, they will now // be dead. Make sure to visit them first to delete dead nodes early. for (unsigned i = 0, e = TLO.Old.Val->getNumOperands(); i != e; ++i) if (TLO.Old.Val->getOperand(i).Val->hasOneUse()) AddToWorkList(TLO.Old.Val->getOperand(i).Val); DAG.DeleteNode(TLO.Old.Val); } return true; } //===----------------------------------------------------------------------===// // Main DAG Combiner implementation //===----------------------------------------------------------------------===// void DAGCombiner::Run(bool RunningAfterLegalize) { // set the instance variable, so that the various visit routines may use it. AfterLegalize = RunningAfterLegalize; // Add all the dag nodes to the worklist. WorkList.reserve(DAG.allnodes_size()); for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), E = DAG.allnodes_end(); I != E; ++I) WorkList.push_back(I); // Create a dummy node (which is not added to allnodes), that adds a reference // to the root node, preventing it from being deleted, and tracking any // changes of the root. HandleSDNode Dummy(DAG.getRoot()); // The root of the dag may dangle to deleted nodes until the dag combiner is // done. Set it to null to avoid confusion. DAG.setRoot(SDOperand()); // while the worklist isn't empty, inspect the node on the end of it and // try and combine it. while (!WorkList.empty()) { SDNode *N = WorkList.back(); WorkList.pop_back(); // If N has no uses, it is dead. Make sure to revisit all N's operands once // N is deleted from the DAG, since they too may now be dead or may have a // reduced number of uses, allowing other xforms. if (N->use_empty() && N != &Dummy) { for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) AddToWorkList(N->getOperand(i).Val); DAG.DeleteNode(N); continue; } SDOperand RV = combine(N); if (RV.Val == 0) continue; ++NodesCombined; // If we get back the same node we passed in, rather than a new node or // zero, we know that the node must have defined multiple values and // CombineTo was used. Since CombineTo takes care of the worklist // mechanics for us, we have no work to do in this case. if (RV.Val == N) continue; assert(N->getOpcode() != ISD::DELETED_NODE && RV.Val->getOpcode() != ISD::DELETED_NODE && "Node was deleted but visit returned new node!"); DOUT << "\nReplacing.3 "; DEBUG(N->dump(&DAG)); DOUT << "\nWith: "; DEBUG(RV.Val->dump(&DAG)); DOUT << '\n'; WorkListRemover DeadNodes(*this); if (N->getNumValues() == RV.Val->getNumValues()) DAG.ReplaceAllUsesWith(N, RV.Val, &DeadNodes); else { assert(N->getValueType(0) == RV.getValueType() && N->getNumValues() == 1 && "Type mismatch"); SDOperand OpV = RV; DAG.ReplaceAllUsesWith(N, &OpV, &DeadNodes); } // Push the new node and any users onto the worklist AddToWorkList(RV.Val); AddUsersToWorkList(RV.Val); // Add any uses of the old node to the worklist in case this node is the // last one that uses them. They may become dead after this node is // deleted. for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) AddToWorkList(N->getOperand(i).Val); // Nodes can be reintroduced into the worklist. Make sure we do not // process a node that has been replaced. removeFromWorkList(N); // Finally, since the node is now dead, remove it from the graph. DAG.DeleteNode(N); } // If the root changed (e.g. it was a dead load, update the root). DAG.setRoot(Dummy.getValue()); } SDOperand DAGCombiner::visit(SDNode *N) { switch(N->getOpcode()) { default: break; case ISD::TokenFactor: return visitTokenFactor(N); case ISD::MERGE_VALUES: return visitMERGE_VALUES(N); case ISD::ADD: return visitADD(N); case ISD::SUB: return visitSUB(N); case ISD::ADDC: return visitADDC(N); case ISD::ADDE: return visitADDE(N); case ISD::MUL: return visitMUL(N); case ISD::SDIV: return visitSDIV(N); case ISD::UDIV: return visitUDIV(N); case ISD::SREM: return visitSREM(N); case ISD::UREM: return visitUREM(N); case ISD::MULHU: return visitMULHU(N); case ISD::MULHS: return visitMULHS(N); case ISD::SMUL_LOHI: return visitSMUL_LOHI(N); case ISD::UMUL_LOHI: return visitUMUL_LOHI(N); case ISD::SDIVREM: return visitSDIVREM(N); case ISD::UDIVREM: return visitUDIVREM(N); case ISD::AND: return visitAND(N); case ISD::OR: return visitOR(N); case ISD::XOR: return visitXOR(N); case ISD::SHL: return visitSHL(N); case ISD::SRA: return visitSRA(N); case ISD::SRL: return visitSRL(N); case ISD::CTLZ: return visitCTLZ(N); case ISD::CTTZ: return visitCTTZ(N); case ISD::CTPOP: return visitCTPOP(N); case ISD::SELECT: return visitSELECT(N); case ISD::SELECT_CC: return visitSELECT_CC(N); case ISD::SETCC: return visitSETCC(N); case ISD::SIGN_EXTEND: return visitSIGN_EXTEND(N); case ISD::ZERO_EXTEND: return visitZERO_EXTEND(N); case ISD::ANY_EXTEND: return visitANY_EXTEND(N); case ISD::SIGN_EXTEND_INREG: return visitSIGN_EXTEND_INREG(N); case ISD::TRUNCATE: return visitTRUNCATE(N); case ISD::BIT_CONVERT: return visitBIT_CONVERT(N); case ISD::BUILD_PAIR: return visitBUILD_PAIR(N); case ISD::FADD: return visitFADD(N); case ISD::FSUB: return visitFSUB(N); case ISD::FMUL: return visitFMUL(N); case ISD::FDIV: return visitFDIV(N); case ISD::FREM: return visitFREM(N); case ISD::FCOPYSIGN: return visitFCOPYSIGN(N); case ISD::SINT_TO_FP: return visitSINT_TO_FP(N); case ISD::UINT_TO_FP: return visitUINT_TO_FP(N); case ISD::FP_TO_SINT: return visitFP_TO_SINT(N); case ISD::FP_TO_UINT: return visitFP_TO_UINT(N); case ISD::FP_ROUND: return visitFP_ROUND(N); case ISD::FP_ROUND_INREG: return visitFP_ROUND_INREG(N); case ISD::FP_EXTEND: return visitFP_EXTEND(N); case ISD::FNEG: return visitFNEG(N); case ISD::FABS: return visitFABS(N); case ISD::BRCOND: return visitBRCOND(N); case ISD::BR_CC: return visitBR_CC(N); case ISD::LOAD: return visitLOAD(N); case ISD::STORE: return visitSTORE(N); case ISD::INSERT_VECTOR_ELT: return visitINSERT_VECTOR_ELT(N); case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N); case ISD::BUILD_VECTOR: return visitBUILD_VECTOR(N); case ISD::CONCAT_VECTORS: return visitCONCAT_VECTORS(N); case ISD::VECTOR_SHUFFLE: return visitVECTOR_SHUFFLE(N); } return SDOperand(); } SDOperand DAGCombiner::combine(SDNode *N) { SDOperand RV = visit(N); // If nothing happened, try a target-specific DAG combine. if (RV.Val == 0) { assert(N->getOpcode() != ISD::DELETED_NODE && "Node was deleted but visit returned NULL!"); if (N->getOpcode() >= ISD::BUILTIN_OP_END || TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) { // Expose the DAG combiner to the target combiner impls. TargetLowering::DAGCombinerInfo DagCombineInfo(DAG, !AfterLegalize, false, this); RV = TLI.PerformDAGCombine(N, DagCombineInfo); } } // If N is a commutative binary node, try commuting it to enable more // sdisel CSE. if (RV.Val == 0 && SelectionDAG::isCommutativeBinOp(N->getOpcode()) && N->getNumValues() == 1) { SDOperand N0 = N->getOperand(0); SDOperand N1 = N->getOperand(1); // Constant operands are canonicalized to RHS. if (isa(N0) || !isa(N1)) { SDOperand Ops[] = { N1, N0 }; SDNode *CSENode = DAG.getNodeIfExists(N->getOpcode(), N->getVTList(), Ops, 2); if (CSENode) return SDOperand(CSENode, 0); } } return RV; } /// getInputChainForNode - Given a node, return its input chain if it has one, /// otherwise return a null sd operand. static SDOperand getInputChainForNode(SDNode *N) { if (unsigned NumOps = N->getNumOperands()) { if (N->getOperand(0).getValueType() == MVT::Other) return N->getOperand(0); else if (N->getOperand(NumOps-1).getValueType() == MVT::Other) return N->getOperand(NumOps-1); for (unsigned i = 1; i < NumOps-1; ++i) if (N->getOperand(i).getValueType() == MVT::Other) return N->getOperand(i); } return SDOperand(0, 0); } SDOperand DAGCombiner::visitTokenFactor(SDNode *N) { // If N has two operands, where one has an input chain equal to the other, // the 'other' chain is redundant. if (N->getNumOperands() == 2) { if (getInputChainForNode(N->getOperand(0).Val) == N->getOperand(1)) return N->getOperand(0); if (getInputChainForNode(N->getOperand(1).Val) == N->getOperand(0)) return N->getOperand(1); } SmallVector TFs; // List of token factors to visit. SmallVector Ops; // Ops for replacing token factor. SmallPtrSet SeenOps; bool Changed = false; // If we should replace this token factor. // Start out with this token factor. TFs.push_back(N); // Iterate through token factors. The TFs grows when new token factors are // encountered. for (unsigned i = 0; i < TFs.size(); ++i) { SDNode *TF = TFs[i]; // Check each of the operands. for (unsigned i = 0, ie = TF->getNumOperands(); i != ie; ++i) { SDOperand Op = TF->getOperand(i); switch (Op.getOpcode()) { case ISD::EntryToken: // Entry tokens don't need to be added to the list. They are // rededundant. Changed = true; break; case ISD::TokenFactor: if ((CombinerAA || Op.hasOneUse()) && std::find(TFs.begin(), TFs.end(), Op.Val) == TFs.end()) { // Queue up for processing. TFs.push_back(Op.Val); // Clean up in case the token factor is removed. AddToWorkList(Op.Val); Changed = true; break; } // Fall thru default: // Only add if it isn't already in the list. if (SeenOps.insert(Op.Val)) Ops.push_back(Op); else Changed = true; break; } } } SDOperand Result; // If we've change things around then replace token factor. if (Changed) { if (Ops.empty()) { // The entry token is the only possible outcome. Result = DAG.getEntryNode(); } else { // New and improved token factor. Result = DAG.getNode(ISD::TokenFactor, MVT::Other, &Ops[0], Ops.size()); } // Don't add users to work list. return CombineTo(N, Result, false); } return Result; } /// MERGE_VALUES can always be eliminated. SDOperand DAGCombiner::visitMERGE_VALUES(SDNode *N) { WorkListRemover DeadNodes(*this); for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) DAG.ReplaceAllUsesOfValueWith(SDOperand(N, i), N->getOperand(i), &DeadNodes); removeFromWorkList(N); DAG.DeleteNode(N); return SDOperand(N, 0); // Return N so it doesn't get rechecked! } static SDOperand combineShlAddConstant(SDOperand N0, SDOperand N1, SelectionDAG &DAG) { MVT VT = N0.getValueType(); SDOperand N00 = N0.getOperand(0); SDOperand N01 = N0.getOperand(1); ConstantSDNode *N01C = dyn_cast(N01); if (N01C && N00.getOpcode() == ISD::ADD && N00.Val->hasOneUse() && isa(N00.getOperand(1))) { N0 = DAG.getNode(ISD::ADD, VT, DAG.getNode(ISD::SHL, VT, N00.getOperand(0), N01), DAG.getNode(ISD::SHL, VT, N00.getOperand(1), N01)); return DAG.getNode(ISD::ADD, VT, N0, N1); } return SDOperand(); } static SDOperand combineSelectAndUse(SDNode *N, SDOperand Slct, SDOperand OtherOp, SelectionDAG &DAG) { MVT VT = N->getValueType(0); unsigned Opc = N->getOpcode(); bool isSlctCC = Slct.getOpcode() == ISD::SELECT_CC; SDOperand LHS = isSlctCC ? Slct.getOperand(2) : Slct.getOperand(1); SDOperand RHS = isSlctCC ? Slct.getOperand(3) : Slct.getOperand(2); ISD::CondCode CC = ISD::SETCC_INVALID; if (isSlctCC) CC = cast(Slct.getOperand(4))->get(); else { SDOperand CCOp = Slct.getOperand(0); if (CCOp.getOpcode() == ISD::SETCC) CC = cast(CCOp.getOperand(2))->get(); } bool DoXform = false; bool InvCC = false; assert ((Opc == ISD::ADD || (Opc == ISD::SUB && Slct == N->getOperand(1))) && "Bad input!"); if (LHS.getOpcode() == ISD::Constant && cast(LHS)->isNullValue()) DoXform = true; else if (CC != ISD::SETCC_INVALID && RHS.getOpcode() == ISD::Constant && cast(RHS)->isNullValue()) { std::swap(LHS, RHS); SDOperand Op0 = Slct.getOperand(0); bool isInt = (isSlctCC ? Op0.getValueType() : Op0.getOperand(0).getValueType()).isInteger(); CC = ISD::getSetCCInverse(CC, isInt); DoXform = true; InvCC = true; } if (DoXform) { SDOperand Result = DAG.getNode(Opc, VT, OtherOp, RHS); if (isSlctCC) return DAG.getSelectCC(OtherOp, Result, Slct.getOperand(0), Slct.getOperand(1), CC); SDOperand CCOp = Slct.getOperand(0); if (InvCC) CCOp = DAG.getSetCC(CCOp.getValueType(), CCOp.getOperand(0), CCOp.getOperand(1), CC); return DAG.getNode(ISD::SELECT, VT, CCOp, OtherOp, Result); } return SDOperand(); } SDOperand DAGCombiner::visitADD(SDNode *N) { SDOperand N0 = N->getOperand(0); SDOperand N1 = N->getOperand(1); ConstantSDNode *N0C = dyn_cast(N0); ConstantSDNode *N1C = dyn_cast(N1); MVT VT = N0.getValueType(); // fold vector ops if (VT.isVector()) { SDOperand FoldedVOp = SimplifyVBinOp(N); if (FoldedVOp.Val) return FoldedVOp; } // fold (add x, undef) -> undef if (N0.getOpcode() == ISD::UNDEF) return N0; if (N1.getOpcode() == ISD::UNDEF) return N1; // fold (add c1, c2) -> c1+c2 if (N0C && N1C) return DAG.getConstant(N0C->getAPIntValue() + N1C->getAPIntValue(), VT); // canonicalize constant to RHS if (N0C && !N1C) return DAG.getNode(ISD::ADD, VT, N1, N0); // fold (add x, 0) -> x if (N1C && N1C->isNullValue()) return N0; // fold ((c1-A)+c2) -> (c1+c2)-A if (N1C && N0.getOpcode() == ISD::SUB) if (ConstantSDNode *N0C = dyn_cast(N0.getOperand(0))) return DAG.getNode(ISD::SUB, VT, DAG.getConstant(N1C->getAPIntValue()+ N0C->getAPIntValue(), VT), N0.getOperand(1)); // reassociate add SDOperand RADD = ReassociateOps(ISD::ADD, N0, N1); if (RADD.Val != 0) return RADD; // fold ((0-A) + B) -> B-A if (N0.getOpcode() == ISD::SUB && isa(N0.getOperand(0)) && cast(N0.getOperand(0))->isNullValue()) return DAG.getNode(ISD::SUB, VT, N1, N0.getOperand(1)); // fold (A + (0-B)) -> A-B if (N1.getOpcode() == ISD::SUB && isa(N1.getOperand(0)) && cast(N1.getOperand(0))->isNullValue()) return DAG.getNode(ISD::SUB, VT, N0, N1.getOperand(1)); // fold (A+(B-A)) -> B if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1)) return N1.getOperand(0); if (!VT.isVector() && SimplifyDemandedBits(SDOperand(N, 0))) return SDOperand(N, 0); // fold (a+b) -> (a|b) iff a and b share no bits. if (VT.isInteger() && !VT.isVector()) { APInt LHSZero, LHSOne; APInt RHSZero, RHSOne; APInt Mask = APInt::getAllOnesValue(VT.getSizeInBits()); DAG.ComputeMaskedBits(N0, Mask, LHSZero, LHSOne); if (LHSZero.getBoolValue()) { DAG.ComputeMaskedBits(N1, Mask, RHSZero, RHSOne); // If all possibly-set bits on the LHS are clear on the RHS, return an OR. // If all possibly-set bits on the RHS are clear on the LHS, return an OR. if ((RHSZero & (~LHSZero & Mask)) == (~LHSZero & Mask) || (LHSZero & (~RHSZero & Mask)) == (~RHSZero & Mask)) return DAG.getNode(ISD::OR, VT, N0, N1); } } // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<hasOneUse()) { SDOperand Result = combineShlAddConstant(N0, N1, DAG); if (Result.Val) return Result; } if (N1.getOpcode() == ISD::SHL && N1.Val->hasOneUse()) { SDOperand Result = combineShlAddConstant(N1, N0, DAG); if (Result.Val) return Result; } // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c)) if (N0.getOpcode() == ISD::SELECT && N0.Val->hasOneUse()) { SDOperand Result = combineSelectAndUse(N, N0, N1, DAG); if (Result.Val) return Result; } if (N1.getOpcode() == ISD::SELECT && N1.Val->hasOneUse()) { SDOperand Result = combineSelectAndUse(N, N1, N0, DAG); if (Result.Val) return Result; } return SDOperand(); } SDOperand DAGCombiner::visitADDC(SDNode *N) { SDOperand N0 = N->getOperand(0); SDOperand N1 = N->getOperand(1); ConstantSDNode *N0C = dyn_cast(N0); ConstantSDNode *N1C = dyn_cast(N1); MVT VT = N0.getValueType(); // If the flag result is dead, turn this into an ADD. if (N->hasNUsesOfValue(0, 1)) return CombineTo(N, DAG.getNode(ISD::ADD, VT, N1, N0), DAG.getNode(ISD::CARRY_FALSE, MVT::Flag)); // canonicalize constant to RHS. if (N0C && !N1C) return DAG.getNode(ISD::ADDC, N->getVTList(), N1, N0); // fold (addc x, 0) -> x + no carry out if (N1C && N1C->isNullValue()) return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, MVT::Flag)); // fold (addc a, b) -> (or a, b), CARRY_FALSE iff a and b share no bits. APInt LHSZero, LHSOne; APInt RHSZero, RHSOne; APInt Mask = APInt::getAllOnesValue(VT.getSizeInBits()); DAG.ComputeMaskedBits(N0, Mask, LHSZero, LHSOne); if (LHSZero.getBoolValue()) { DAG.ComputeMaskedBits(N1, Mask, RHSZero, RHSOne); // If all possibly-set bits on the LHS are clear on the RHS, return an OR. // If all possibly-set bits on the RHS are clear on the LHS, return an OR. if ((RHSZero & (~LHSZero & Mask)) == (~LHSZero & Mask) || (LHSZero & (~RHSZero & Mask)) == (~RHSZero & Mask)) return CombineTo(N, DAG.getNode(ISD::OR, VT, N0, N1), DAG.getNode(ISD::CARRY_FALSE, MVT::Flag)); } return SDOperand(); } SDOperand DAGCombiner::visitADDE(SDNode *N) { SDOperand N0 = N->getOperand(0); SDOperand N1 = N->getOperand(1); SDOperand CarryIn = N->getOperand(2); ConstantSDNode *N0C = dyn_cast(N0); ConstantSDNode *N1C = dyn_cast(N1); //MVT VT = N0.getValueType(); // canonicalize constant to RHS if (N0C && !N1C) return DAG.getNode(ISD::ADDE, N->getVTList(), N1, N0, CarryIn); // fold (adde x, y, false) -> (addc x, y) if (CarryIn.getOpcode() == ISD::CARRY_FALSE) return DAG.getNode(ISD::ADDC, N->getVTList(), N1, N0); return SDOperand(); } SDOperand DAGCombiner::visitSUB(SDNode *N) { SDOperand N0 = N->getOperand(0); SDOperand N1 = N->getOperand(1); ConstantSDNode *N0C = dyn_cast(N0.Val); ConstantSDNode *N1C = dyn_cast(N1.Val); MVT VT = N0.getValueType(); // fold vector ops if (VT.isVector()) { SDOperand FoldedVOp = SimplifyVBinOp(N); if (FoldedVOp.Val) return FoldedVOp; } // fold (sub x, x) -> 0 if (N0 == N1) return DAG.getConstant(0, N->getValueType(0)); // fold (sub c1, c2) -> c1-c2 if (N0C && N1C) return DAG.getNode(ISD::SUB, VT, N0, N1); // fold (sub x, c) -> (add x, -c) if (N1C) return DAG.getNode(ISD::ADD, VT, N0, DAG.getConstant(-N1C->getAPIntValue(), VT)); // fold (A+B)-A -> B if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1) return N0.getOperand(1); // fold (A+B)-B -> A if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1) return N0.getOperand(0); // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c)) if (N1.getOpcode() == ISD::SELECT && N1.Val->hasOneUse()) { SDOperand Result = combineSelectAndUse(N, N1, N0, DAG); if (Result.Val) return Result; } // If either operand of a sub is undef, the result is undef if (N0.getOpcode() == ISD::UNDEF) return N0; if (N1.getOpcode() == ISD::UNDEF) return N1; return SDOperand(); } SDOperand DAGCombiner::visitMUL(SDNode *N) { SDOperand N0 = N->getOperand(0); SDOperand N1 = N->getOperand(1); ConstantSDNode *N0C = dyn_cast(N0); ConstantSDNode *N1C = dyn_cast(N1); MVT VT = N0.getValueType(); // fold vector ops if (VT.isVector()) { SDOperand FoldedVOp = SimplifyVBinOp(N); if (FoldedVOp.Val) return FoldedVOp; } // fold (mul x, undef) -> 0 if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF) return DAG.getConstant(0, VT); // fold (mul c1, c2) -> c1*c2 if (N0C && N1C) return DAG.getNode(ISD::MUL, VT, N0, N1); // canonicalize constant to RHS if (N0C && !N1C) return DAG.getNode(ISD::MUL, VT, N1, N0); // fold (mul x, 0) -> 0 if (N1C && N1C->isNullValue()) return N1; // fold (mul x, -1) -> 0-x if (N1C && N1C->isAllOnesValue()) return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), N0); // fold (mul x, (1 << c)) -> x << c if (N1C && N1C->getAPIntValue().isPowerOf2()) return DAG.getNode(ISD::SHL, VT, N0, DAG.getConstant(N1C->getAPIntValue().logBase2(), TLI.getShiftAmountTy())); // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c if (N1C && isPowerOf2_64(-N1C->getSignExtended())) { // FIXME: If the input is something that is easily negated (e.g. a // single-use add), we should put the negate there. return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), DAG.getNode(ISD::SHL, VT, N0, DAG.getConstant(Log2_64(-N1C->getSignExtended()), TLI.getShiftAmountTy()))); } // (mul (shl X, c1), c2) -> (mul X, c2 << c1) if (N1C && N0.getOpcode() == ISD::SHL && isa(N0.getOperand(1))) { SDOperand C3 = DAG.getNode(ISD::SHL, VT, N1, N0.getOperand(1)); AddToWorkList(C3.Val); return DAG.getNode(ISD::MUL, VT, N0.getOperand(0), C3); } // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one // use. { SDOperand Sh(0,0), Y(0,0); // Check for both (mul (shl X, C), Y) and (mul Y, (shl X, C)). if (N0.getOpcode() == ISD::SHL && isa(N0.getOperand(1)) && N0.Val->hasOneUse()) { Sh = N0; Y = N1; } else if (N1.getOpcode() == ISD::SHL && isa(N1.getOperand(1)) && N1.Val->hasOneUse()) { Sh = N1; Y = N0; } if (Sh.Val) { SDOperand Mul = DAG.getNode(ISD::MUL, VT, Sh.getOperand(0), Y); return DAG.getNode(ISD::SHL, VT, Mul, Sh.getOperand(1)); } } // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2) if (N1C && N0.getOpcode() == ISD::ADD && N0.Val->hasOneUse() && isa(N0.getOperand(1))) { return DAG.getNode(ISD::ADD, VT, DAG.getNode(ISD::MUL, VT, N0.getOperand(0), N1), DAG.getNode(ISD::MUL, VT, N0.getOperand(1), N1)); } // reassociate mul SDOperand RMUL = ReassociateOps(ISD::MUL, N0, N1); if (RMUL.Val != 0) return RMUL; return SDOperand(); } SDOperand DAGCombiner::visitSDIV(SDNode *N) { SDOperand N0 = N->getOperand(0); SDOperand N1 = N->getOperand(1); ConstantSDNode *N0C = dyn_cast(N0.Val); ConstantSDNode *N1C = dyn_cast(N1.Val); MVT VT = N->getValueType(0); // fold vector ops if (VT.isVector()) { SDOperand FoldedVOp = SimplifyVBinOp(N); if (FoldedVOp.Val) return FoldedVOp; } // fold (sdiv c1, c2) -> c1/c2 if (N0C && N1C && !N1C->isNullValue()) return DAG.getNode(ISD::SDIV, VT, N0, N1); // fold (sdiv X, 1) -> X if (N1C && N1C->getSignExtended() == 1LL) return N0; // fold (sdiv X, -1) -> 0-X if (N1C && N1C->isAllOnesValue()) return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), N0); // If we know the sign bits of both operands are zero, strength reduce to a // udiv instead. Handles (X&15) /s 4 -> X&15 >> 2 if (!VT.isVector()) { if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0)) return DAG.getNode(ISD::UDIV, N1.getValueType(), N0, N1); } // fold (sdiv X, pow2) -> simple ops after legalize if (N1C && !N1C->isNullValue() && !TLI.isIntDivCheap() && (isPowerOf2_64(N1C->getSignExtended()) || isPowerOf2_64(-N1C->getSignExtended()))) { // If dividing by powers of two is cheap, then don't perform the following // fold. if (TLI.isPow2DivCheap()) return SDOperand(); int64_t pow2 = N1C->getSignExtended(); int64_t abs2 = pow2 > 0 ? pow2 : -pow2; unsigned lg2 = Log2_64(abs2); // Splat the sign bit into the register SDOperand SGN = DAG.getNode(ISD::SRA, VT, N0, DAG.getConstant(VT.getSizeInBits()-1, TLI.getShiftAmountTy())); AddToWorkList(SGN.Val); // Add (N0 < 0) ? abs2 - 1 : 0; SDOperand SRL = DAG.getNode(ISD::SRL, VT, SGN, DAG.getConstant(VT.getSizeInBits()-lg2, TLI.getShiftAmountTy())); SDOperand ADD = DAG.getNode(ISD::ADD, VT, N0, SRL); AddToWorkList(SRL.Val); AddToWorkList(ADD.Val); // Divide by pow2 SDOperand SRA = DAG.getNode(ISD::SRA, VT, ADD, DAG.getConstant(lg2, TLI.getShiftAmountTy())); // If we're dividing by a positive value, we're done. Otherwise, we must // negate the result. if (pow2 > 0) return SRA; AddToWorkList(SRA.Val); return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), SRA); } // if integer divide is expensive and we satisfy the requirements, emit an // alternate sequence. if (N1C && (N1C->getSignExtended() < -1 || N1C->getSignExtended() > 1) && !TLI.isIntDivCheap()) { SDOperand Op = BuildSDIV(N); if (Op.Val) return Op; } // undef / X -> 0 if (N0.getOpcode() == ISD::UNDEF) return DAG.getConstant(0, VT); // X / undef -> undef if (N1.getOpcode() == ISD::UNDEF) return N1; return SDOperand(); } SDOperand DAGCombiner::visitUDIV(SDNode *N) { SDOperand N0 = N->getOperand(0); SDOperand N1 = N->getOperand(1); ConstantSDNode *N0C = dyn_cast(N0.Val); ConstantSDNode *N1C = dyn_cast(N1.Val); MVT VT = N->getValueType(0); // fold vector ops if (VT.isVector()) { SDOperand FoldedVOp = SimplifyVBinOp(N); if (FoldedVOp.Val) return FoldedVOp; } // fold (udiv c1, c2) -> c1/c2 if (N0C && N1C && !N1C->isNullValue()) return DAG.getNode(ISD::UDIV, VT, N0, N1); // fold (udiv x, (1 << c)) -> x >>u c if (N1C && N1C->getAPIntValue().isPowerOf2()) return DAG.getNode(ISD::SRL, VT, N0, DAG.getConstant(N1C->getAPIntValue().logBase2(), TLI.getShiftAmountTy())); // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2 if (N1.getOpcode() == ISD::SHL) { if (ConstantSDNode *SHC = dyn_cast(N1.getOperand(0))) { if (SHC->getAPIntValue().isPowerOf2()) { MVT ADDVT = N1.getOperand(1).getValueType(); SDOperand Add = DAG.getNode(ISD::ADD, ADDVT, N1.getOperand(1), DAG.getConstant(SHC->getAPIntValue() .logBase2(), ADDVT)); AddToWorkList(Add.Val); return DAG.getNode(ISD::SRL, VT, N0, Add); } } } // fold (udiv x, c) -> alternate if (N1C && !N1C->isNullValue() && !TLI.isIntDivCheap()) { SDOperand Op = BuildUDIV(N); if (Op.Val) return Op; } // undef / X -> 0 if (N0.getOpcode() == ISD::UNDEF) return DAG.getConstant(0, VT); // X / undef -> undef if (N1.getOpcode() == ISD::UNDEF) return N1; return SDOperand(); } SDOperand DAGCombiner::visitSREM(SDNode *N) { SDOperand N0 = N->getOperand(0); SDOperand N1 = N->getOperand(1); ConstantSDNode *N0C = dyn_cast(N0); ConstantSDNode *N1C = dyn_cast(N1); MVT VT = N->getValueType(0); // fold (srem c1, c2) -> c1%c2 if (N0C && N1C && !N1C->isNullValue()) return DAG.getNode(ISD::SREM, VT, N0, N1); // If we know the sign bits of both operands are zero, strength reduce to a // urem instead. Handles (X & 0x0FFFFFFF) %s 16 -> X&15 if (!VT.isVector()) { if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0)) return DAG.getNode(ISD::UREM, VT, N0, N1); } // If X/C can be simplified by the division-by-constant logic, lower // X%C to the equivalent of X-X/C*C. if (N1C && !N1C->isNullValue()) { SDOperand Div = DAG.getNode(ISD::SDIV, VT, N0, N1); AddToWorkList(Div.Val); SDOperand OptimizedDiv = combine(Div.Val); if (OptimizedDiv.Val && OptimizedDiv.Val != Div.Val) { SDOperand Mul = DAG.getNode(ISD::MUL, VT, OptimizedDiv, N1); SDOperand Sub = DAG.getNode(ISD::SUB, VT, N0, Mul); AddToWorkList(Mul.Val); return Sub; } } // undef % X -> 0 if (N0.getOpcode() == ISD::UNDEF) return DAG.getConstant(0, VT); // X % undef -> undef if (N1.getOpcode() == ISD::UNDEF) return N1; return SDOperand(); } SDOperand DAGCombiner::visitUREM(SDNode *N) { SDOperand N0 = N->getOperand(0); SDOperand N1 = N->getOperand(1); ConstantSDNode *N0C = dyn_cast(N0); ConstantSDNode *N1C = dyn_cast(N1); MVT VT = N->getValueType(0); // fold (urem c1, c2) -> c1%c2 if (N0C && N1C && !N1C->isNullValue()) return DAG.getNode(ISD::UREM, VT, N0, N1); // fold (urem x, pow2) -> (and x, pow2-1) if (N1C && !N1C->isNullValue() && N1C->getAPIntValue().isPowerOf2()) return DAG.getNode(ISD::AND, VT, N0, DAG.getConstant(N1C->getAPIntValue()-1,VT)); // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1)) if (N1.getOpcode() == ISD::SHL) { if (ConstantSDNode *SHC = dyn_cast(N1.getOperand(0))) { if (SHC->getAPIntValue().isPowerOf2()) { SDOperand Add = DAG.getNode(ISD::ADD, VT, N1, DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT)); AddToWorkList(Add.Val); return DAG.getNode(ISD::AND, VT, N0, Add); } } } // If X/C can be simplified by the division-by-constant logic, lower // X%C to the equivalent of X-X/C*C. if (N1C && !N1C->isNullValue()) { SDOperand Div = DAG.getNode(ISD::UDIV, VT, N0, N1); SDOperand OptimizedDiv = combine(Div.Val); if (OptimizedDiv.Val && OptimizedDiv.Val != Div.Val) { SDOperand Mul = DAG.getNode(ISD::MUL, VT, OptimizedDiv, N1); SDOperand Sub = DAG.getNode(ISD::SUB, VT, N0, Mul); AddToWorkList(Mul.Val); return Sub; } } // undef % X -> 0 if (N0.getOpcode() == ISD::UNDEF) return DAG.getConstant(0, VT); // X % undef -> undef if (N1.getOpcode() == ISD::UNDEF) return N1; return SDOperand(); } SDOperand DAGCombiner::visitMULHS(SDNode *N) { SDOperand N0 = N->getOperand(0); SDOperand N1 = N->getOperand(1); ConstantSDNode *N1C = dyn_cast(N1); MVT VT = N->getValueType(0); // fold (mulhs x, 0) -> 0 if (N1C && N1C->isNullValue()) return N1; // fold (mulhs x, 1) -> (sra x, size(x)-1) if (N1C && N1C->getAPIntValue() == 1) return DAG.getNode(ISD::SRA, N0.getValueType(), N0, DAG.getConstant(N0.getValueType().getSizeInBits()-1, TLI.getShiftAmountTy())); // fold (mulhs x, undef) -> 0 if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF) return DAG.getConstant(0, VT); return SDOperand(); } SDOperand DAGCombiner::visitMULHU(SDNode *N) { SDOperand N0 = N->getOperand(0); SDOperand N1 = N->getOperand(1); ConstantSDNode *N1C = dyn_cast(N1); MVT VT = N->getValueType(0); // fold (mulhu x, 0) -> 0 if (N1C && N1C->isNullValue()) return N1; // fold (mulhu x, 1) -> 0 if (N1C && N1C->getAPIntValue() == 1) return DAG.getConstant(0, N0.getValueType()); // fold (mulhu x, undef) -> 0 if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF) return DAG.getConstant(0, VT); return SDOperand(); } /// SimplifyNodeWithTwoResults - Perform optimizations common to nodes that /// compute two values. LoOp and HiOp give the opcodes for the two computations /// that are being performed. Return true if a simplification was made. /// SDOperand DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp, unsigned HiOp) { // If the high half is not needed, just compute the low half. bool HiExists = N->hasAnyUseOfValue(1); if (!HiExists && (!AfterLegalize || TLI.isOperationLegal(LoOp, N->getValueType(0)))) { SDOperand Res = DAG.getNode(LoOp, N->getValueType(0), N->op_begin(), N->getNumOperands()); return CombineTo(N, Res, Res); } // If the low half is not needed, just compute the high half. bool LoExists = N->hasAnyUseOfValue(0); if (!LoExists && (!AfterLegalize || TLI.isOperationLegal(HiOp, N->getValueType(1)))) { SDOperand Res = DAG.getNode(HiOp, N->getValueType(1), N->op_begin(), N->getNumOperands()); return CombineTo(N, Res, Res); } // If both halves are used, return as it is. if (LoExists && HiExists) return SDOperand(); // If the two computed results can be simplified separately, separate them. if (LoExists) { SDOperand Lo = DAG.getNode(LoOp, N->getValueType(0), N->op_begin(), N->getNumOperands()); AddToWorkList(Lo.Val); SDOperand LoOpt = combine(Lo.Val); if (LoOpt.Val && LoOpt.Val != Lo.Val && (!AfterLegalize || TLI.isOperationLegal(LoOpt.getOpcode(), LoOpt.getValueType()))) return CombineTo(N, LoOpt, LoOpt); } if (HiExists) { SDOperand Hi = DAG.getNode(HiOp, N->getValueType(1), N->op_begin(), N->getNumOperands()); AddToWorkList(Hi.Val); SDOperand HiOpt = combine(Hi.Val); if (HiOpt.Val && HiOpt != Hi && (!AfterLegalize || TLI.isOperationLegal(HiOpt.getOpcode(), HiOpt.getValueType()))) return CombineTo(N, HiOpt, HiOpt); } return SDOperand(); } SDOperand DAGCombiner::visitSMUL_LOHI(SDNode *N) { SDOperand Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS); if (Res.Val) return Res; return SDOperand(); } SDOperand DAGCombiner::visitUMUL_LOHI(SDNode *N) { SDOperand Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU); if (Res.Val) return Res; return SDOperand(); } SDOperand DAGCombiner::visitSDIVREM(SDNode *N) { SDOperand Res = SimplifyNodeWithTwoResults(N, ISD::SDIV, ISD::SREM); if (Res.Val) return Res; return SDOperand(); } SDOperand DAGCombiner::visitUDIVREM(SDNode *N) { SDOperand Res = SimplifyNodeWithTwoResults(N, ISD::UDIV, ISD::UREM); if (Res.Val) return Res; return SDOperand(); } /// SimplifyBinOpWithSameOpcodeHands - If this is a binary operator with /// two operands of the same opcode, try to simplify it. SDOperand DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode *N) { SDOperand N0 = N->getOperand(0), N1 = N->getOperand(1); MVT VT = N0.getValueType(); assert(N0.getOpcode() == N1.getOpcode() && "Bad input!"); // For each of OP in AND/OR/XOR: // fold (OP (zext x), (zext y)) -> (zext (OP x, y)) // fold (OP (sext x), (sext y)) -> (sext (OP x, y)) // fold (OP (aext x), (aext y)) -> (aext (OP x, y)) // fold (OP (trunc x), (trunc y)) -> (trunc (OP x, y)) if ((N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND|| N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::TRUNCATE) && N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()) { SDOperand ORNode = DAG.getNode(N->getOpcode(), N0.getOperand(0).getValueType(), N0.getOperand(0), N1.getOperand(0)); AddToWorkList(ORNode.Val); return DAG.getNode(N0.getOpcode(), VT, ORNode); } // For each of OP in SHL/SRL/SRA/AND... // fold (and (OP x, z), (OP y, z)) -> (OP (and x, y), z) // fold (or (OP x, z), (OP y, z)) -> (OP (or x, y), z) // fold (xor (OP x, z), (OP y, z)) -> (OP (xor x, y), z) if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL || N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::AND) && N0.getOperand(1) == N1.getOperand(1)) { SDOperand ORNode = DAG.getNode(N->getOpcode(), N0.getOperand(0).getValueType(), N0.getOperand(0), N1.getOperand(0)); AddToWorkList(ORNode.Val); return DAG.getNode(N0.getOpcode(), VT, ORNode, N0.getOperand(1)); } return SDOperand(); } SDOperand DAGCombiner::visitAND(SDNode *N) { SDOperand N0 = N->getOperand(0); SDOperand N1 = N->getOperand(1); SDOperand LL, LR, RL, RR, CC0, CC1; ConstantSDNode *N0C = dyn_cast(N0); ConstantSDNode *N1C = dyn_cast(N1); MVT VT = N1.getValueType(); unsigned BitWidth = VT.getSizeInBits(); // fold vector ops if (VT.isVector()) { SDOperand FoldedVOp = SimplifyVBinOp(N); if (FoldedVOp.Val) return FoldedVOp; } // fold (and x, undef) -> 0 if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF) return DAG.getConstant(0, VT); // fold (and c1, c2) -> c1&c2 if (N0C && N1C) return DAG.getNode(ISD::AND, VT, N0, N1); // canonicalize constant to RHS if (N0C && !N1C) return DAG.getNode(ISD::AND, VT, N1, N0); // fold (and x, -1) -> x if (N1C && N1C->isAllOnesValue()) return N0; // if (and x, c) is known to be zero, return 0 if (N1C && DAG.MaskedValueIsZero(SDOperand(N, 0), APInt::getAllOnesValue(BitWidth))) return DAG.getConstant(0, VT); // reassociate and SDOperand RAND = ReassociateOps(ISD::AND, N0, N1); if (RAND.Val != 0) return RAND; // fold (and (or x, 0xFFFF), 0xFF) -> 0xFF if (N1C && N0.getOpcode() == ISD::OR) if (ConstantSDNode *ORI = dyn_cast(N0.getOperand(1))) if ((ORI->getAPIntValue() & N1C->getAPIntValue()) == N1C->getAPIntValue()) return N1; // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits. if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) { SDOperand N0Op0 = N0.getOperand(0); APInt Mask = ~N1C->getAPIntValue(); Mask.trunc(N0Op0.getValueSizeInBits()); if (DAG.MaskedValueIsZero(N0Op0, Mask)) { SDOperand Zext = DAG.getNode(ISD::ZERO_EXTEND, N0.getValueType(), N0Op0); // Replace uses of the AND with uses of the Zero extend node. CombineTo(N, Zext); // We actually want to replace all uses of the any_extend with the // zero_extend, to avoid duplicating things. This will later cause this // AND to be folded. CombineTo(N0.Val, Zext); return SDOperand(N, 0); // Return N so it doesn't get rechecked! } } // fold (and (setcc x), (setcc y)) -> (setcc (and x, y)) if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){ ISD::CondCode Op0 = cast(CC0)->get(); ISD::CondCode Op1 = cast(CC1)->get(); if (LR == RR && isa(LR) && Op0 == Op1 && LL.getValueType().isInteger()) { // fold (X == 0) & (Y == 0) -> (X|Y == 0) if (cast(LR)->isNullValue() && Op1 == ISD::SETEQ) { SDOperand ORNode = DAG.getNode(ISD::OR, LR.getValueType(), LL, RL); AddToWorkList(ORNode.Val); return DAG.getSetCC(VT, ORNode, LR, Op1); } // fold (X == -1) & (Y == -1) -> (X&Y == -1) if (cast(LR)->isAllOnesValue() && Op1 == ISD::SETEQ) { SDOperand ANDNode = DAG.getNode(ISD::AND, LR.getValueType(), LL, RL); AddToWorkList(ANDNode.Val); return DAG.getSetCC(VT, ANDNode, LR, Op1); } // fold (X > -1) & (Y > -1) -> (X|Y > -1) if (cast(LR)->isAllOnesValue() && Op1 == ISD::SETGT) { SDOperand ORNode = DAG.getNode(ISD::OR, LR.getValueType(), LL, RL); AddToWorkList(ORNode.Val); return DAG.getSetCC(VT, ORNode, LR, Op1); } } // canonicalize equivalent to ll == rl if (LL == RR && LR == RL) { Op1 = ISD::getSetCCSwappedOperands(Op1); std::swap(RL, RR); } if (LL == RL && LR == RR) { bool isInteger = LL.getValueType().isInteger(); ISD::CondCode Result = ISD::getSetCCAndOperation(Op0, Op1, isInteger); if (Result != ISD::SETCC_INVALID) return DAG.getSetCC(N0.getValueType(), LL, LR, Result); } } // Simplify: and (op x...), (op y...) -> (op (and x, y)) if (N0.getOpcode() == N1.getOpcode()) { SDOperand Tmp = SimplifyBinOpWithSameOpcodeHands(N); if (Tmp.Val) return Tmp; } // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1) // fold (and (sra)) -> (and (srl)) when possible. if (!VT.isVector() && SimplifyDemandedBits(SDOperand(N, 0))) return SDOperand(N, 0); // fold (zext_inreg (extload x)) -> (zextload x) if (ISD::isEXTLoad(N0.Val) && ISD::isUNINDEXEDLoad(N0.Val)) { LoadSDNode *LN0 = cast(N0); MVT EVT = LN0->getMemoryVT(); // If we zero all the possible extended bits, then we can turn this into // a zextload if we are running before legalize or the operation is legal. unsigned BitWidth = N1.getValueSizeInBits(); if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth, BitWidth - EVT.getSizeInBits())) && ((!AfterLegalize && !LN0->isVolatile()) || TLI.isLoadXLegal(ISD::ZEXTLOAD, EVT))) { SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(), LN0->getBasePtr(), LN0->getSrcValue(), LN0->getSrcValueOffset(), EVT, LN0->isVolatile(), LN0->getAlignment()); AddToWorkList(N); CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1)); return SDOperand(N, 0); // Return N so it doesn't get rechecked! } } // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use if (ISD::isSEXTLoad(N0.Val) && ISD::isUNINDEXEDLoad(N0.Val) && N0.hasOneUse()) { LoadSDNode *LN0 = cast(N0); MVT EVT = LN0->getMemoryVT(); // If we zero all the possible extended bits, then we can turn this into // a zextload if we are running before legalize or the operation is legal. unsigned BitWidth = N1.getValueSizeInBits(); if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth, BitWidth - EVT.getSizeInBits())) && ((!AfterLegalize && !LN0->isVolatile()) || TLI.isLoadXLegal(ISD::ZEXTLOAD, EVT))) { SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(), LN0->getBasePtr(), LN0->getSrcValue(), LN0->getSrcValueOffset(), EVT, LN0->isVolatile(), LN0->getAlignment()); AddToWorkList(N); CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1)); return SDOperand(N, 0); // Return N so it doesn't get rechecked! } } // fold (and (load x), 255) -> (zextload x, i8) // fold (and (extload x, i16), 255) -> (zextload x, i8) if (N1C && N0.getOpcode() == ISD::LOAD) { LoadSDNode *LN0 = cast(N0); if (LN0->getExtensionType() != ISD::SEXTLOAD && LN0->isUnindexed() && N0.hasOneUse() && // Do not change the width of a volatile load. !LN0->isVolatile()) { MVT EVT = MVT::Other; uint32_t ActiveBits = N1C->getAPIntValue().getActiveBits(); if (ActiveBits > 0 && APIntOps::isMask(ActiveBits, N1C->getAPIntValue())) EVT = MVT::getIntegerVT(ActiveBits); MVT LoadedVT = LN0->getMemoryVT(); // Do not generate loads of non-round integer types since these can // be expensive (and would be wrong if the type is not byte sized). if (EVT != MVT::Other && LoadedVT.bitsGT(EVT) && EVT.isRound() && (!AfterLegalize || TLI.isLoadXLegal(ISD::ZEXTLOAD, EVT))) { MVT PtrType = N0.getOperand(1).getValueType(); // For big endian targets, we need to add an offset to the pointer to // load the correct bytes. For little endian systems, we merely need to // read fewer bytes from the same pointer. unsigned LVTStoreBytes = LoadedVT.getStoreSizeInBits()/8; unsigned EVTStoreBytes = EVT.getStoreSizeInBits()/8; unsigned PtrOff = LVTStoreBytes - EVTStoreBytes; unsigned Alignment = LN0->getAlignment(); SDOperand NewPtr = LN0->getBasePtr(); if (TLI.isBigEndian()) { NewPtr = DAG.getNode(ISD::ADD, PtrType, NewPtr, DAG.getConstant(PtrOff, PtrType)); Alignment = MinAlign(Alignment, PtrOff); } AddToWorkList(NewPtr.Val); SDOperand Load = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(), NewPtr, LN0->getSrcValue(), LN0->getSrcValueOffset(), EVT, LN0->isVolatile(), Alignment); AddToWorkList(N); CombineTo(N0.Val, Load, Load.getValue(1)); return SDOperand(N, 0); // Return N so it doesn't get rechecked! } } } return SDOperand(); } SDOperand DAGCombiner::visitOR(SDNode *N) { SDOperand N0 = N->getOperand(0); SDOperand N1 = N->getOperand(1); SDOperand LL, LR, RL, RR, CC0, CC1; ConstantSDNode *N0C = dyn_cast(N0); ConstantSDNode *N1C = dyn_cast(N1); MVT VT = N1.getValueType(); // fold vector ops if (VT.isVector()) { SDOperand FoldedVOp = SimplifyVBinOp(N); if (FoldedVOp.Val) return FoldedVOp; } // fold (or x, undef) -> -1 if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF) return DAG.getConstant(~0ULL, VT); // fold (or c1, c2) -> c1|c2 if (N0C && N1C) return DAG.getNode(ISD::OR, VT, N0, N1); // canonicalize constant to RHS if (N0C && !N1C) return DAG.getNode(ISD::OR, VT, N1, N0); // fold (or x, 0) -> x if (N1C && N1C->isNullValue()) return N0; // fold (or x, -1) -> -1 if (N1C && N1C->isAllOnesValue()) return N1; // fold (or x, c) -> c iff (x & ~c) == 0 if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue())) return N1; // reassociate or SDOperand ROR = ReassociateOps(ISD::OR, N0, N1); if (ROR.Val != 0) return ROR; // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2) if (N1C && N0.getOpcode() == ISD::AND && N0.Val->hasOneUse() && isa(N0.getOperand(1))) { ConstantSDNode *C1 = cast(N0.getOperand(1)); return DAG.getNode(ISD::AND, VT, DAG.getNode(ISD::OR, VT, N0.getOperand(0), N1), DAG.getConstant(N1C->getAPIntValue() | C1->getAPIntValue(), VT)); } // fold (or (setcc x), (setcc y)) -> (setcc (or x, y)) if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){ ISD::CondCode Op0 = cast(CC0)->get(); ISD::CondCode Op1 = cast(CC1)->get(); if (LR == RR && isa(LR) && Op0 == Op1 && LL.getValueType().isInteger()) { // fold (X != 0) | (Y != 0) -> (X|Y != 0) // fold (X < 0) | (Y < 0) -> (X|Y < 0) if (cast(LR)->isNullValue() && (Op1 == ISD::SETNE || Op1 == ISD::SETLT)) { SDOperand ORNode = DAG.getNode(ISD::OR, LR.getValueType(), LL, RL); AddToWorkList(ORNode.Val); return DAG.getSetCC(VT, ORNode, LR, Op1); } // fold (X != -1) | (Y != -1) -> (X&Y != -1) // fold (X > -1) | (Y > -1) -> (X&Y > -1) if (cast(LR)->isAllOnesValue() && (Op1 == ISD::SETNE || Op1 == ISD::SETGT)) { SDOperand ANDNode = DAG.getNode(ISD::AND, LR.getValueType(), LL, RL); AddToWorkList(ANDNode.Val); return DAG.getSetCC(VT, ANDNode, LR, Op1); } } // canonicalize equivalent to ll == rl if (LL == RR && LR == RL) { Op1 = ISD::getSetCCSwappedOperands(Op1); std::swap(RL, RR); } if (LL == RL && LR == RR) { bool isInteger = LL.getValueType().isInteger(); ISD::CondCode Result = ISD::getSetCCOrOperation(Op0, Op1, isInteger); if (Result != ISD::SETCC_INVALID) return DAG.getSetCC(N0.getValueType(), LL, LR, Result); } } // Simplify: or (op x...), (op y...) -> (op (or x, y)) if (N0.getOpcode() == N1.getOpcode()) { SDOperand Tmp = SimplifyBinOpWithSameOpcodeHands(N); if (Tmp.Val) return Tmp; } // (X & C1) | (Y & C2) -> (X|Y) & C3 if possible. if (N0.getOpcode() == ISD::AND && N1.getOpcode() == ISD::AND && N0.getOperand(1).getOpcode() == ISD::Constant && N1.getOperand(1).getOpcode() == ISD::Constant && // Don't increase # computations. (N0.Val->hasOneUse() || N1.Val->hasOneUse())) { // We can only do this xform if we know that bits from X that are set in C2 // but not in C1 are already zero. Likewise for Y. const APInt &LHSMask = cast(N0.getOperand(1))->getAPIntValue(); const APInt &RHSMask = cast(N1.getOperand(1))->getAPIntValue(); if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) && DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) { SDOperand X =DAG.getNode(ISD::OR, VT, N0.getOperand(0), N1.getOperand(0)); return DAG.getNode(ISD::AND, VT, X, DAG.getConstant(LHSMask|RHSMask, VT)); } } // See if this is some rotate idiom. if (SDNode *Rot = MatchRotate(N0, N1)) return SDOperand(Rot, 0); return SDOperand(); } /// MatchRotateHalf - Match "(X shl/srl V1) & V2" where V2 may not be present. static bool MatchRotateHalf(SDOperand Op, SDOperand &Shift, SDOperand &Mask) { if (Op.getOpcode() == ISD::AND) { if (isa(Op.getOperand(1))) { Mask = Op.getOperand(1); Op = Op.getOperand(0); } else { return false; } } if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) { Shift = Op; return true; } return false; } // MatchRotate - Handle an 'or' of two operands. If this is one of the many // idioms for rotate, and if the target supports rotation instructions, generate // a rot[lr]. SDNode *DAGCombiner::MatchRotate(SDOperand LHS, SDOperand RHS) { // Must be a legal type. Expanded 'n promoted things won't work with rotates. MVT VT = LHS.getValueType(); if (!TLI.isTypeLegal(VT)) return 0; // The target must have at least one rotate flavor. bool HasROTL = TLI.isOperationLegal(ISD::ROTL, VT); bool HasROTR = TLI.isOperationLegal(ISD::ROTR, VT); if (!HasROTL && !HasROTR) return 0; // Match "(X shl/srl V1) & V2" where V2 may not be present. SDOperand LHSShift; // The shift. SDOperand LHSMask; // AND value if any. if (!MatchRotateHalf(LHS, LHSShift, LHSMask)) return 0; // Not part of a rotate. SDOperand RHSShift; // The shift. SDOperand RHSMask; // AND value if any. if (!MatchRotateHalf(RHS, RHSShift, RHSMask)) return 0; // Not part of a rotate. if (LHSShift.getOperand(0) != RHSShift.getOperand(0)) return 0; // Not shifting the same value. if (LHSShift.getOpcode() == RHSShift.getOpcode()) return 0; // Shifts must disagree. // Canonicalize shl to left side in a shl/srl pair. if (RHSShift.getOpcode() == ISD::SHL) { std::swap(LHS, RHS); std::swap(LHSShift, RHSShift); std::swap(LHSMask , RHSMask ); } unsigned OpSizeInBits = VT.getSizeInBits(); SDOperand LHSShiftArg = LHSShift.getOperand(0); SDOperand LHSShiftAmt = LHSShift.getOperand(1); SDOperand RHSShiftAmt = RHSShift.getOperand(1); // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1) // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2) if (LHSShiftAmt.getOpcode() == ISD::Constant && RHSShiftAmt.getOpcode() == ISD::Constant) { uint64_t LShVal = cast(LHSShiftAmt)->getValue(); uint64_t RShVal = cast(RHSShiftAmt)->getValue(); if ((LShVal + RShVal) != OpSizeInBits) return 0; SDOperand Rot; if (HasROTL) Rot = DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt); else Rot = DAG.getNode(ISD::ROTR, VT, LHSShiftArg, RHSShiftAmt); // If there is an AND of either shifted operand, apply it to the result. if (LHSMask.Val || RHSMask.Val) { APInt Mask = APInt::getAllOnesValue(OpSizeInBits); if (LHSMask.Val) { APInt RHSBits = APInt::getLowBitsSet(OpSizeInBits, LShVal); Mask &= cast(LHSMask)->getAPIntValue() | RHSBits; } if (RHSMask.Val) { APInt LHSBits = APInt::getHighBitsSet(OpSizeInBits, RShVal); Mask &= cast(RHSMask)->getAPIntValue() | LHSBits; } Rot = DAG.getNode(ISD::AND, VT, Rot, DAG.getConstant(Mask, VT)); } return Rot.Val; } // If there is a mask here, and we have a variable shift, we can't be sure // that we're masking out the right stuff. if (LHSMask.Val || RHSMask.Val) return 0; // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotl x, y) // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotr x, (sub 32, y)) if (RHSShiftAmt.getOpcode() == ISD::SUB && LHSShiftAmt == RHSShiftAmt.getOperand(1)) { if (ConstantSDNode *SUBC = dyn_cast(RHSShiftAmt.getOperand(0))) { if (SUBC->getAPIntValue() == OpSizeInBits) { if (HasROTL) return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt).Val; else return DAG.getNode(ISD::ROTR, VT, LHSShiftArg, RHSShiftAmt).Val; } } } // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotr x, y) // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotl x, (sub 32, y)) if (LHSShiftAmt.getOpcode() == ISD::SUB && RHSShiftAmt == LHSShiftAmt.getOperand(1)) { if (ConstantSDNode *SUBC = dyn_cast(LHSShiftAmt.getOperand(0))) { if (SUBC->getAPIntValue() == OpSizeInBits) { if (HasROTL) return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt).Val; else return DAG.getNode(ISD::ROTR, VT, LHSShiftArg, RHSShiftAmt).Val; } } } // Look for sign/zext/any-extended cases: if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND || LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND || LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND) && (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND || RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND || RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND)) { SDOperand LExtOp0 = LHSShiftAmt.getOperand(0); SDOperand RExtOp0 = RHSShiftAmt.getOperand(0); if (RExtOp0.getOpcode() == ISD::SUB && RExtOp0.getOperand(1) == LExtOp0) { // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) -> // (rotr x, y) // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) -> // (rotl x, (sub 32, y)) if (ConstantSDNode *SUBC = cast(RExtOp0.getOperand(0))) { if (SUBC->getAPIntValue() == OpSizeInBits) { if (HasROTL) return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt).Val; else return DAG.getNode(ISD::ROTR, VT, LHSShiftArg, RHSShiftAmt).Val; } } } else if (LExtOp0.getOpcode() == ISD::SUB && RExtOp0 == LExtOp0.getOperand(1)) { // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext r))) -> // (rotl x, y) // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext r))) -> // (rotr x, (sub 32, y)) if (ConstantSDNode *SUBC = cast(LExtOp0.getOperand(0))) { if (SUBC->getAPIntValue() == OpSizeInBits) { if (HasROTL) return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, RHSShiftAmt).Val; else return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt).Val; } } } } return 0; } SDOperand DAGCombiner::visitXOR(SDNode *N) { SDOperand N0 = N->getOperand(0); SDOperand N1 = N->getOperand(1); SDOperand LHS, RHS, CC; ConstantSDNode *N0C = dyn_cast(N0); ConstantSDNode *N1C = dyn_cast(N1); MVT VT = N0.getValueType(); // fold vector ops if (VT.isVector()) { SDOperand FoldedVOp = SimplifyVBinOp(N); if (FoldedVOp.Val) return FoldedVOp; } // fold (xor undef, undef) -> 0. This is a common idiom (misuse). if (N0.getOpcode() == ISD::UNDEF && N1.getOpcode() == ISD::UNDEF) return DAG.getConstant(0, VT); // fold (xor x, undef) -> undef if (N0.getOpcode() == ISD::UNDEF) return N0; if (N1.getOpcode() == ISD::UNDEF) return N1; // fold (xor c1, c2) -> c1^c2 if (N0C && N1C) return DAG.getNode(ISD::XOR, VT, N0, N1); // canonicalize constant to RHS if (N0C && !N1C) return DAG.getNode(ISD::XOR, VT, N1, N0); // fold (xor x, 0) -> x if (N1C && N1C->isNullValue()) return N0; // reassociate xor SDOperand RXOR = ReassociateOps(ISD::XOR, N0, N1); if (RXOR.Val != 0) return RXOR; // fold !(x cc y) -> (x !cc y) if (N1C && N1C->getAPIntValue() == 1 && isSetCCEquivalent(N0, LHS, RHS, CC)) { bool isInt = LHS.getValueType().isInteger(); ISD::CondCode NotCC = ISD::getSetCCInverse(cast(CC)->get(), isInt); if (N0.getOpcode() == ISD::SETCC) return DAG.getSetCC(VT, LHS, RHS, NotCC); if (N0.getOpcode() == ISD::SELECT_CC) return DAG.getSelectCC(LHS, RHS, N0.getOperand(2),N0.getOperand(3),NotCC); assert(0 && "Unhandled SetCC Equivalent!"); abort(); } // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y))) if (N1C && N1C->getAPIntValue() == 1 && N0.getOpcode() == ISD::ZERO_EXTEND && N0.Val->hasOneUse() && isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){ SDOperand V = N0.getOperand(0); V = DAG.getNode(ISD::XOR, V.getValueType(), V, DAG.getConstant(1, V.getValueType())); AddToWorkList(V.Val); return DAG.getNode(ISD::ZERO_EXTEND, VT, V); } // fold !(x or y) -> (!x and !y) iff x or y are setcc if (N1C && N1C->getAPIntValue() == 1 && VT == MVT::i1 && (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) { SDOperand LHS = N0.getOperand(0), RHS = N0.getOperand(1); if (isOneUseSetCC(RHS) || isOneUseSetCC(LHS)) { unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND; LHS = DAG.getNode(ISD::XOR, VT, LHS, N1); // RHS = ~LHS RHS = DAG.getNode(ISD::XOR, VT, RHS, N1); // RHS = ~RHS AddToWorkList(LHS.Val); AddToWorkList(RHS.Val); return DAG.getNode(NewOpcode, VT, LHS, RHS); } } // fold !(x or y) -> (!x and !y) iff x or y are constants if (N1C && N1C->isAllOnesValue() && (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) { SDOperand LHS = N0.getOperand(0), RHS = N0.getOperand(1); if (isa(RHS) || isa(LHS)) { unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND; LHS = DAG.getNode(ISD::XOR, VT, LHS, N1); // RHS = ~LHS RHS = DAG.getNode(ISD::XOR, VT, RHS, N1); // RHS = ~RHS AddToWorkList(LHS.Val); AddToWorkList(RHS.Val); return DAG.getNode(NewOpcode, VT, LHS, RHS); } } // fold (xor (xor x, c1), c2) -> (xor x, c1^c2) if (N1C && N0.getOpcode() == ISD::XOR) { ConstantSDNode *N00C = dyn_cast(N0.getOperand(0)); ConstantSDNode *N01C = dyn_cast(N0.getOperand(1)); if (N00C) return DAG.getNode(ISD::XOR, VT, N0.getOperand(1), DAG.getConstant(N1C->getAPIntValue()^ N00C->getAPIntValue(), VT)); if (N01C) return DAG.getNode(ISD::XOR, VT, N0.getOperand(0), DAG.getConstant(N1C->getAPIntValue()^ N01C->getAPIntValue(), VT)); } // fold (xor x, x) -> 0 if (N0 == N1) { if (!VT.isVector()) { return DAG.getConstant(0, VT); } else if (!AfterLegalize || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) { // Produce a vector of zeros. SDOperand El = DAG.getConstant(0, VT.getVectorElementType()); std::vector Ops(VT.getVectorNumElements(), El); return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size()); } } // Simplify: xor (op x...), (op y...) -> (op (xor x, y)) if (N0.getOpcode() == N1.getOpcode()) { SDOperand Tmp = SimplifyBinOpWithSameOpcodeHands(N); if (Tmp.Val) return Tmp; } // Simplify the expression using non-local knowledge. if (!VT.isVector() && SimplifyDemandedBits(SDOperand(N, 0))) return SDOperand(N, 0); return SDOperand(); } /// visitShiftByConstant - Handle transforms common to the three shifts, when /// the shift amount is a constant. SDOperand DAGCombiner::visitShiftByConstant(SDNode *N, unsigned Amt) { SDNode *LHS = N->getOperand(0).Val; if (!LHS->hasOneUse()) return SDOperand(); // We want to pull some binops through shifts, so that we have (and (shift)) // instead of (shift (and)), likewise for add, or, xor, etc. This sort of // thing happens with address calculations, so it's important to canonicalize // it. bool HighBitSet = false; // Can we transform this if the high bit is set? switch (LHS->getOpcode()) { default: return SDOperand(); case ISD::OR: case ISD::XOR: HighBitSet = false; // We can only transform sra if the high bit is clear. break; case ISD::AND: HighBitSet = true; // We can only transform sra if the high bit is set. break; case ISD::ADD: if (N->getOpcode() != ISD::SHL) return SDOperand(); // only shl(add) not sr[al](add). HighBitSet = false; // We can only transform sra if the high bit is clear. break; } // We require the RHS of the binop to be a constant as well. ConstantSDNode *BinOpCst = dyn_cast(LHS->getOperand(1)); if (!BinOpCst) return SDOperand(); // FIXME: disable this for unless the input to the binop is a shift by a // constant. If it is not a shift, it pessimizes some common cases like: // //void foo(int *X, int i) { X[i & 1235] = 1; } //int bar(int *X, int i) { return X[i & 255]; } SDNode *BinOpLHSVal = LHS->getOperand(0).Val; if ((BinOpLHSVal->getOpcode() != ISD::SHL && BinOpLHSVal->getOpcode() != ISD::SRA && BinOpLHSVal->getOpcode() != ISD::SRL) || !isa(BinOpLHSVal->getOperand(1))) return SDOperand(); MVT VT = N->getValueType(0); // If this is a signed shift right, and the high bit is modified // by the logical operation, do not perform the transformation. // The highBitSet boolean indicates the value of the high bit of // the constant which would cause it to be modified for this // operation. if (N->getOpcode() == ISD::SRA) { bool BinOpRHSSignSet = BinOpCst->getAPIntValue().isNegative(); if (BinOpRHSSignSet != HighBitSet) return SDOperand(); } // Fold the constants, shifting the binop RHS by the shift amount. SDOperand NewRHS = DAG.getNode(N->getOpcode(), N->getValueType(0), LHS->getOperand(1), N->getOperand(1)); // Create the new shift. SDOperand NewShift = DAG.getNode(N->getOpcode(), VT, LHS->getOperand(0), N->getOperand(1)); // Create the new binop. return DAG.getNode(LHS->getOpcode(), VT, NewShift, NewRHS); } SDOperand DAGCombiner::visitSHL(SDNode *N) { SDOperand N0 = N->getOperand(0); SDOperand N1 = N->getOperand(1); ConstantSDNode *N0C = dyn_cast(N0); ConstantSDNode *N1C = dyn_cast(N1); MVT VT = N0.getValueType(); unsigned OpSizeInBits = VT.getSizeInBits(); // fold (shl c1, c2) -> c1< 0 if (N0C && N0C->isNullValue()) return N0; // fold (shl x, c >= size(x)) -> undef if (N1C && N1C->getValue() >= OpSizeInBits) return DAG.getNode(ISD::UNDEF, VT); // fold (shl x, 0) -> x if (N1C && N1C->isNullValue()) return N0; // if (shl x, c) is known to be zero, return 0 if (DAG.MaskedValueIsZero(SDOperand(N, 0), APInt::getAllOnesValue(VT.getSizeInBits()))) return DAG.getConstant(0, VT); if (N1C && SimplifyDemandedBits(SDOperand(N, 0))) return SDOperand(N, 0); // fold (shl (shl x, c1), c2) -> 0 or (shl x, c1+c2) if (N1C && N0.getOpcode() == ISD::SHL && N0.getOperand(1).getOpcode() == ISD::Constant) { uint64_t c1 = cast(N0.getOperand(1))->getValue(); uint64_t c2 = N1C->getValue(); if (c1 + c2 > OpSizeInBits) return DAG.getConstant(0, VT); return DAG.getNode(ISD::SHL, VT, N0.getOperand(0), DAG.getConstant(c1 + c2, N1.getValueType())); } // fold (shl (srl x, c1), c2) -> (shl (and x, -1 << c1), c2-c1) or // (srl (and x, -1 << c1), c1-c2) if (N1C && N0.getOpcode() == ISD::SRL && N0.getOperand(1).getOpcode() == ISD::Constant) { uint64_t c1 = cast(N0.getOperand(1))->getValue(); uint64_t c2 = N1C->getValue(); SDOperand Mask = DAG.getNode(ISD::AND, VT, N0.getOperand(0), DAG.getConstant(~0ULL << c1, VT)); if (c2 > c1) return DAG.getNode(ISD::SHL, VT, Mask, DAG.getConstant(c2-c1, N1.getValueType())); else return DAG.getNode(ISD::SRL, VT, Mask, DAG.getConstant(c1-c2, N1.getValueType())); } // fold (shl (sra x, c1), c1) -> (and x, -1 << c1) if (N1C && N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1)) return DAG.getNode(ISD::AND, VT, N0.getOperand(0), DAG.getConstant(~0ULL << N1C->getValue(), VT)); return N1C ? visitShiftByConstant(N, N1C->getValue()) : SDOperand(); } SDOperand DAGCombiner::visitSRA(SDNode *N) { SDOperand N0 = N->getOperand(0); SDOperand N1 = N->getOperand(1); ConstantSDNode *N0C = dyn_cast(N0); ConstantSDNode *N1C = dyn_cast(N1); MVT VT = N0.getValueType(); // fold (sra c1, c2) -> c1>>c2 if (N0C && N1C) return DAG.getNode(ISD::SRA, VT, N0, N1); // fold (sra 0, x) -> 0 if (N0C && N0C->isNullValue()) return N0; // fold (sra -1, x) -> -1 if (N0C && N0C->isAllOnesValue()) return N0; // fold (sra x, c >= size(x)) -> undef if (N1C && N1C->getValue() >= VT.getSizeInBits()) return DAG.getNode(ISD::UNDEF, VT); // fold (sra x, 0) -> x if (N1C && N1C->isNullValue()) return N0; // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports // sext_inreg. if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) { unsigned LowBits = VT.getSizeInBits() - (unsigned)N1C->getValue(); MVT EVT = MVT::getIntegerVT(LowBits); if (EVT.isSimple() && // TODO: remove when apint codegen support lands. (!AfterLegalize || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, EVT))) return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0.getOperand(0), DAG.getValueType(EVT)); } // fold (sra (sra x, c1), c2) -> (sra x, c1+c2) if (N1C && N0.getOpcode() == ISD::SRA) { if (ConstantSDNode *C1 = dyn_cast(N0.getOperand(1))) { unsigned Sum = N1C->getValue() + C1->getValue(); if (Sum >= VT.getSizeInBits()) Sum = VT.getSizeInBits()-1; return DAG.getNode(ISD::SRA, VT, N0.getOperand(0), DAG.getConstant(Sum, N1C->getValueType(0))); } } // fold sra (shl X, m), result_size - n // -> (sign_extend (trunc (shl X, result_size - n - m))) for // result_size - n != m. // If truncate is free for the target sext(shl) is likely to result in better // code. if (N0.getOpcode() == ISD::SHL) { // Get the two constanst of the shifts, CN0 = m, CN = n. const ConstantSDNode *N01C = dyn_cast(N0.getOperand(1)); if (N01C && N1C) { // Determine what the truncate's result bitsize and type would be. unsigned VTValSize = VT.getSizeInBits(); MVT TruncVT = MVT::getIntegerVT(VTValSize - N1C->getValue()); // Determine the residual right-shift amount. unsigned ShiftAmt = N1C->getValue() - N01C->getValue(); // If the shift is not a no-op (in which case this should be just a sign // extend already), the truncated to type is legal, sign_extend is legal // on that type, and the the truncate to that type is both legal and free, // perform the transform. if (ShiftAmt && TLI.isOperationLegal(ISD::SIGN_EXTEND, TruncVT) && TLI.isOperationLegal(ISD::TRUNCATE, VT) && TLI.isTruncateFree(VT, TruncVT)) { SDOperand Amt = DAG.getConstant(ShiftAmt, TLI.getShiftAmountTy()); SDOperand Shift = DAG.getNode(ISD::SRL, VT, N0.getOperand(0), Amt); SDOperand Trunc = DAG.getNode(ISD::TRUNCATE, TruncVT, Shift); return DAG.getNode(ISD::SIGN_EXTEND, N->getValueType(0), Trunc); } } } // Simplify, based on bits shifted out of the LHS. if (N1C && SimplifyDemandedBits(SDOperand(N, 0))) return SDOperand(N, 0); // If the sign bit is known to be zero, switch this to a SRL. if (DAG.SignBitIsZero(N0)) return DAG.getNode(ISD::SRL, VT, N0, N1); return N1C ? visitShiftByConstant(N, N1C->getValue()) : SDOperand(); } SDOperand DAGCombiner::visitSRL(SDNode *N) { SDOperand N0 = N->getOperand(0); SDOperand N1 = N->getOperand(1); ConstantSDNode *N0C = dyn_cast(N0); ConstantSDNode *N1C = dyn_cast(N1); MVT VT = N0.getValueType(); unsigned OpSizeInBits = VT.getSizeInBits(); // fold (srl c1, c2) -> c1 >>u c2 if (N0C && N1C) return DAG.getNode(ISD::SRL, VT, N0, N1); // fold (srl 0, x) -> 0 if (N0C && N0C->isNullValue()) return N0; // fold (srl x, c >= size(x)) -> undef if (N1C && N1C->getValue() >= OpSizeInBits) return DAG.getNode(ISD::UNDEF, VT); // fold (srl x, 0) -> x if (N1C && N1C->isNullValue()) return N0; // if (srl x, c) is known to be zero, return 0 if (N1C && DAG.MaskedValueIsZero(SDOperand(N, 0), APInt::getAllOnesValue(OpSizeInBits))) return DAG.getConstant(0, VT); // fold (srl (srl x, c1), c2) -> 0 or (srl x, c1+c2) if (N1C && N0.getOpcode() == ISD::SRL && N0.getOperand(1).getOpcode() == ISD::Constant) { uint64_t c1 = cast(N0.getOperand(1))->getValue(); uint64_t c2 = N1C->getValue(); if (c1 + c2 > OpSizeInBits) return DAG.getConstant(0, VT); return DAG.getNode(ISD::SRL, VT, N0.getOperand(0), DAG.getConstant(c1 + c2, N1.getValueType())); } // fold (srl (anyextend x), c) -> (anyextend (srl x, c)) if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) { // Shifting in all undef bits? MVT SmallVT = N0.getOperand(0).getValueType(); if (N1C->getValue() >= SmallVT.getSizeInBits()) return DAG.getNode(ISD::UNDEF, VT); SDOperand SmallShift = DAG.getNode(ISD::SRL, SmallVT, N0.getOperand(0), N1); AddToWorkList(SmallShift.Val); return DAG.getNode(ISD::ANY_EXTEND, VT, SmallShift); } // fold (srl (sra X, Y), 31) -> (srl X, 31). This srl only looks at the sign // bit, which is unmodified by sra. if (N1C && N1C->getValue()+1 == VT.getSizeInBits()) { if (N0.getOpcode() == ISD::SRA) return DAG.getNode(ISD::SRL, VT, N0.getOperand(0), N1); } // fold (srl (ctlz x), "5") -> x iff x has one bit set (the low bit). if (N1C && N0.getOpcode() == ISD::CTLZ && N1C->getAPIntValue() == Log2_32(VT.getSizeInBits())) { APInt KnownZero, KnownOne; APInt Mask = APInt::getAllOnesValue(VT.getSizeInBits()); DAG.ComputeMaskedBits(N0.getOperand(0), Mask, KnownZero, KnownOne); // If any of the input bits are KnownOne, then the input couldn't be all // zeros, thus the result of the srl will always be zero. if (KnownOne.getBoolValue()) return DAG.getConstant(0, VT); // If all of the bits input the to ctlz node are known to be zero, then // the result of the ctlz is "32" and the result of the shift is one. APInt UnknownBits = ~KnownZero & Mask; if (UnknownBits == 0) return DAG.getConstant(1, VT); // Otherwise, check to see if there is exactly one bit input to the ctlz. if ((UnknownBits & (UnknownBits-1)) == 0) { // Okay, we know that only that the single bit specified by UnknownBits // could be set on input to the CTLZ node. If this bit is set, the SRL // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair // to an SRL,XOR pair, which is likely to simplify more. unsigned ShAmt = UnknownBits.countTrailingZeros(); SDOperand Op = N0.getOperand(0); if (ShAmt) { Op = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(ShAmt, TLI.getShiftAmountTy())); AddToWorkList(Op.Val); } return DAG.getNode(ISD::XOR, VT, Op, DAG.getConstant(1, VT)); } } // fold operands of srl based on knowledge that the low bits are not // demanded. if (N1C && SimplifyDemandedBits(SDOperand(N, 0))) return SDOperand(N, 0); return N1C ? visitShiftByConstant(N, N1C->getValue()) : SDOperand(); } SDOperand DAGCombiner::visitCTLZ(SDNode *N) { SDOperand N0 = N->getOperand(0); MVT VT = N->getValueType(0); // fold (ctlz c1) -> c2 if (isa(N0)) return DAG.getNode(ISD::CTLZ, VT, N0); return SDOperand(); } SDOperand DAGCombiner::visitCTTZ(SDNode *N) { SDOperand N0 = N->getOperand(0); MVT VT = N->getValueType(0); // fold (cttz c1) -> c2 if (isa(N0)) return DAG.getNode(ISD::CTTZ, VT, N0); return SDOperand(); } SDOperand DAGCombiner::visitCTPOP(SDNode *N) { SDOperand N0 = N->getOperand(0); MVT VT = N->getValueType(0); // fold (ctpop c1) -> c2 if (isa(N0)) return DAG.getNode(ISD::CTPOP, VT, N0); return SDOperand(); } SDOperand DAGCombiner::visitSELECT(SDNode *N) { SDOperand N0 = N->getOperand(0); SDOperand N1 = N->getOperand(1); SDOperand N2 = N->getOperand(2); ConstantSDNode *N0C = dyn_cast(N0); ConstantSDNode *N1C = dyn_cast(N1); ConstantSDNode *N2C = dyn_cast(N2); MVT VT = N->getValueType(0); MVT VT0 = N0.getValueType(); // fold select C, X, X -> X if (N1 == N2) return N1; // fold select true, X, Y -> X if (N0C && !N0C->isNullValue()) return N1; // fold select false, X, Y -> Y if (N0C && N0C->isNullValue()) return N2; // fold select C, 1, X -> C | X if (VT == MVT::i1 && N1C && N1C->getAPIntValue() == 1) return DAG.getNode(ISD::OR, VT, N0, N2); // fold select C, 0, 1 -> ~C if (VT.isInteger() && VT0.isInteger() && N1C && N2C && N1C->isNullValue() && N2C->getAPIntValue() == 1) { SDOperand XORNode = DAG.getNode(ISD::XOR, VT0, N0, DAG.getConstant(1, VT0)); if (VT == VT0) return XORNode; AddToWorkList(XORNode.Val); if (VT.bitsGT(VT0)) return DAG.getNode(ISD::ZERO_EXTEND, VT, XORNode); return DAG.getNode(ISD::TRUNCATE, VT, XORNode); } // fold select C, 0, X -> ~C & X if (VT == VT0 && VT == MVT::i1 && N1C && N1C->isNullValue()) { SDOperand XORNode = DAG.getNode(ISD::XOR, VT, N0, DAG.getConstant(1, VT)); AddToWorkList(XORNode.Val); return DAG.getNode(ISD::AND, VT, XORNode, N2); } // fold select C, X, 1 -> ~C | X if (VT == VT0 && VT == MVT::i1 && N2C && N2C->getAPIntValue() == 1) { SDOperand XORNode = DAG.getNode(ISD::XOR, VT, N0, DAG.getConstant(1, VT)); AddToWorkList(XORNode.Val); return DAG.getNode(ISD::OR, VT, XORNode, N1); } // fold select C, X, 0 -> C & X // FIXME: this should check for C type == X type, not i1? if (VT == MVT::i1 && N2C && N2C->isNullValue()) return DAG.getNode(ISD::AND, VT, N0, N1); // fold X ? X : Y --> X ? 1 : Y --> X | Y if (VT == MVT::i1 && N0 == N1) return DAG.getNode(ISD::OR, VT, N0, N2); // fold X ? Y : X --> X ? Y : 0 --> X & Y if (VT == MVT::i1 && N0 == N2) return DAG.getNode(ISD::AND, VT, N0, N1); // If we can fold this based on the true/false value, do so. if (SimplifySelectOps(N, N1, N2)) return SDOperand(N, 0); // Don't revisit N. // fold selects based on a setcc into other things, such as min/max/abs if (N0.getOpcode() == ISD::SETCC) { // FIXME: // Check against MVT::Other for SELECT_CC, which is a workaround for targets // having to say they don't support SELECT_CC on every type the DAG knows // about, since there is no way to mark an opcode illegal at all value types if (TLI.isOperationLegal(ISD::SELECT_CC, MVT::Other)) return DAG.getNode(ISD::SELECT_CC, VT, N0.getOperand(0), N0.getOperand(1), N1, N2, N0.getOperand(2)); else return SimplifySelect(N0, N1, N2); } return SDOperand(); } SDOperand DAGCombiner::visitSELECT_CC(SDNode *N) { SDOperand N0 = N->getOperand(0); SDOperand N1 = N->getOperand(1); SDOperand N2 = N->getOperand(2); SDOperand N3 = N->getOperand(3); SDOperand N4 = N->getOperand(4); ISD::CondCode CC = cast(N4)->get(); // fold select_cc lhs, rhs, x, x, cc -> x if (N2 == N3) return N2; // Determine if the condition we're dealing with is constant SDOperand SCC = SimplifySetCC(TLI.getSetCCResultType(N0), N0, N1, CC, false); if (SCC.Val) AddToWorkList(SCC.Val); if (ConstantSDNode *SCCC = dyn_cast_or_null(SCC.Val)) { if (!SCCC->isNullValue()) return N2; // cond always true -> true val else return N3; // cond always false -> false val } // Fold to a simpler select_cc if (SCC.Val && SCC.getOpcode() == ISD::SETCC) return DAG.getNode(ISD::SELECT_CC, N2.getValueType(), SCC.getOperand(0), SCC.getOperand(1), N2, N3, SCC.getOperand(2)); // If we can fold this based on the true/false value, do so. if (SimplifySelectOps(N, N2, N3)) return SDOperand(N, 0); // Don't revisit N. // fold select_cc into other things, such as min/max/abs return SimplifySelectCC(N0, N1, N2, N3, CC); } SDOperand DAGCombiner::visitSETCC(SDNode *N) { return SimplifySetCC(N->getValueType(0), N->getOperand(0), N->getOperand(1), cast(N->getOperand(2))->get()); } // ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this: // "fold ({s|z}ext (load x)) -> ({s|z}ext (truncate ({s|z}extload x)))" // transformation. Returns true if extension are possible and the above // mentioned transformation is profitable. static bool ExtendUsesToFormExtLoad(SDNode *N, SDOperand N0, unsigned ExtOpc, SmallVector &ExtendNodes, TargetLowering &TLI) { bool HasCopyToRegUses = false; bool isTruncFree = TLI.isTruncateFree(N->getValueType(0), N0.getValueType()); for (SDNode::use_iterator UI = N0.Val->use_begin(), UE = N0.Val->use_end(); UI != UE; ++UI) { SDNode *User = UI->getUser(); if (User == N) continue; // FIXME: Only extend SETCC N, N and SETCC N, c for now. if (User->getOpcode() == ISD::SETCC) { ISD::CondCode CC = cast(User->getOperand(2))->get(); if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC)) // Sign bits will be lost after a zext. return false; bool Add = false; for (unsigned i = 0; i != 2; ++i) { SDOperand UseOp = User->getOperand(i); if (UseOp == N0) continue; if (!isa(UseOp)) return false; Add = true; } if (Add) ExtendNodes.push_back(User); } else { for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { SDOperand UseOp = User->getOperand(i); if (UseOp == N0) { // If truncate from extended type to original load type is free // on this target, then it's ok to extend a CopyToReg. if (isTruncFree && User->getOpcode() == ISD::CopyToReg) HasCopyToRegUses = true; else return false; } } } } if (HasCopyToRegUses) { bool BothLiveOut = false; for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); UI != UE; ++UI) { SDNode *User = UI->getUser(); for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { SDOperand UseOp = User->getOperand(i); if (UseOp.Val == N && UseOp.ResNo == 0) { BothLiveOut = true; break; } } } if (BothLiveOut) // Both unextended and extended values are live out. There had better be // good a reason for the transformation. return ExtendNodes.size(); } return true; } SDOperand DAGCombiner::visitSIGN_EXTEND(SDNode *N) { SDOperand N0 = N->getOperand(0); MVT VT = N->getValueType(0); // fold (sext c1) -> c1 if (isa(N0)) return DAG.getNode(ISD::SIGN_EXTEND, VT, N0); // fold (sext (sext x)) -> (sext x) // fold (sext (aext x)) -> (sext x) if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) return DAG.getNode(ISD::SIGN_EXTEND, VT, N0.getOperand(0)); if (N0.getOpcode() == ISD::TRUNCATE) { // fold (sext (truncate (load x))) -> (sext (smaller load x)) // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n))) SDOperand NarrowLoad = ReduceLoadWidth(N0.Val); if (NarrowLoad.Val) { if (NarrowLoad.Val != N0.Val) CombineTo(N0.Val, NarrowLoad); return DAG.getNode(ISD::SIGN_EXTEND, VT, NarrowLoad); } // See if the value being truncated is already sign extended. If so, just // eliminate the trunc/sext pair. SDOperand Op = N0.getOperand(0); unsigned OpBits = Op.getValueType().getSizeInBits(); unsigned MidBits = N0.getValueType().getSizeInBits(); unsigned DestBits = VT.getSizeInBits(); unsigned NumSignBits = DAG.ComputeNumSignBits(Op); if (OpBits == DestBits) { // Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign // bits, it is already ready. if (NumSignBits > DestBits-MidBits) return Op; } else if (OpBits < DestBits) { // Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign // bits, just sext from i32. if (NumSignBits > OpBits-MidBits) return DAG.getNode(ISD::SIGN_EXTEND, VT, Op); } else { // Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign // bits, just truncate to i32. if (NumSignBits > OpBits-MidBits) return DAG.getNode(ISD::TRUNCATE, VT, Op); } // fold (sext (truncate x)) -> (sextinreg x). if (!AfterLegalize || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, N0.getValueType())) { if (Op.getValueType().bitsLT(VT)) Op = DAG.getNode(ISD::ANY_EXTEND, VT, Op); else if (Op.getValueType().bitsGT(VT)) Op = DAG.getNode(ISD::TRUNCATE, VT, Op); return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, Op, DAG.getValueType(N0.getValueType())); } } // fold (sext (load x)) -> (sext (truncate (sextload x))) if (ISD::isNON_EXTLoad(N0.Val) && ((!AfterLegalize && !cast(N0)->isVolatile()) || TLI.isLoadXLegal(ISD::SEXTLOAD, N0.getValueType()))) { bool DoXform = true; SmallVector SetCCs; if (!N0.hasOneUse()) DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::SIGN_EXTEND, SetCCs, TLI); if (DoXform) { LoadSDNode *LN0 = cast(N0); SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, LN0->getChain(), LN0->getBasePtr(), LN0->getSrcValue(), LN0->getSrcValueOffset(), N0.getValueType(), LN0->isVolatile(), LN0->getAlignment()); CombineTo(N, ExtLoad); SDOperand Trunc = DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad); CombineTo(N0.Val, Trunc, ExtLoad.getValue(1)); // Extend SetCC uses if necessary. for (unsigned i = 0, e = SetCCs.size(); i != e; ++i) { SDNode *SetCC = SetCCs[i]; SmallVector Ops; for (unsigned j = 0; j != 2; ++j) { SDOperand SOp = SetCC->getOperand(j); if (SOp == Trunc) Ops.push_back(ExtLoad); else Ops.push_back(DAG.getNode(ISD::SIGN_EXTEND, VT, SOp)); } Ops.push_back(SetCC->getOperand(2)); CombineTo(SetCC, DAG.getNode(ISD::SETCC, SetCC->getValueType(0), &Ops[0], Ops.size())); } return SDOperand(N, 0); // Return N so it doesn't get rechecked! } } // fold (sext (sextload x)) -> (sext (truncate (sextload x))) // fold (sext ( extload x)) -> (sext (truncate (sextload x))) if ((ISD::isSEXTLoad(N0.Val) || ISD::isEXTLoad(N0.Val)) && ISD::isUNINDEXEDLoad(N0.Val) && N0.hasOneUse()) { LoadSDNode *LN0 = cast(N0); MVT EVT = LN0->getMemoryVT(); if ((!AfterLegalize && !LN0->isVolatile()) || TLI.isLoadXLegal(ISD::SEXTLOAD, EVT)) { SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, LN0->getChain(), LN0->getBasePtr(), LN0->getSrcValue(), LN0->getSrcValueOffset(), EVT, LN0->isVolatile(), LN0->getAlignment()); CombineTo(N, ExtLoad); CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad), ExtLoad.getValue(1)); return SDOperand(N, 0); // Return N so it doesn't get rechecked! } } // sext(setcc x,y,cc) -> select_cc x, y, -1, 0, cc if (N0.getOpcode() == ISD::SETCC) { SDOperand SCC = SimplifySelectCC(N0.getOperand(0), N0.getOperand(1), DAG.getConstant(~0ULL, VT), DAG.getConstant(0, VT), cast(N0.getOperand(2))->get(), true); if (SCC.Val) return SCC; } // fold (sext x) -> (zext x) if the sign bit is known zero. if ((!AfterLegalize || TLI.isOperationLegal(ISD::ZERO_EXTEND, VT)) && DAG.SignBitIsZero(N0)) return DAG.getNode(ISD::ZERO_EXTEND, VT, N0); return SDOperand(); } SDOperand DAGCombiner::visitZERO_EXTEND(SDNode *N) { SDOperand N0 = N->getOperand(0); MVT VT = N->getValueType(0); // fold (zext c1) -> c1 if (isa(N0)) return DAG.getNode(ISD::ZERO_EXTEND, VT, N0); // fold (zext (zext x)) -> (zext x) // fold (zext (aext x)) -> (zext x) if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) return DAG.getNode(ISD::ZERO_EXTEND, VT, N0.getOperand(0)); // fold (zext (truncate (load x))) -> (zext (smaller load x)) // fold (zext (truncate (srl (load x), c))) -> (zext (small load (x+c/n))) if (N0.getOpcode() == ISD::TRUNCATE) { SDOperand NarrowLoad = ReduceLoadWidth(N0.Val); if (NarrowLoad.Val) { if (NarrowLoad.Val != N0.Val) CombineTo(N0.Val, NarrowLoad); return DAG.getNode(ISD::ZERO_EXTEND, VT, NarrowLoad); } } // fold (zext (truncate x)) -> (and x, mask) if (N0.getOpcode() == ISD::TRUNCATE && (!AfterLegalize || TLI.isOperationLegal(ISD::AND, VT))) { SDOperand Op = N0.getOperand(0); if (Op.getValueType().bitsLT(VT)) { Op = DAG.getNode(ISD::ANY_EXTEND, VT, Op); } else if (Op.getValueType().bitsGT(VT)) { Op = DAG.getNode(ISD::TRUNCATE, VT, Op); } return DAG.getZeroExtendInReg(Op, N0.getValueType()); } // fold (zext (and (trunc x), cst)) -> (and x, cst). if (N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::TRUNCATE && N0.getOperand(1).getOpcode() == ISD::Constant) { SDOperand X = N0.getOperand(0).getOperand(0); if (X.getValueType().bitsLT(VT)) { X = DAG.getNode(ISD::ANY_EXTEND, VT, X); } else if (X.getValueType().bitsGT(VT)) { X = DAG.getNode(ISD::TRUNCATE, VT, X); } APInt Mask = cast(N0.getOperand(1))->getAPIntValue(); Mask.zext(VT.getSizeInBits()); return DAG.getNode(ISD::AND, VT, X, DAG.getConstant(Mask, VT)); } // fold (zext (load x)) -> (zext (truncate (zextload x))) if (ISD::isNON_EXTLoad(N0.Val) && ((!AfterLegalize && !cast(N0)->isVolatile()) || TLI.isLoadXLegal(ISD::ZEXTLOAD, N0.getValueType()))) { bool DoXform = true; SmallVector SetCCs; if (!N0.hasOneUse()) DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ZERO_EXTEND, SetCCs, TLI); if (DoXform) { LoadSDNode *LN0 = cast(N0); SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(), LN0->getBasePtr(), LN0->getSrcValue(), LN0->getSrcValueOffset(), N0.getValueType(), LN0->isVolatile(), LN0->getAlignment()); CombineTo(N, ExtLoad); SDOperand Trunc = DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad); CombineTo(N0.Val, Trunc, ExtLoad.getValue(1)); // Extend SetCC uses if necessary. for (unsigned i = 0, e = SetCCs.size(); i != e; ++i) { SDNode *SetCC = SetCCs[i]; SmallVector Ops; for (unsigned j = 0; j != 2; ++j) { SDOperand SOp = SetCC->getOperand(j); if (SOp == Trunc) Ops.push_back(ExtLoad); else Ops.push_back(DAG.getNode(ISD::ZERO_EXTEND, VT, SOp)); } Ops.push_back(SetCC->getOperand(2)); CombineTo(SetCC, DAG.getNode(ISD::SETCC, SetCC->getValueType(0), &Ops[0], Ops.size())); } return SDOperand(N, 0); // Return N so it doesn't get rechecked! } } // fold (zext (zextload x)) -> (zext (truncate (zextload x))) // fold (zext ( extload x)) -> (zext (truncate (zextload x))) if ((ISD::isZEXTLoad(N0.Val) || ISD::isEXTLoad(N0.Val)) && ISD::isUNINDEXEDLoad(N0.Val) && N0.hasOneUse()) { LoadSDNode *LN0 = cast(N0); MVT EVT = LN0->getMemoryVT(); if ((!AfterLegalize && !LN0->isVolatile()) || TLI.isLoadXLegal(ISD::ZEXTLOAD, EVT)) { SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(), LN0->getBasePtr(), LN0->getSrcValue(), LN0->getSrcValueOffset(), EVT, LN0->isVolatile(), LN0->getAlignment()); CombineTo(N, ExtLoad); CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad), ExtLoad.getValue(1)); return SDOperand(N, 0); // Return N so it doesn't get rechecked! } } // zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc if (N0.getOpcode() == ISD::SETCC) { SDOperand SCC = SimplifySelectCC(N0.getOperand(0), N0.getOperand(1), DAG.getConstant(1, VT), DAG.getConstant(0, VT), cast(N0.getOperand(2))->get(), true); if (SCC.Val) return SCC; } return SDOperand(); } SDOperand DAGCombiner::visitANY_EXTEND(SDNode *N) { SDOperand N0 = N->getOperand(0); MVT VT = N->getValueType(0); // fold (aext c1) -> c1 if (isa(N0)) return DAG.getNode(ISD::ANY_EXTEND, VT, N0); // fold (aext (aext x)) -> (aext x) // fold (aext (zext x)) -> (zext x) // fold (aext (sext x)) -> (sext x) if (N0.getOpcode() == ISD::ANY_EXTEND || N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::SIGN_EXTEND) return DAG.getNode(N0.getOpcode(), VT, N0.getOperand(0)); // fold (aext (truncate (load x))) -> (aext (smaller load x)) // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n))) if (N0.getOpcode() == ISD::TRUNCATE) { SDOperand NarrowLoad = ReduceLoadWidth(N0.Val); if (NarrowLoad.Val) { if (NarrowLoad.Val != N0.Val) CombineTo(N0.Val, NarrowLoad); return DAG.getNode(ISD::ANY_EXTEND, VT, NarrowLoad); } } // fold (aext (truncate x)) if (N0.getOpcode() == ISD::TRUNCATE) { SDOperand TruncOp = N0.getOperand(0); if (TruncOp.getValueType() == VT) return TruncOp; // x iff x size == zext size. if (TruncOp.getValueType().bitsGT(VT)) return DAG.getNode(ISD::TRUNCATE, VT, TruncOp); return DAG.getNode(ISD::ANY_EXTEND, VT, TruncOp); } // fold (aext (and (trunc x), cst)) -> (and x, cst). if (N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::TRUNCATE && N0.getOperand(1).getOpcode() == ISD::Constant) { SDOperand X = N0.getOperand(0).getOperand(0); if (X.getValueType().bitsLT(VT)) { X = DAG.getNode(ISD::ANY_EXTEND, VT, X); } else if (X.getValueType().bitsGT(VT)) { X = DAG.getNode(ISD::TRUNCATE, VT, X); } APInt Mask = cast(N0.getOperand(1))->getAPIntValue(); Mask.zext(VT.getSizeInBits()); return DAG.getNode(ISD::AND, VT, X, DAG.getConstant(Mask, VT)); } // fold (aext (load x)) -> (aext (truncate (extload x))) if (ISD::isNON_EXTLoad(N0.Val) && N0.hasOneUse() && ((!AfterLegalize && !cast(N0)->isVolatile()) || TLI.isLoadXLegal(ISD::EXTLOAD, N0.getValueType()))) { LoadSDNode *LN0 = cast(N0); SDOperand ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, VT, LN0->getChain(), LN0->getBasePtr(), LN0->getSrcValue(), LN0->getSrcValueOffset(), N0.getValueType(), LN0->isVolatile(), LN0->getAlignment()); CombineTo(N, ExtLoad); CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad), ExtLoad.getValue(1)); return SDOperand(N, 0); // Return N so it doesn't get rechecked! } // fold (aext (zextload x)) -> (aext (truncate (zextload x))) // fold (aext (sextload x)) -> (aext (truncate (sextload x))) // fold (aext ( extload x)) -> (aext (truncate (extload x))) if (N0.getOpcode() == ISD::LOAD && !ISD::isNON_EXTLoad(N0.Val) && ISD::isUNINDEXEDLoad(N0.Val) && N0.hasOneUse()) { LoadSDNode *LN0 = cast(N0); MVT EVT = LN0->getMemoryVT(); SDOperand ExtLoad = DAG.getExtLoad(LN0->getExtensionType(), VT, LN0->getChain(), LN0->getBasePtr(), LN0->getSrcValue(), LN0->getSrcValueOffset(), EVT, LN0->isVolatile(), LN0->getAlignment()); CombineTo(N, ExtLoad); CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad), ExtLoad.getValue(1)); return SDOperand(N, 0); // Return N so it doesn't get rechecked! } // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc if (N0.getOpcode() == ISD::SETCC) { SDOperand SCC = SimplifySelectCC(N0.getOperand(0), N0.getOperand(1), DAG.getConstant(1, VT), DAG.getConstant(0, VT), cast(N0.getOperand(2))->get(), true); if (SCC.Val) return SCC; } return SDOperand(); } /// GetDemandedBits - See if the specified operand can be simplified with the /// knowledge that only the bits specified by Mask are used. If so, return the /// simpler operand, otherwise return a null SDOperand. SDOperand DAGCombiner::GetDemandedBits(SDOperand V, const APInt &Mask) { switch (V.getOpcode()) { default: break; case ISD::OR: case ISD::XOR: // If the LHS or RHS don't contribute bits to the or, drop them. if (DAG.MaskedValueIsZero(V.getOperand(0), Mask)) return V.getOperand(1); if (DAG.MaskedValueIsZero(V.getOperand(1), Mask)) return V.getOperand(0); break; case ISD::SRL: // Only look at single-use SRLs. if (!V.Val->hasOneUse()) break; if (ConstantSDNode *RHSC = dyn_cast(V.getOperand(1))) { // See if we can recursively simplify the LHS. unsigned Amt = RHSC->getValue(); APInt NewMask = Mask << Amt; SDOperand SimplifyLHS = GetDemandedBits(V.getOperand(0), NewMask); if (SimplifyLHS.Val) { return DAG.getNode(ISD::SRL, V.getValueType(), SimplifyLHS, V.getOperand(1)); } } } return SDOperand(); } /// ReduceLoadWidth - If the result of a wider load is shifted to right of N /// bits and then truncated to a narrower type and where N is a multiple /// of number of bits of the narrower type, transform it to a narrower load /// from address + N / num of bits of new type. If the result is to be /// extended, also fold the extension to form a extending load. SDOperand DAGCombiner::ReduceLoadWidth(SDNode *N) { unsigned Opc = N->getOpcode(); ISD::LoadExtType ExtType = ISD::NON_EXTLOAD; SDOperand N0 = N->getOperand(0); MVT VT = N->getValueType(0); MVT EVT = N->getValueType(0); // Special case: SIGN_EXTEND_INREG is basically truncating to EVT then // extended to VT. if (Opc == ISD::SIGN_EXTEND_INREG) { ExtType = ISD::SEXTLOAD; EVT = cast(N->getOperand(1))->getVT(); if (AfterLegalize && !TLI.isLoadXLegal(ISD::SEXTLOAD, EVT)) return SDOperand(); } unsigned EVTBits = EVT.getSizeInBits(); unsigned ShAmt = 0; bool CombineSRL = false; if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) { if (ConstantSDNode *N01 = dyn_cast(N0.getOperand(1))) { ShAmt = N01->getValue(); // Is the shift amount a multiple of size of VT? if ((ShAmt & (EVTBits-1)) == 0) { N0 = N0.getOperand(0); if (N0.getValueType().getSizeInBits() <= EVTBits) return SDOperand(); CombineSRL = true; } } } // Do not generate loads of non-round integer types since these can // be expensive (and would be wrong if the type is not byte sized). if (ISD::isNON_EXTLoad(N0.Val) && N0.hasOneUse() && VT.isRound() && // Do not change the width of a volatile load. !cast(N0)->isVolatile()) { assert(N0.getValueType().getSizeInBits() > EVTBits && "Cannot truncate to larger type!"); LoadSDNode *LN0 = cast(N0); MVT PtrType = N0.getOperand(1).getValueType(); // For big endian targets, we need to adjust the offset to the pointer to // load the correct bytes. if (TLI.isBigEndian()) { unsigned LVTStoreBits = N0.getValueType().getStoreSizeInBits(); unsigned EVTStoreBits = EVT.getStoreSizeInBits(); ShAmt = LVTStoreBits - EVTStoreBits - ShAmt; } uint64_t PtrOff = ShAmt / 8; unsigned NewAlign = MinAlign(LN0->getAlignment(), PtrOff); SDOperand NewPtr = DAG.getNode(ISD::ADD, PtrType, LN0->getBasePtr(), DAG.getConstant(PtrOff, PtrType)); AddToWorkList(NewPtr.Val); SDOperand Load = (ExtType == ISD::NON_EXTLOAD) ? DAG.getLoad(VT, LN0->getChain(), NewPtr, LN0->getSrcValue(), LN0->getSrcValueOffset(), LN0->isVolatile(), NewAlign) : DAG.getExtLoad(ExtType, VT, LN0->getChain(), NewPtr, LN0->getSrcValue(), LN0->getSrcValueOffset(), EVT, LN0->isVolatile(), NewAlign); AddToWorkList(N); if (CombineSRL) { WorkListRemover DeadNodes(*this); DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1), &DeadNodes); CombineTo(N->getOperand(0).Val, Load); } else CombineTo(N0.Val, Load, Load.getValue(1)); if (ShAmt) { if (Opc == ISD::SIGN_EXTEND_INREG) return DAG.getNode(Opc, VT, Load, N->getOperand(1)); else return DAG.getNode(Opc, VT, Load); } return SDOperand(N, 0); // Return N so it doesn't get rechecked! } return SDOperand(); } SDOperand DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) { SDOperand N0 = N->getOperand(0); SDOperand N1 = N->getOperand(1); MVT VT = N->getValueType(0); MVT EVT = cast(N1)->getVT(); unsigned VTBits = VT.getSizeInBits(); unsigned EVTBits = EVT.getSizeInBits(); // fold (sext_in_reg c1) -> c1 if (isa(N0) || N0.getOpcode() == ISD::UNDEF) return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0, N1); // If the input is already sign extended, just drop the extension. if (DAG.ComputeNumSignBits(N0) >= VT.getSizeInBits()-EVTBits+1) return N0; // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2 if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && EVT.bitsLT(cast(N0.getOperand(1))->getVT())) { return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0.getOperand(0), N1); } // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero. if (DAG.MaskedValueIsZero(N0, APInt::getBitsSet(VTBits, EVTBits-1, EVTBits))) return DAG.getZeroExtendInReg(N0, EVT); // fold operands of sext_in_reg based on knowledge that the top bits are not // demanded. if (SimplifyDemandedBits(SDOperand(N, 0))) return SDOperand(N, 0); // fold (sext_in_reg (load x)) -> (smaller sextload x) // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits)) SDOperand NarrowLoad = ReduceLoadWidth(N); if (NarrowLoad.Val) return NarrowLoad; // fold (sext_in_reg (srl X, 24), i8) -> sra X, 24 // fold (sext_in_reg (srl X, 23), i8) -> sra X, 23 iff possible. // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above. if (N0.getOpcode() == ISD::SRL) { if (ConstantSDNode *ShAmt = dyn_cast(N0.getOperand(1))) if (ShAmt->getValue()+EVTBits <= VT.getSizeInBits()) { // We can turn this into an SRA iff the input to the SRL is already sign // extended enough. unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0)); if (VT.getSizeInBits()-(ShAmt->getValue()+EVTBits) < InSignBits) return DAG.getNode(ISD::SRA, VT, N0.getOperand(0), N0.getOperand(1)); } } // fold (sext_inreg (extload x)) -> (sextload x) if (ISD::isEXTLoad(N0.Val) && ISD::isUNINDEXEDLoad(N0.Val) && EVT == cast(N0)->getMemoryVT() && ((!AfterLegalize && !cast(N0)->isVolatile()) || TLI.isLoadXLegal(ISD::SEXTLOAD, EVT))) { LoadSDNode *LN0 = cast(N0); SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, LN0->getChain(), LN0->getBasePtr(), LN0->getSrcValue(), LN0->getSrcValueOffset(), EVT, LN0->isVolatile(), LN0->getAlignment()); CombineTo(N, ExtLoad); CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1)); return SDOperand(N, 0); // Return N so it doesn't get rechecked! } // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use if (ISD::isZEXTLoad(N0.Val) && ISD::isUNINDEXEDLoad(N0.Val) && N0.hasOneUse() && EVT == cast(N0)->getMemoryVT() && ((!AfterLegalize && !cast(N0)->isVolatile()) || TLI.isLoadXLegal(ISD::SEXTLOAD, EVT))) { LoadSDNode *LN0 = cast(N0); SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, LN0->getChain(), LN0->getBasePtr(), LN0->getSrcValue(), LN0->getSrcValueOffset(), EVT, LN0->isVolatile(), LN0->getAlignment()); CombineTo(N, ExtLoad); CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1)); return SDOperand(N, 0); // Return N so it doesn't get rechecked! } return SDOperand(); } SDOperand DAGCombiner::visitTRUNCATE(SDNode *N) { SDOperand N0 = N->getOperand(0); MVT VT = N->getValueType(0); // noop truncate if (N0.getValueType() == N->getValueType(0)) return N0; // fold (truncate c1) -> c1 if (isa(N0)) return DAG.getNode(ISD::TRUNCATE, VT, N0); // fold (truncate (truncate x)) -> (truncate x) if (N0.getOpcode() == ISD::TRUNCATE) return DAG.getNode(ISD::TRUNCATE, VT, N0.getOperand(0)); // fold (truncate (ext x)) -> (ext x) or (truncate x) or x if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::SIGN_EXTEND|| N0.getOpcode() == ISD::ANY_EXTEND) { if (N0.getOperand(0).getValueType().bitsLT(VT)) // if the source is smaller than the dest, we still need an extend return DAG.getNode(N0.getOpcode(), VT, N0.getOperand(0)); else if (N0.getOperand(0).getValueType().bitsGT(VT)) // if the source is larger than the dest, than we just need the truncate return DAG.getNode(ISD::TRUNCATE, VT, N0.getOperand(0)); else // if the source and dest are the same type, we can drop both the extend // and the truncate return N0.getOperand(0); } // See if we can simplify the input to this truncate through knowledge that // only the low bits are being used. For example "trunc (or (shl x, 8), y)" // -> trunc y SDOperand Shorter = GetDemandedBits(N0, APInt::getLowBitsSet(N0.getValueSizeInBits(), VT.getSizeInBits())); if (Shorter.Val) return DAG.getNode(ISD::TRUNCATE, VT, Shorter); // fold (truncate (load x)) -> (smaller load x) // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits)) return ReduceLoadWidth(N); } static SDNode *getBuildPairElt(SDNode *N, unsigned i) { SDOperand Elt = N->getOperand(i); if (Elt.getOpcode() != ISD::MERGE_VALUES) return Elt.Val; return Elt.getOperand(Elt.ResNo).Val; } /// CombineConsecutiveLoads - build_pair (load, load) -> load /// if load locations are consecutive. SDOperand DAGCombiner::CombineConsecutiveLoads(SDNode *N, MVT VT) { assert(N->getOpcode() == ISD::BUILD_PAIR); SDNode *LD1 = getBuildPairElt(N, 0); if (!ISD::isNON_EXTLoad(LD1) || !LD1->hasOneUse()) return SDOperand(); MVT LD1VT = LD1->getValueType(0); SDNode *LD2 = getBuildPairElt(N, 1); const MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); if (ISD::isNON_EXTLoad(LD2) && LD2->hasOneUse() && // If both are volatile this would reduce the number of volatile loads. // If one is volatile it might be ok, but play conservative and bail out. !cast(LD1)->isVolatile() && !cast(LD2)->isVolatile() && TLI.isConsecutiveLoad(LD2, LD1, LD1VT.getSizeInBits()/8, 1, MFI)) { LoadSDNode *LD = cast(LD1); unsigned Align = LD->getAlignment(); unsigned NewAlign = TLI.getTargetMachine().getTargetData()-> getABITypeAlignment(VT.getTypeForMVT()); if (NewAlign <= Align && (!AfterLegalize || TLI.isOperationLegal(ISD::LOAD, VT))) return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(), LD->getSrcValueOffset(), false, Align); } return SDOperand(); } SDOperand DAGCombiner::visitBIT_CONVERT(SDNode *N) { SDOperand N0 = N->getOperand(0); MVT VT = N->getValueType(0); // If the input is a BUILD_VECTOR with all constant elements, fold this now. // Only do this before legalize, since afterward the target may be depending // on the bitconvert. // First check to see if this is all constant. if (!AfterLegalize && N0.getOpcode() == ISD::BUILD_VECTOR && N0.Val->hasOneUse() && VT.isVector()) { bool isSimple = true; for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) if (N0.getOperand(i).getOpcode() != ISD::UNDEF && N0.getOperand(i).getOpcode() != ISD::Constant && N0.getOperand(i).getOpcode() != ISD::ConstantFP) { isSimple = false; break; } MVT DestEltVT = N->getValueType(0).getVectorElementType(); assert(!DestEltVT.isVector() && "Element type of vector ValueType must not be vector!"); if (isSimple) { return ConstantFoldBIT_CONVERTofBUILD_VECTOR(N0.Val, DestEltVT); } } // If the input is a constant, let getNode() fold it. if (isa(N0) || isa(N0)) { SDOperand Res = DAG.getNode(ISD::BIT_CONVERT, VT, N0); if (Res.Val != N) return Res; } if (N0.getOpcode() == ISD::BIT_CONVERT) // conv(conv(x,t1),t2) -> conv(x,t2) return DAG.getNode(ISD::BIT_CONVERT, VT, N0.getOperand(0)); // fold (conv (load x)) -> (load (conv*)x) // If the resultant load doesn't need a higher alignment than the original! if (ISD::isNormalLoad(N0.Val) && N0.hasOneUse() && // Do not change the width of a volatile load. !cast(N0)->isVolatile() && (!AfterLegalize || TLI.isOperationLegal(ISD::LOAD, VT))) { LoadSDNode *LN0 = cast(N0); unsigned Align = TLI.getTargetMachine().getTargetData()-> getABITypeAlignment(VT.getTypeForMVT()); unsigned OrigAlign = LN0->getAlignment(); if (Align <= OrigAlign) { SDOperand Load = DAG.getLoad(VT, LN0->getChain(), LN0->getBasePtr(), LN0->getSrcValue(), LN0->getSrcValueOffset(), LN0->isVolatile(), OrigAlign); AddToWorkList(N); CombineTo(N0.Val, DAG.getNode(ISD::BIT_CONVERT, N0.getValueType(), Load), Load.getValue(1)); return Load; } } // Fold bitconvert(fneg(x)) -> xor(bitconvert(x), signbit) // Fold bitconvert(fabs(x)) -> and(bitconvert(x), ~signbit) // This often reduces constant pool loads. if ((N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FABS) && N0.Val->hasOneUse() && VT.isInteger() && !VT.isVector()) { SDOperand NewConv = DAG.getNode(ISD::BIT_CONVERT, VT, N0.getOperand(0)); AddToWorkList(NewConv.Val); APInt SignBit = APInt::getSignBit(VT.getSizeInBits()); if (N0.getOpcode() == ISD::FNEG) return DAG.getNode(ISD::XOR, VT, NewConv, DAG.getConstant(SignBit, VT)); assert(N0.getOpcode() == ISD::FABS); return DAG.getNode(ISD::AND, VT, NewConv, DAG.getConstant(~SignBit, VT)); } // Fold bitconvert(fcopysign(cst, x)) -> bitconvert(x)&sign | cst&~sign' // Note that we don't handle copysign(x,cst) because this can always be folded // to an fneg or fabs. if (N0.getOpcode() == ISD::FCOPYSIGN && N0.Val->hasOneUse() && isa(N0.getOperand(0)) && VT.isInteger() && !VT.isVector()) { unsigned OrigXWidth = N0.getOperand(1).getValueType().getSizeInBits(); SDOperand X = DAG.getNode(ISD::BIT_CONVERT, MVT::getIntegerVT(OrigXWidth), N0.getOperand(1)); AddToWorkList(X.Val); // If X has a different width than the result/lhs, sext it or truncate it. unsigned VTWidth = VT.getSizeInBits(); if (OrigXWidth < VTWidth) { X = DAG.getNode(ISD::SIGN_EXTEND, VT, X); AddToWorkList(X.Val); } else if (OrigXWidth > VTWidth) { // To get the sign bit in the right place, we have to shift it right // before truncating. X = DAG.getNode(ISD::SRL, X.getValueType(), X, DAG.getConstant(OrigXWidth-VTWidth, X.getValueType())); AddToWorkList(X.Val); X = DAG.getNode(ISD::TRUNCATE, VT, X); AddToWorkList(X.Val); } APInt SignBit = APInt::getSignBit(VT.getSizeInBits()); X = DAG.getNode(ISD::AND, VT, X, DAG.getConstant(SignBit, VT)); AddToWorkList(X.Val); SDOperand Cst = DAG.getNode(ISD::BIT_CONVERT, VT, N0.getOperand(0)); Cst = DAG.getNode(ISD::AND, VT, Cst, DAG.getConstant(~SignBit, VT)); AddToWorkList(Cst.Val); return DAG.getNode(ISD::OR, VT, X, Cst); } // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive. if (N0.getOpcode() == ISD::BUILD_PAIR) { SDOperand CombineLD = CombineConsecutiveLoads(N0.Val, VT); if (CombineLD.Val) return CombineLD; } return SDOperand(); } SDOperand DAGCombiner::visitBUILD_PAIR(SDNode *N) { MVT VT = N->getValueType(0); return CombineConsecutiveLoads(N, VT); } /// ConstantFoldBIT_CONVERTofBUILD_VECTOR - We know that BV is a build_vector /// node with Constant, ConstantFP or Undef operands. DstEltVT indicates the /// destination element value type. SDOperand DAGCombiner:: ConstantFoldBIT_CONVERTofBUILD_VECTOR(SDNode *BV, MVT DstEltVT) { MVT SrcEltVT = BV->getOperand(0).getValueType(); // If this is already the right type, we're done. if (SrcEltVT == DstEltVT) return SDOperand(BV, 0); unsigned SrcBitSize = SrcEltVT.getSizeInBits(); unsigned DstBitSize = DstEltVT.getSizeInBits(); // If this is a conversion of N elements of one type to N elements of another // type, convert each element. This handles FP<->INT cases. if (SrcBitSize == DstBitSize) { SmallVector Ops; for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { Ops.push_back(DAG.getNode(ISD::BIT_CONVERT, DstEltVT, BV->getOperand(i))); AddToWorkList(Ops.back().Val); } MVT VT = MVT::getVectorVT(DstEltVT, BV->getValueType(0).getVectorNumElements()); return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size()); } // Otherwise, we're growing or shrinking the elements. To avoid having to // handle annoying details of growing/shrinking FP values, we convert them to // int first. if (SrcEltVT.isFloatingPoint()) { // Convert the input float vector to a int vector where the elements are the // same sizes. assert((SrcEltVT == MVT::f32 || SrcEltVT == MVT::f64) && "Unknown FP VT!"); MVT IntVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits()); BV = ConstantFoldBIT_CONVERTofBUILD_VECTOR(BV, IntVT).Val; SrcEltVT = IntVT; } // Now we know the input is an integer vector. If the output is a FP type, // convert to integer first, then to FP of the right size. if (DstEltVT.isFloatingPoint()) { assert((DstEltVT == MVT::f32 || DstEltVT == MVT::f64) && "Unknown FP VT!"); MVT TmpVT = MVT::getIntegerVT(DstEltVT.getSizeInBits()); SDNode *Tmp = ConstantFoldBIT_CONVERTofBUILD_VECTOR(BV, TmpVT).Val; // Next, convert to FP elements of the same size. return ConstantFoldBIT_CONVERTofBUILD_VECTOR(Tmp, DstEltVT); } // Okay, we know the src/dst types are both integers of differing types. // Handling growing first. assert(SrcEltVT.isInteger() && DstEltVT.isInteger()); if (SrcBitSize < DstBitSize) { unsigned NumInputsPerOutput = DstBitSize/SrcBitSize; SmallVector Ops; for (unsigned i = 0, e = BV->getNumOperands(); i != e; i += NumInputsPerOutput) { bool isLE = TLI.isLittleEndian(); APInt NewBits = APInt(DstBitSize, 0); bool EltIsUndef = true; for (unsigned j = 0; j != NumInputsPerOutput; ++j) { // Shift the previously computed bits over. NewBits <<= SrcBitSize; SDOperand Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j)); if (Op.getOpcode() == ISD::UNDEF) continue; EltIsUndef = false; NewBits |= APInt(cast(Op)->getAPIntValue()).zext(DstBitSize); } if (EltIsUndef) Ops.push_back(DAG.getNode(ISD::UNDEF, DstEltVT)); else Ops.push_back(DAG.getConstant(NewBits, DstEltVT)); } MVT VT = MVT::getVectorVT(DstEltVT, Ops.size()); return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size()); } // Finally, this must be the case where we are shrinking elements: each input // turns into multiple outputs. bool isS2V = ISD::isScalarToVector(BV); unsigned NumOutputsPerInput = SrcBitSize/DstBitSize; MVT VT = MVT::getVectorVT(DstEltVT, NumOutputsPerInput*BV->getNumOperands()); SmallVector Ops; for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { if (BV->getOperand(i).getOpcode() == ISD::UNDEF) { for (unsigned j = 0; j != NumOutputsPerInput; ++j) Ops.push_back(DAG.getNode(ISD::UNDEF, DstEltVT)); continue; } APInt OpVal = cast(BV->getOperand(i))->getAPIntValue(); for (unsigned j = 0; j != NumOutputsPerInput; ++j) { APInt ThisVal = APInt(OpVal).trunc(DstBitSize); Ops.push_back(DAG.getConstant(ThisVal, DstEltVT)); if (isS2V && i == 0 && j == 0 && APInt(ThisVal).zext(SrcBitSize) == OpVal) // Simply turn this into a SCALAR_TO_VECTOR of the new type. return DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Ops[0]); OpVal = OpVal.lshr(DstBitSize); } // For big endian targets, swap the order of the pieces of each element. if (TLI.isBigEndian()) std::reverse(Ops.end()-NumOutputsPerInput, Ops.end()); } return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size()); } SDOperand DAGCombiner::visitFADD(SDNode *N) { SDOperand N0 = N->getOperand(0); SDOperand N1 = N->getOperand(1); ConstantFPSDNode *N0CFP = dyn_cast(N0); ConstantFPSDNode *N1CFP = dyn_cast(N1); MVT VT = N->getValueType(0); // fold vector ops if (VT.isVector()) { SDOperand FoldedVOp = SimplifyVBinOp(N); if (FoldedVOp.Val) return FoldedVOp; } // fold (fadd c1, c2) -> c1+c2 if (N0CFP && N1CFP && VT != MVT::ppcf128) return DAG.getNode(ISD::FADD, VT, N0, N1); // canonicalize constant to RHS if (N0CFP && !N1CFP) return DAG.getNode(ISD::FADD, VT, N1, N0); // fold (A + (-B)) -> A-B if (isNegatibleForFree(N1, AfterLegalize) == 2) return DAG.getNode(ISD::FSUB, VT, N0, GetNegatedExpression(N1, DAG, AfterLegalize)); // fold ((-A) + B) -> B-A if (isNegatibleForFree(N0, AfterLegalize) == 2) return DAG.getNode(ISD::FSUB, VT, N1, GetNegatedExpression(N0, DAG, AfterLegalize)); // If allowed, fold (fadd (fadd x, c1), c2) -> (fadd x, (fadd c1, c2)) if (UnsafeFPMath && N1CFP && N0.getOpcode() == ISD::FADD && N0.Val->hasOneUse() && isa(N0.getOperand(1))) return DAG.getNode(ISD::FADD, VT, N0.getOperand(0), DAG.getNode(ISD::FADD, VT, N0.getOperand(1), N1)); return SDOperand(); } SDOperand DAGCombiner::visitFSUB(SDNode *N) { SDOperand N0 = N->getOperand(0); SDOperand N1 = N->getOperand(1); ConstantFPSDNode *N0CFP = dyn_cast(N0); ConstantFPSDNode *N1CFP = dyn_cast(N1); MVT VT = N->getValueType(0); // fold vector ops if (VT.isVector()) { SDOperand FoldedVOp = SimplifyVBinOp(N); if (FoldedVOp.Val) return FoldedVOp; } // fold (fsub c1, c2) -> c1-c2 if (N0CFP && N1CFP && VT != MVT::ppcf128) return DAG.getNode(ISD::FSUB, VT, N0, N1); // fold (0-B) -> -B if (UnsafeFPMath && N0CFP && N0CFP->getValueAPF().isZero()) { if (isNegatibleForFree(N1, AfterLegalize)) return GetNegatedExpression(N1, DAG, AfterLegalize); return DAG.getNode(ISD::FNEG, VT, N1); } // fold (A-(-B)) -> A+B if (isNegatibleForFree(N1, AfterLegalize)) return DAG.getNode(ISD::FADD, VT, N0, GetNegatedExpression(N1, DAG, AfterLegalize)); return SDOperand(); } SDOperand DAGCombiner::visitFMUL(SDNode *N) { SDOperand N0 = N->getOperand(0); SDOperand N1 = N->getOperand(1); ConstantFPSDNode *N0CFP = dyn_cast(N0); ConstantFPSDNode *N1CFP = dyn_cast(N1); MVT VT = N->getValueType(0); // fold vector ops if (VT.isVector()) { SDOperand FoldedVOp = SimplifyVBinOp(N); if (FoldedVOp.Val) return FoldedVOp; } // fold (fmul c1, c2) -> c1*c2 if (N0CFP && N1CFP && VT != MVT::ppcf128) return DAG.getNode(ISD::FMUL, VT, N0, N1); // canonicalize constant to RHS if (N0CFP && !N1CFP) return DAG.getNode(ISD::FMUL, VT, N1, N0); // fold (fmul X, 2.0) -> (fadd X, X) if (N1CFP && N1CFP->isExactlyValue(+2.0)) return DAG.getNode(ISD::FADD, VT, N0, N0); // fold (fmul X, -1.0) -> (fneg X) if (N1CFP && N1CFP->isExactlyValue(-1.0)) return DAG.getNode(ISD::FNEG, VT, N0); // -X * -Y -> X*Y if (char LHSNeg = isNegatibleForFree(N0, AfterLegalize)) { if (char RHSNeg = isNegatibleForFree(N1, AfterLegalize)) { // Both can be negated for free, check to see if at least one is cheaper // negated. if (LHSNeg == 2 || RHSNeg == 2) return DAG.getNode(ISD::FMUL, VT, GetNegatedExpression(N0, DAG, AfterLegalize), GetNegatedExpression(N1, DAG, AfterLegalize)); } } // If allowed, fold (fmul (fmul x, c1), c2) -> (fmul x, (fmul c1, c2)) if (UnsafeFPMath && N1CFP && N0.getOpcode() == ISD::FMUL && N0.Val->hasOneUse() && isa(N0.getOperand(1))) return DAG.getNode(ISD::FMUL, VT, N0.getOperand(0), DAG.getNode(ISD::FMUL, VT, N0.getOperand(1), N1)); return SDOperand(); } SDOperand DAGCombiner::visitFDIV(SDNode *N) { SDOperand N0 = N->getOperand(0); SDOperand N1 = N->getOperand(1); ConstantFPSDNode *N0CFP = dyn_cast(N0); ConstantFPSDNode *N1CFP = dyn_cast(N1); MVT VT = N->getValueType(0); // fold vector ops if (VT.isVector()) { SDOperand FoldedVOp = SimplifyVBinOp(N); if (FoldedVOp.Val) return FoldedVOp; } // fold (fdiv c1, c2) -> c1/c2 if (N0CFP && N1CFP && VT != MVT::ppcf128) return DAG.getNode(ISD::FDIV, VT, N0, N1); // -X / -Y -> X*Y if (char LHSNeg = isNegatibleForFree(N0, AfterLegalize)) { if (char RHSNeg = isNegatibleForFree(N1, AfterLegalize)) { // Both can be negated for free, check to see if at least one is cheaper // negated. if (LHSNeg == 2 || RHSNeg == 2) return DAG.getNode(ISD::FDIV, VT, GetNegatedExpression(N0, DAG, AfterLegalize), GetNegatedExpression(N1, DAG, AfterLegalize)); } } return SDOperand(); } SDOperand DAGCombiner::visitFREM(SDNode *N) { SDOperand N0 = N->getOperand(0); SDOperand N1 = N->getOperand(1); ConstantFPSDNode *N0CFP = dyn_cast(N0); ConstantFPSDNode *N1CFP = dyn_cast(N1); MVT VT = N->getValueType(0); // fold (frem c1, c2) -> fmod(c1,c2) if (N0CFP && N1CFP && VT != MVT::ppcf128) return DAG.getNode(ISD::FREM, VT, N0, N1); return SDOperand(); } SDOperand DAGCombiner::visitFCOPYSIGN(SDNode *N) { SDOperand N0 = N->getOperand(0); SDOperand N1 = N->getOperand(1); ConstantFPSDNode *N0CFP = dyn_cast(N0); ConstantFPSDNode *N1CFP = dyn_cast(N1); MVT VT = N->getValueType(0); if (N0CFP && N1CFP && VT != MVT::ppcf128) // Constant fold return DAG.getNode(ISD::FCOPYSIGN, VT, N0, N1); if (N1CFP) { const APFloat& V = N1CFP->getValueAPF(); // copysign(x, c1) -> fabs(x) iff ispos(c1) // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1) if (!V.isNegative()) return DAG.getNode(ISD::FABS, VT, N0); else return DAG.getNode(ISD::FNEG, VT, DAG.getNode(ISD::FABS, VT, N0)); } // copysign(fabs(x), y) -> copysign(x, y) // copysign(fneg(x), y) -> copysign(x, y) // copysign(copysign(x,z), y) -> copysign(x, y) if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN) return DAG.getNode(ISD::FCOPYSIGN, VT, N0.getOperand(0), N1); // copysign(x, abs(y)) -> abs(x) if (N1.getOpcode() == ISD::FABS) return DAG.getNode(ISD::FABS, VT, N0); // copysign(x, copysign(y,z)) -> copysign(x, z) if (N1.getOpcode() == ISD::FCOPYSIGN) return DAG.getNode(ISD::FCOPYSIGN, VT, N0, N1.getOperand(1)); // copysign(x, fp_extend(y)) -> copysign(x, y) // copysign(x, fp_round(y)) -> copysign(x, y) if (N1.getOpcode() == ISD::FP_EXTEND || N1.getOpcode() == ISD::FP_ROUND) return DAG.getNode(ISD::FCOPYSIGN, VT, N0, N1.getOperand(0)); return SDOperand(); } SDOperand DAGCombiner::visitSINT_TO_FP(SDNode *N) { SDOperand N0 = N->getOperand(0); ConstantSDNode *N0C = dyn_cast(N0); MVT VT = N->getValueType(0); MVT OpVT = N0.getValueType(); // fold (sint_to_fp c1) -> c1fp if (N0C && OpVT != MVT::ppcf128) return DAG.getNode(ISD::SINT_TO_FP, VT, N0); // If the input is a legal type, and SINT_TO_FP is not legal on this target, // but UINT_TO_FP is legal on this target, try to convert. if (!TLI.isOperationLegal(ISD::SINT_TO_FP, OpVT) && TLI.isOperationLegal(ISD::UINT_TO_FP, OpVT)) { // If the sign bit is known to be zero, we can change this to UINT_TO_FP. if (DAG.SignBitIsZero(N0)) return DAG.getNode(ISD::UINT_TO_FP, VT, N0); } return SDOperand(); } SDOperand DAGCombiner::visitUINT_TO_FP(SDNode *N) { SDOperand N0 = N->getOperand(0); ConstantSDNode *N0C = dyn_cast(N0); MVT VT = N->getValueType(0); MVT OpVT = N0.getValueType(); // fold (uint_to_fp c1) -> c1fp if (N0C && OpVT != MVT::ppcf128) return DAG.getNode(ISD::UINT_TO_FP, VT, N0); // If the input is a legal type, and UINT_TO_FP is not legal on this target, // but SINT_TO_FP is legal on this target, try to convert. if (!TLI.isOperationLegal(ISD::UINT_TO_FP, OpVT) && TLI.isOperationLegal(ISD::SINT_TO_FP, OpVT)) { // If the sign bit is known to be zero, we can change this to SINT_TO_FP. if (DAG.SignBitIsZero(N0)) return DAG.getNode(ISD::SINT_TO_FP, VT, N0); } return SDOperand(); } SDOperand DAGCombiner::visitFP_TO_SINT(SDNode *N) { SDOperand N0 = N->getOperand(0); ConstantFPSDNode *N0CFP = dyn_cast(N0); MVT VT = N->getValueType(0); // fold (fp_to_sint c1fp) -> c1 if (N0CFP) return DAG.getNode(ISD::FP_TO_SINT, VT, N0); return SDOperand(); } SDOperand DAGCombiner::visitFP_TO_UINT(SDNode *N) { SDOperand N0 = N->getOperand(0); ConstantFPSDNode *N0CFP = dyn_cast(N0); MVT VT = N->getValueType(0); // fold (fp_to_uint c1fp) -> c1 if (N0CFP && VT != MVT::ppcf128) return DAG.getNode(ISD::FP_TO_UINT, VT, N0); return SDOperand(); } SDOperand DAGCombiner::visitFP_ROUND(SDNode *N) { SDOperand N0 = N->getOperand(0); SDOperand N1 = N->getOperand(1); ConstantFPSDNode *N0CFP = dyn_cast(N0); MVT VT = N->getValueType(0); // fold (fp_round c1fp) -> c1fp if (N0CFP && N0.getValueType() != MVT::ppcf128) return DAG.getNode(ISD::FP_ROUND, VT, N0, N1); // fold (fp_round (fp_extend x)) -> x if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType()) return N0.getOperand(0); // fold (fp_round (fp_round x)) -> (fp_round x) if (N0.getOpcode() == ISD::FP_ROUND) { // This is a value preserving truncation if both round's are. bool IsTrunc = N->getConstantOperandVal(1) == 1 && N0.Val->getConstantOperandVal(1) == 1; return DAG.getNode(ISD::FP_ROUND, VT, N0.getOperand(0), DAG.getIntPtrConstant(IsTrunc)); } // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y) if (N0.getOpcode() == ISD::FCOPYSIGN && N0.Val->hasOneUse()) { SDOperand Tmp = DAG.getNode(ISD::FP_ROUND, VT, N0.getOperand(0), N1); AddToWorkList(Tmp.Val); return DAG.getNode(ISD::FCOPYSIGN, VT, Tmp, N0.getOperand(1)); } return SDOperand(); } SDOperand DAGCombiner::visitFP_ROUND_INREG(SDNode *N) { SDOperand N0 = N->getOperand(0); MVT VT = N->getValueType(0); MVT EVT = cast(N->getOperand(1))->getVT(); ConstantFPSDNode *N0CFP = dyn_cast(N0); // fold (fp_round_inreg c1fp) -> c1fp if (N0CFP) { SDOperand Round = DAG.getConstantFP(N0CFP->getValueAPF(), EVT); return DAG.getNode(ISD::FP_EXTEND, VT, Round); } return SDOperand(); } SDOperand DAGCombiner::visitFP_EXTEND(SDNode *N) { SDOperand N0 = N->getOperand(0); ConstantFPSDNode *N0CFP = dyn_cast(N0); MVT VT = N->getValueType(0); // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded. if (N->hasOneUse() && N->use_begin()->getSDOperand().getOpcode() == ISD::FP_ROUND) return SDOperand(); // fold (fp_extend c1fp) -> c1fp if (N0CFP && VT != MVT::ppcf128) return DAG.getNode(ISD::FP_EXTEND, VT, N0); // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the // value of X. if (N0.getOpcode() == ISD::FP_ROUND && N0.Val->getConstantOperandVal(1) == 1){ SDOperand In = N0.getOperand(0); if (In.getValueType() == VT) return In; if (VT.bitsLT(In.getValueType())) return DAG.getNode(ISD::FP_ROUND, VT, In, N0.getOperand(1)); return DAG.getNode(ISD::FP_EXTEND, VT, In); } // fold (fpext (load x)) -> (fpext (fptrunc (extload x))) if (ISD::isNON_EXTLoad(N0.Val) && N0.hasOneUse() && ((!AfterLegalize && !cast(N0)->isVolatile()) || TLI.isLoadXLegal(ISD::EXTLOAD, N0.getValueType()))) { LoadSDNode *LN0 = cast(N0); SDOperand ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, VT, LN0->getChain(), LN0->getBasePtr(), LN0->getSrcValue(), LN0->getSrcValueOffset(), N0.getValueType(), LN0->isVolatile(), LN0->getAlignment()); CombineTo(N, ExtLoad); CombineTo(N0.Val, DAG.getNode(ISD::FP_ROUND, N0.getValueType(), ExtLoad, DAG.getIntPtrConstant(1)), ExtLoad.getValue(1)); return SDOperand(N, 0); // Return N so it doesn't get rechecked! } return SDOperand(); } SDOperand DAGCombiner::visitFNEG(SDNode *N) { SDOperand N0 = N->getOperand(0); if (isNegatibleForFree(N0, AfterLegalize)) return GetNegatedExpression(N0, DAG, AfterLegalize); // Transform fneg(bitconvert(x)) -> bitconvert(x^sign) to avoid loading // constant pool values. if (N0.getOpcode() == ISD::BIT_CONVERT && N0.Val->hasOneUse() && N0.getOperand(0).getValueType().isInteger() && !N0.getOperand(0).getValueType().isVector()) { SDOperand Int = N0.getOperand(0); MVT IntVT = Int.getValueType(); if (IntVT.isInteger() && !IntVT.isVector()) { Int = DAG.getNode(ISD::XOR, IntVT, Int, DAG.getConstant(IntVT.getIntegerVTSignBit(), IntVT)); AddToWorkList(Int.Val); return DAG.getNode(ISD::BIT_CONVERT, N->getValueType(0), Int); } } return SDOperand(); } SDOperand DAGCombiner::visitFABS(SDNode *N) { SDOperand N0 = N->getOperand(0); ConstantFPSDNode *N0CFP = dyn_cast(N0); MVT VT = N->getValueType(0); // fold (fabs c1) -> fabs(c1) if (N0CFP && VT != MVT::ppcf128) return DAG.getNode(ISD::FABS, VT, N0); // fold (fabs (fabs x)) -> (fabs x) if (N0.getOpcode() == ISD::FABS) return N->getOperand(0); // fold (fabs (fneg x)) -> (fabs x) // fold (fabs (fcopysign x, y)) -> (fabs x) if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN) return DAG.getNode(ISD::FABS, VT, N0.getOperand(0)); // Transform fabs(bitconvert(x)) -> bitconvert(x&~sign) to avoid loading // constant pool values. if (N0.getOpcode() == ISD::BIT_CONVERT && N0.Val->hasOneUse() && N0.getOperand(0).getValueType().isInteger() && !N0.getOperand(0).getValueType().isVector()) { SDOperand Int = N0.getOperand(0); MVT IntVT = Int.getValueType(); if (IntVT.isInteger() && !IntVT.isVector()) { Int = DAG.getNode(ISD::AND, IntVT, Int, DAG.getConstant(~IntVT.getIntegerVTSignBit(), IntVT)); AddToWorkList(Int.Val); return DAG.getNode(ISD::BIT_CONVERT, N->getValueType(0), Int); } } return SDOperand(); } SDOperand DAGCombiner::visitBRCOND(SDNode *N) { SDOperand Chain = N->getOperand(0); SDOperand N1 = N->getOperand(1); SDOperand N2 = N->getOperand(2); ConstantSDNode *N1C = dyn_cast(N1); // never taken branch, fold to chain if (N1C && N1C->isNullValue()) return Chain; // unconditional branch if (N1C && N1C->getAPIntValue() == 1) return DAG.getNode(ISD::BR, MVT::Other, Chain, N2); // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal // on the target. if (N1.getOpcode() == ISD::SETCC && TLI.isOperationLegal(ISD::BR_CC, MVT::Other)) { return DAG.getNode(ISD::BR_CC, MVT::Other, Chain, N1.getOperand(2), N1.getOperand(0), N1.getOperand(1), N2); } return SDOperand(); } // Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB. // SDOperand DAGCombiner::visitBR_CC(SDNode *N) { CondCodeSDNode *CC = cast(N->getOperand(1)); SDOperand CondLHS = N->getOperand(2), CondRHS = N->getOperand(3); // Use SimplifySetCC to simplify SETCC's. SDOperand Simp = SimplifySetCC(MVT::i1, CondLHS, CondRHS, CC->get(), false); if (Simp.Val) AddToWorkList(Simp.Val); ConstantSDNode *SCCC = dyn_cast_or_null(Simp.Val); // fold br_cc true, dest -> br dest (unconditional branch) if (SCCC && !SCCC->isNullValue()) return DAG.getNode(ISD::BR, MVT::Other, N->getOperand(0), N->getOperand(4)); // fold br_cc false, dest -> unconditional fall through if (SCCC && SCCC->isNullValue()) return N->getOperand(0); // fold to a simpler setcc if (Simp.Val && Simp.getOpcode() == ISD::SETCC) return DAG.getNode(ISD::BR_CC, MVT::Other, N->getOperand(0), Simp.getOperand(2), Simp.getOperand(0), Simp.getOperand(1), N->getOperand(4)); return SDOperand(); } /// CombineToPreIndexedLoadStore - Try turning a load / store into a /// pre-indexed load / store when the base pointer is an add or subtract /// and it has other uses besides the load / store. After the /// transformation, the new indexed load / store has effectively folded /// the add / subtract in and all of its other uses are redirected to the /// new load / store. bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) { if (!AfterLegalize) return false; bool isLoad = true; SDOperand Ptr; MVT VT; if (LoadSDNode *LD = dyn_cast(N)) { if (LD->isIndexed()) return false; VT = LD->getMemoryVT(); if (!TLI.isIndexedLoadLegal(ISD::PRE_INC, VT) && !TLI.isIndexedLoadLegal(ISD::PRE_DEC, VT)) return false; Ptr = LD->getBasePtr(); } else if (StoreSDNode *ST = dyn_cast(N)) { if (ST->isIndexed()) return false; VT = ST->getMemoryVT(); if (!TLI.isIndexedStoreLegal(ISD::PRE_INC, VT) && !TLI.isIndexedStoreLegal(ISD::PRE_DEC, VT)) return false; Ptr = ST->getBasePtr(); isLoad = false; } else return false; // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail // out. There is no reason to make this a preinc/predec. if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) || Ptr.Val->hasOneUse()) return false; // Ask the target to do addressing mode selection. SDOperand BasePtr; SDOperand Offset; ISD::MemIndexedMode AM = ISD::UNINDEXED; if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG)) return false; // Don't create a indexed load / store with zero offset. if (isa(Offset) && cast(Offset)->isNullValue()) return false; // Try turning it into a pre-indexed load / store except when: // 1) The new base ptr is a frame index. // 2) If N is a store and the new base ptr is either the same as or is a // predecessor of the value being stored. // 3) Another use of old base ptr is a predecessor of N. If ptr is folded // that would create a cycle. // 4) All uses are load / store ops that use it as old base ptr. // Check #1. Preinc'ing a frame index would require copying the stack pointer // (plus the implicit offset) to a register to preinc anyway. if (isa(BasePtr)) return false; // Check #2. if (!isLoad) { SDOperand Val = cast(N)->getValue(); if (Val == BasePtr || BasePtr.Val->isPredecessorOf(Val.Val)) return false; } // Now check for #3 and #4. bool RealUse = false; for (SDNode::use_iterator I = Ptr.Val->use_begin(), E = Ptr.Val->use_end(); I != E; ++I) { SDNode *Use = I->getUser(); if (Use == N) continue; if (Use->isPredecessorOf(N)) return false; if (!((Use->getOpcode() == ISD::LOAD && cast(Use)->getBasePtr() == Ptr) || (Use->getOpcode() == ISD::STORE && cast(Use)->getBasePtr() == Ptr))) RealUse = true; } if (!RealUse) return false; SDOperand Result; if (isLoad) Result = DAG.getIndexedLoad(SDOperand(N,0), BasePtr, Offset, AM); else Result = DAG.getIndexedStore(SDOperand(N,0), BasePtr, Offset, AM); ++PreIndexedNodes; ++NodesCombined; DOUT << "\nReplacing.4 "; DEBUG(N->dump(&DAG)); DOUT << "\nWith: "; DEBUG(Result.Val->dump(&DAG)); DOUT << '\n'; WorkListRemover DeadNodes(*this); if (isLoad) { DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Result.getValue(0), &DeadNodes); DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 1), Result.getValue(2), &DeadNodes); } else { DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Result.getValue(1), &DeadNodes); } // Finally, since the node is now dead, remove it from the graph. DAG.DeleteNode(N); // Replace the uses of Ptr with uses of the updated base value. DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(isLoad ? 1 : 0), &DeadNodes); removeFromWorkList(Ptr.Val); DAG.DeleteNode(Ptr.Val); return true; } /// CombineToPostIndexedLoadStore - Try to combine a load / store with a /// add / sub of the base pointer node into a post-indexed load / store. /// The transformation folded the add / subtract into the new indexed /// load / store effectively and all of its uses are redirected to the /// new load / store. bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) { if (!AfterLegalize) return false; bool isLoad = true; SDOperand Ptr; MVT VT; if (LoadSDNode *LD = dyn_cast(N)) { if (LD->isIndexed()) return false; VT = LD->getMemoryVT(); if (!TLI.isIndexedLoadLegal(ISD::POST_INC, VT) && !TLI.isIndexedLoadLegal(ISD::POST_DEC, VT)) return false; Ptr = LD->getBasePtr(); } else if (StoreSDNode *ST = dyn_cast(N)) { if (ST->isIndexed()) return false; VT = ST->getMemoryVT(); if (!TLI.isIndexedStoreLegal(ISD::POST_INC, VT) && !TLI.isIndexedStoreLegal(ISD::POST_DEC, VT)) return false; Ptr = ST->getBasePtr(); isLoad = false; } else return false; if (Ptr.Val->hasOneUse()) return false; for (SDNode::use_iterator I = Ptr.Val->use_begin(), E = Ptr.Val->use_end(); I != E; ++I) { SDNode *Op = I->getUser(); if (Op == N || (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB)) continue; SDOperand BasePtr; SDOperand Offset; ISD::MemIndexedMode AM = ISD::UNINDEXED; if (TLI.getPostIndexedAddressParts(N, Op, BasePtr, Offset, AM, DAG)) { if (Ptr == Offset) std::swap(BasePtr, Offset); if (Ptr != BasePtr) continue; // Don't create a indexed load / store with zero offset. if (isa(Offset) && cast(Offset)->isNullValue()) continue; // Try turning it into a post-indexed load / store except when // 1) All uses are load / store ops that use it as base ptr. // 2) Op must be independent of N, i.e. Op is neither a predecessor // nor a successor of N. Otherwise, if Op is folded that would // create a cycle. // Check for #1. bool TryNext = false; for (SDNode::use_iterator II = BasePtr.Val->use_begin(), EE = BasePtr.Val->use_end(); II != EE; ++II) { SDNode *Use = II->getUser(); if (Use == Ptr.Val) continue; // If all the uses are load / store addresses, then don't do the // transformation. if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB){ bool RealUse = false; for (SDNode::use_iterator III = Use->use_begin(), EEE = Use->use_end(); III != EEE; ++III) { SDNode *UseUse = III->getUser(); if (!((UseUse->getOpcode() == ISD::LOAD && cast(UseUse)->getBasePtr().Val == Use) || (UseUse->getOpcode() == ISD::STORE && cast(UseUse)->getBasePtr().Val == Use))) RealUse = true; } if (!RealUse) { TryNext = true; break; } } } if (TryNext) continue; // Check for #2 if (!Op->isPredecessorOf(N) && !N->isPredecessorOf(Op)) { SDOperand Result = isLoad ? DAG.getIndexedLoad(SDOperand(N,0), BasePtr, Offset, AM) : DAG.getIndexedStore(SDOperand(N,0), BasePtr, Offset, AM); ++PostIndexedNodes; ++NodesCombined; DOUT << "\nReplacing.5 "; DEBUG(N->dump(&DAG)); DOUT << "\nWith: "; DEBUG(Result.Val->dump(&DAG)); DOUT << '\n'; WorkListRemover DeadNodes(*this); if (isLoad) { DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Result.getValue(0), &DeadNodes); DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 1), Result.getValue(2), &DeadNodes); } else { DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Result.getValue(1), &DeadNodes); } // Finally, since the node is now dead, remove it from the graph. DAG.DeleteNode(N); // Replace the uses of Use with uses of the updated base value. DAG.ReplaceAllUsesOfValueWith(SDOperand(Op, 0), Result.getValue(isLoad ? 1 : 0), &DeadNodes); removeFromWorkList(Op); DAG.DeleteNode(Op); return true; } } } return false; } /// InferAlignment - If we can infer some alignment information from this /// pointer, return it. static unsigned InferAlignment(SDOperand Ptr, SelectionDAG &DAG) { // If this is a direct reference to a stack slot, use information about the // stack slot's alignment. int FrameIdx = 1 << 31; int64_t FrameOffset = 0; if (FrameIndexSDNode *FI = dyn_cast(Ptr)) { FrameIdx = FI->getIndex(); } else if (Ptr.getOpcode() == ISD::ADD && isa(Ptr.getOperand(1)) && isa(Ptr.getOperand(0))) { FrameIdx = cast(Ptr.getOperand(0))->getIndex(); FrameOffset = Ptr.getConstantOperandVal(1); } if (FrameIdx != (1 << 31)) { // FIXME: Handle FI+CST. const MachineFrameInfo &MFI = *DAG.getMachineFunction().getFrameInfo(); if (MFI.isFixedObjectIndex(FrameIdx)) { int64_t ObjectOffset = MFI.getObjectOffset(FrameIdx); // The alignment of the frame index can be determined from its offset from // the incoming frame position. If the frame object is at offset 32 and // the stack is guaranteed to be 16-byte aligned, then we know that the // object is 16-byte aligned. unsigned StackAlign = DAG.getTarget().getFrameInfo()->getStackAlignment(); unsigned Align = MinAlign(ObjectOffset, StackAlign); // Finally, the frame object itself may have a known alignment. Factor // the alignment + offset into a new alignment. For example, if we know // the FI is 8 byte aligned, but the pointer is 4 off, we really have a // 4-byte alignment of the resultant pointer. Likewise align 4 + 4-byte // offset = 4-byte alignment, align 4 + 1-byte offset = align 1, etc. unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx), FrameOffset); return std::max(Align, FIInfoAlign); } } return 0; } SDOperand DAGCombiner::visitLOAD(SDNode *N) { LoadSDNode *LD = cast(N); SDOperand Chain = LD->getChain(); SDOperand Ptr = LD->getBasePtr(); // Try to infer better alignment information than the load already has. if (LD->isUnindexed()) { if (unsigned Align = InferAlignment(Ptr, DAG)) { if (Align > LD->getAlignment()) return DAG.getExtLoad(LD->getExtensionType(), LD->getValueType(0), Chain, Ptr, LD->getSrcValue(), LD->getSrcValueOffset(), LD->getMemoryVT(), LD->isVolatile(), Align); } } // If load is not volatile and there are no uses of the loaded value (and // the updated indexed value in case of indexed loads), change uses of the // chain value into uses of the chain input (i.e. delete the dead load). if (!LD->isVolatile()) { if (N->getValueType(1) == MVT::Other) { // Unindexed loads. if (N->hasNUsesOfValue(0, 0)) { // It's not safe to use the two value CombineTo variant here. e.g. // v1, chain2 = load chain1, loc // v2, chain3 = load chain2, loc // v3 = add v2, c // Now we replace use of chain2 with chain1. This makes the second load // isomorphic to the one we are deleting, and thus makes this load live. DOUT << "\nReplacing.6 "; DEBUG(N->dump(&DAG)); DOUT << "\nWith chain: "; DEBUG(Chain.Val->dump(&DAG)); DOUT << "\n"; WorkListRemover DeadNodes(*this); DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 1), Chain, &DeadNodes); if (N->use_empty()) { removeFromWorkList(N); DAG.DeleteNode(N); } return SDOperand(N, 0); // Return N so it doesn't get rechecked! } } else { // Indexed loads. assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?"); if (N->hasNUsesOfValue(0, 0) && N->hasNUsesOfValue(0, 1)) { SDOperand Undef = DAG.getNode(ISD::UNDEF, N->getValueType(0)); DOUT << "\nReplacing.6 "; DEBUG(N->dump(&DAG)); DOUT << "\nWith: "; DEBUG(Undef.Val->dump(&DAG)); DOUT << " and 2 other values\n"; WorkListRemover DeadNodes(*this); DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Undef, &DeadNodes); DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 1), DAG.getNode(ISD::UNDEF, N->getValueType(1)), &DeadNodes); DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 2), Chain, &DeadNodes); removeFromWorkList(N); DAG.DeleteNode(N); return SDOperand(N, 0); // Return N so it doesn't get rechecked! } } } // If this load is directly stored, replace the load value with the stored // value. // TODO: Handle store large -> read small portion. // TODO: Handle TRUNCSTORE/LOADEXT if (LD->getExtensionType() == ISD::NON_EXTLOAD && !LD->isVolatile()) { if (ISD::isNON_TRUNCStore(Chain.Val)) { StoreSDNode *PrevST = cast(Chain); if (PrevST->getBasePtr() == Ptr && PrevST->getValue().getValueType() == N->getValueType(0)) return CombineTo(N, Chain.getOperand(1), Chain); } } if (CombinerAA) { // Walk up chain skipping non-aliasing memory nodes. SDOperand BetterChain = FindBetterChain(N, Chain); // If there is a better chain. if (Chain != BetterChain) { SDOperand ReplLoad; // Replace the chain to void dependency. if (LD->getExtensionType() == ISD::NON_EXTLOAD) { ReplLoad = DAG.getLoad(N->getValueType(0), BetterChain, Ptr, LD->getSrcValue(), LD->getSrcValueOffset(), LD->isVolatile(), LD->getAlignment()); } else { ReplLoad = DAG.getExtLoad(LD->getExtensionType(), LD->getValueType(0), BetterChain, Ptr, LD->getSrcValue(), LD->getSrcValueOffset(), LD->getMemoryVT(), LD->isVolatile(), LD->getAlignment()); } // Create token factor to keep old chain connected. SDOperand Token = DAG.getNode(ISD::TokenFactor, MVT::Other, Chain, ReplLoad.getValue(1)); // Replace uses with load result and token factor. Don't add users // to work list. return CombineTo(N, ReplLoad.getValue(0), Token, false); } } // Try transforming N to an indexed load. if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) return SDOperand(N, 0); return SDOperand(); } SDOperand DAGCombiner::visitSTORE(SDNode *N) { StoreSDNode *ST = cast(N); SDOperand Chain = ST->getChain(); SDOperand Value = ST->getValue(); SDOperand Ptr = ST->getBasePtr(); // Try to infer better alignment information than the store already has. if (ST->isUnindexed()) { if (unsigned Align = InferAlignment(Ptr, DAG)) { if (Align > ST->getAlignment()) return DAG.getTruncStore(Chain, Value, Ptr, ST->getSrcValue(), ST->getSrcValueOffset(), ST->getMemoryVT(), ST->isVolatile(), Align); } } // If this is a store of a bit convert, store the input value if the // resultant store does not need a higher alignment than the original. if (Value.getOpcode() == ISD::BIT_CONVERT && !ST->isTruncatingStore() && ST->isUnindexed()) { unsigned Align = ST->getAlignment(); MVT SVT = Value.getOperand(0).getValueType(); unsigned OrigAlign = TLI.getTargetMachine().getTargetData()-> getABITypeAlignment(SVT.getTypeForMVT()); if (Align <= OrigAlign && ((!AfterLegalize && !ST->isVolatile()) || TLI.isOperationLegal(ISD::STORE, SVT))) return DAG.getStore(Chain, Value.getOperand(0), Ptr, ST->getSrcValue(), ST->getSrcValueOffset(), ST->isVolatile(), OrigAlign); } // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' if (ConstantFPSDNode *CFP = dyn_cast(Value)) { // NOTE: If the original store is volatile, this transform must not increase // the number of stores. For example, on x86-32 an f64 can be stored in one // processor operation but an i64 (which is not legal) requires two. So the // transform should not be done in this case. if (Value.getOpcode() != ISD::TargetConstantFP) { SDOperand Tmp; switch (CFP->getValueType(0).getSimpleVT()) { default: assert(0 && "Unknown FP type"); case MVT::f80: // We don't do this for these yet. case MVT::f128: case MVT::ppcf128: break; case MVT::f32: if ((!AfterLegalize && !ST->isVolatile()) || TLI.isOperationLegal(ISD::STORE, MVT::i32)) { Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF(). convertToAPInt().getZExtValue(), MVT::i32); return DAG.getStore(Chain, Tmp, Ptr, ST->getSrcValue(), ST->getSrcValueOffset(), ST->isVolatile(), ST->getAlignment()); } break; case MVT::f64: if ((!AfterLegalize && !ST->isVolatile()) || TLI.isOperationLegal(ISD::STORE, MVT::i64)) { Tmp = DAG.getConstant(CFP->getValueAPF().convertToAPInt(). getZExtValue(), MVT::i64); return DAG.getStore(Chain, Tmp, Ptr, ST->getSrcValue(), ST->getSrcValueOffset(), ST->isVolatile(), ST->getAlignment()); } else if (!ST->isVolatile() && TLI.isOperationLegal(ISD::STORE, MVT::i32)) { // Many FP stores are not made apparent until after legalize, e.g. for // argument passing. Since this is so common, custom legalize the // 64-bit integer store into two 32-bit stores. uint64_t Val = CFP->getValueAPF().convertToAPInt().getZExtValue(); SDOperand Lo = DAG.getConstant(Val & 0xFFFFFFFF, MVT::i32); SDOperand Hi = DAG.getConstant(Val >> 32, MVT::i32); if (TLI.isBigEndian()) std::swap(Lo, Hi); int SVOffset = ST->getSrcValueOffset(); unsigned Alignment = ST->getAlignment(); bool isVolatile = ST->isVolatile(); SDOperand St0 = DAG.getStore(Chain, Lo, Ptr, ST->getSrcValue(), ST->getSrcValueOffset(), isVolatile, ST->getAlignment()); Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, DAG.getConstant(4, Ptr.getValueType())); SVOffset += 4; Alignment = MinAlign(Alignment, 4U); SDOperand St1 = DAG.getStore(Chain, Hi, Ptr, ST->getSrcValue(), SVOffset, isVolatile, Alignment); return DAG.getNode(ISD::TokenFactor, MVT::Other, St0, St1); } break; } } } if (CombinerAA) { // Walk up chain skipping non-aliasing memory nodes. SDOperand BetterChain = FindBetterChain(N, Chain); // If there is a better chain. if (Chain != BetterChain) { // Replace the chain to avoid dependency. SDOperand ReplStore; if (ST->isTruncatingStore()) { ReplStore = DAG.getTruncStore(BetterChain, Value, Ptr, ST->getSrcValue(),ST->getSrcValueOffset(), ST->getMemoryVT(), ST->isVolatile(), ST->getAlignment()); } else { ReplStore = DAG.getStore(BetterChain, Value, Ptr, ST->getSrcValue(), ST->getSrcValueOffset(), ST->isVolatile(), ST->getAlignment()); } // Create token to keep both nodes around. SDOperand Token = DAG.getNode(ISD::TokenFactor, MVT::Other, Chain, ReplStore); // Don't add users to work list. return CombineTo(N, Token, false); } } // Try transforming N to an indexed store. if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) return SDOperand(N, 0); // FIXME: is there such a thing as a truncating indexed store? if (ST->isTruncatingStore() && ST->isUnindexed() && Value.getValueType().isInteger()) { // See if we can simplify the input to this truncstore with knowledge that // only the low bits are being used. For example: // "truncstore (or (shl x, 8), y), i8" -> "truncstore y, i8" SDOperand Shorter = GetDemandedBits(Value, APInt::getLowBitsSet(Value.getValueSizeInBits(), ST->getMemoryVT().getSizeInBits())); AddToWorkList(Value.Val); if (Shorter.Val) return DAG.getTruncStore(Chain, Shorter, Ptr, ST->getSrcValue(), ST->getSrcValueOffset(), ST->getMemoryVT(), ST->isVolatile(), ST->getAlignment()); // Otherwise, see if we can simplify the operation with // SimplifyDemandedBits, which only works if the value has a single use. if (SimplifyDemandedBits(Value, APInt::getLowBitsSet( Value.getValueSizeInBits(), ST->getMemoryVT().getSizeInBits()))) return SDOperand(N, 0); } // If this is a load followed by a store to the same location, then the store // is dead/noop. if (LoadSDNode *Ld = dyn_cast(Value)) { if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() && ST->isUnindexed() && !ST->isVolatile() && // There can't be any side effects between the load and store, such as // a call or store. Chain.reachesChainWithoutSideEffects(SDOperand(Ld, 1))) { // The store is dead, remove it. return Chain; } } // If this is an FP_ROUND or TRUNC followed by a store, fold this into a // truncating store. We can do this even if this is already a truncstore. if ((Value.getOpcode() == ISD::FP_ROUND || Value.getOpcode() == ISD::TRUNCATE) && Value.Val->hasOneUse() && ST->isUnindexed() && TLI.isTruncStoreLegal(Value.getOperand(0).getValueType(), ST->getMemoryVT())) { return DAG.getTruncStore(Chain, Value.getOperand(0), Ptr, ST->getSrcValue(), ST->getSrcValueOffset(), ST->getMemoryVT(), ST->isVolatile(), ST->getAlignment()); } return SDOperand(); } SDOperand DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) { SDOperand InVec = N->getOperand(0); SDOperand InVal = N->getOperand(1); SDOperand EltNo = N->getOperand(2); // If the invec is a BUILD_VECTOR and if EltNo is a constant, build a new // vector with the inserted element. if (InVec.getOpcode() == ISD::BUILD_VECTOR && isa(EltNo)) { unsigned Elt = cast(EltNo)->getValue(); SmallVector Ops(InVec.Val->op_begin(), InVec.Val->op_end()); if (Elt < Ops.size()) Ops[Elt] = InVal; return DAG.getNode(ISD::BUILD_VECTOR, InVec.getValueType(), &Ops[0], Ops.size()); } return SDOperand(); } SDOperand DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) { // (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size) // (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size) // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr) // Perform only after legalization to ensure build_vector / vector_shuffle // optimizations have already been done. if (!AfterLegalize) return SDOperand(); SDOperand InVec = N->getOperand(0); SDOperand EltNo = N->getOperand(1); if (isa(EltNo)) { unsigned Elt = cast(EltNo)->getValue(); bool NewLoad = false; MVT VT = InVec.getValueType(); MVT EVT = VT.getVectorElementType(); MVT LVT = EVT; if (InVec.getOpcode() == ISD::BIT_CONVERT) { MVT BCVT = InVec.getOperand(0).getValueType(); if (!BCVT.isVector() || EVT.bitsGT(BCVT.getVectorElementType())) return SDOperand(); InVec = InVec.getOperand(0); EVT = BCVT.getVectorElementType(); NewLoad = true; } LoadSDNode *LN0 = NULL; if (ISD::isNormalLoad(InVec.Val)) LN0 = cast(InVec); else if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR && InVec.getOperand(0).getValueType() == EVT && ISD::isNormalLoad(InVec.getOperand(0).Val)) { LN0 = cast(InVec.getOperand(0)); } else if (InVec.getOpcode() == ISD::VECTOR_SHUFFLE) { // (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1) // => // (load $addr+1*size) unsigned Idx = cast(InVec.getOperand(2). getOperand(Elt))->getValue(); unsigned NumElems = InVec.getOperand(2).getNumOperands(); InVec = (Idx < NumElems) ? InVec.getOperand(0) : InVec.getOperand(1); if (InVec.getOpcode() == ISD::BIT_CONVERT) InVec = InVec.getOperand(0); if (ISD::isNormalLoad(InVec.Val)) { LN0 = cast(InVec); Elt = (Idx < NumElems) ? Idx : Idx - NumElems; } } if (!LN0 || !LN0->hasOneUse() || LN0->isVolatile()) return SDOperand(); unsigned Align = LN0->getAlignment(); if (NewLoad) { // Check the resultant load doesn't need a higher alignment than the // original load. unsigned NewAlign = TLI.getTargetMachine().getTargetData()-> getABITypeAlignment(LVT.getTypeForMVT()); if (NewAlign > Align || !TLI.isOperationLegal(ISD::LOAD, LVT)) return SDOperand(); Align = NewAlign; } SDOperand NewPtr = LN0->getBasePtr(); if (Elt) { unsigned PtrOff = LVT.getSizeInBits() * Elt / 8; MVT PtrType = NewPtr.getValueType(); if (TLI.isBigEndian()) PtrOff = VT.getSizeInBits() / 8 - PtrOff; NewPtr = DAG.getNode(ISD::ADD, PtrType, NewPtr, DAG.getConstant(PtrOff, PtrType)); } return DAG.getLoad(LVT, LN0->getChain(), NewPtr, LN0->getSrcValue(), LN0->getSrcValueOffset(), LN0->isVolatile(), Align); } return SDOperand(); } SDOperand DAGCombiner::visitBUILD_VECTOR(SDNode *N) { unsigned NumInScalars = N->getNumOperands(); MVT VT = N->getValueType(0); unsigned NumElts = VT.getVectorNumElements(); MVT EltType = VT.getVectorElementType(); // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT // operations. If so, and if the EXTRACT_VECTOR_ELT vector inputs come from // at most two distinct vectors, turn this into a shuffle node. SDOperand VecIn1, VecIn2; for (unsigned i = 0; i != NumInScalars; ++i) { // Ignore undef inputs. if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue; // If this input is something other than a EXTRACT_VECTOR_ELT with a // constant index, bail out. if (N->getOperand(i).getOpcode() != ISD::EXTRACT_VECTOR_ELT || !isa(N->getOperand(i).getOperand(1))) { VecIn1 = VecIn2 = SDOperand(0, 0); break; } // If the input vector type disagrees with the result of the build_vector, // we can't make a shuffle. SDOperand ExtractedFromVec = N->getOperand(i).getOperand(0); if (ExtractedFromVec.getValueType() != VT) { VecIn1 = VecIn2 = SDOperand(0, 0); break; } // Otherwise, remember this. We allow up to two distinct input vectors. if (ExtractedFromVec == VecIn1 || ExtractedFromVec == VecIn2) continue; if (VecIn1.Val == 0) { VecIn1 = ExtractedFromVec; } else if (VecIn2.Val == 0) { VecIn2 = ExtractedFromVec; } else { // Too many inputs. VecIn1 = VecIn2 = SDOperand(0, 0); break; } } // If everything is good, we can make a shuffle operation. if (VecIn1.Val) { SmallVector BuildVecIndices; for (unsigned i = 0; i != NumInScalars; ++i) { if (N->getOperand(i).getOpcode() == ISD::UNDEF) { BuildVecIndices.push_back(DAG.getNode(ISD::UNDEF, TLI.getPointerTy())); continue; } SDOperand Extract = N->getOperand(i); // If extracting from the first vector, just use the index directly. if (Extract.getOperand(0) == VecIn1) { BuildVecIndices.push_back(Extract.getOperand(1)); continue; } // Otherwise, use InIdx + VecSize unsigned Idx = cast(Extract.getOperand(1))->getValue(); BuildVecIndices.push_back(DAG.getIntPtrConstant(Idx+NumInScalars)); } // Add count and size info. MVT BuildVecVT = MVT::getVectorVT(TLI.getPointerTy(), NumElts); // Return the new VECTOR_SHUFFLE node. SDOperand Ops[5]; Ops[0] = VecIn1; if (VecIn2.Val) { Ops[1] = VecIn2; } else { // Use an undef build_vector as input for the second operand. std::vector UnOps(NumInScalars, DAG.getNode(ISD::UNDEF, EltType)); Ops[1] = DAG.getNode(ISD::BUILD_VECTOR, VT, &UnOps[0], UnOps.size()); AddToWorkList(Ops[1].Val); } Ops[2] = DAG.getNode(ISD::BUILD_VECTOR, BuildVecVT, &BuildVecIndices[0], BuildVecIndices.size()); return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Ops, 3); } return SDOperand(); } SDOperand DAGCombiner::visitCONCAT_VECTORS(SDNode *N) { // TODO: Check to see if this is a CONCAT_VECTORS of a bunch of // EXTRACT_SUBVECTOR operations. If so, and if the EXTRACT_SUBVECTOR vector // inputs come from at most two distinct vectors, turn this into a shuffle // node. // If we only have one input vector, we don't need to do any concatenation. if (N->getNumOperands() == 1) { return N->getOperand(0); } return SDOperand(); } SDOperand DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) { SDOperand ShufMask = N->getOperand(2); unsigned NumElts = ShufMask.getNumOperands(); // If the shuffle mask is an identity operation on the LHS, return the LHS. bool isIdentity = true; for (unsigned i = 0; i != NumElts; ++i) { if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF && cast(ShufMask.getOperand(i))->getValue() != i) { isIdentity = false; break; } } if (isIdentity) return N->getOperand(0); // If the shuffle mask is an identity operation on the RHS, return the RHS. isIdentity = true; for (unsigned i = 0; i != NumElts; ++i) { if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF && cast(ShufMask.getOperand(i))->getValue() != i+NumElts) { isIdentity = false; break; } } if (isIdentity) return N->getOperand(1); // Check if the shuffle is a unary shuffle, i.e. one of the vectors is not // needed at all. bool isUnary = true; bool isSplat = true; int VecNum = -1; unsigned BaseIdx = 0; for (unsigned i = 0; i != NumElts; ++i) if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF) { unsigned Idx = cast(ShufMask.getOperand(i))->getValue(); int V = (Idx < NumElts) ? 0 : 1; if (VecNum == -1) { VecNum = V; BaseIdx = Idx; } else { if (BaseIdx != Idx) isSplat = false; if (VecNum != V) { isUnary = false; break; } } } SDOperand N0 = N->getOperand(0); SDOperand N1 = N->getOperand(1); // Normalize unary shuffle so the RHS is undef. if (isUnary && VecNum == 1) std::swap(N0, N1); // If it is a splat, check if the argument vector is a build_vector with // all scalar elements the same. if (isSplat) { SDNode *V = N0.Val; // If this is a bit convert that changes the element type of the vector but // not the number of vector elements, look through it. Be careful not to // look though conversions that change things like v4f32 to v2f64. if (V->getOpcode() == ISD::BIT_CONVERT) { SDOperand ConvInput = V->getOperand(0); if (ConvInput.getValueType().getVectorNumElements() == NumElts) V = ConvInput.Val; } if (V->getOpcode() == ISD::BUILD_VECTOR) { unsigned NumElems = V->getNumOperands(); if (NumElems > BaseIdx) { SDOperand Base; bool AllSame = true; for (unsigned i = 0; i != NumElems; ++i) { if (V->getOperand(i).getOpcode() != ISD::UNDEF) { Base = V->getOperand(i); break; } } // Splat of , return if (!Base.Val) return N0; for (unsigned i = 0; i != NumElems; ++i) { if (V->getOperand(i) != Base) { AllSame = false; break; } } // Splat of , return if (AllSame) return N0; } } } // If it is a unary or the LHS and the RHS are the same node, turn the RHS // into an undef. if (isUnary || N0 == N1) { // Check the SHUFFLE mask, mapping any inputs from the 2nd operand into the // first operand. SmallVector MappedOps; for (unsigned i = 0; i != NumElts; ++i) { if (ShufMask.getOperand(i).getOpcode() == ISD::UNDEF || cast(ShufMask.getOperand(i))->getValue() < NumElts) { MappedOps.push_back(ShufMask.getOperand(i)); } else { unsigned NewIdx = cast(ShufMask.getOperand(i))->getValue() - NumElts; MappedOps.push_back(DAG.getConstant(NewIdx, MVT::i32)); } } ShufMask = DAG.getNode(ISD::BUILD_VECTOR, ShufMask.getValueType(), &MappedOps[0], MappedOps.size()); AddToWorkList(ShufMask.Val); return DAG.getNode(ISD::VECTOR_SHUFFLE, N->getValueType(0), N0, DAG.getNode(ISD::UNDEF, N->getValueType(0)), ShufMask); } return SDOperand(); } /// XformToShuffleWithZero - Returns a vector_shuffle if it able to transform /// an AND to a vector_shuffle with the destination vector and a zero vector. /// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==> /// vector_shuffle V, Zero, <0, 4, 2, 4> SDOperand DAGCombiner::XformToShuffleWithZero(SDNode *N) { SDOperand LHS = N->getOperand(0); SDOperand RHS = N->getOperand(1); if (N->getOpcode() == ISD::AND) { if (RHS.getOpcode() == ISD::BIT_CONVERT) RHS = RHS.getOperand(0); if (RHS.getOpcode() == ISD::BUILD_VECTOR) { std::vector IdxOps; unsigned NumOps = RHS.getNumOperands(); unsigned NumElts = NumOps; MVT EVT = RHS.getValueType().getVectorElementType(); for (unsigned i = 0; i != NumElts; ++i) { SDOperand Elt = RHS.getOperand(i); if (!isa(Elt)) return SDOperand(); else if (cast(Elt)->isAllOnesValue()) IdxOps.push_back(DAG.getConstant(i, EVT)); else if (cast(Elt)->isNullValue()) IdxOps.push_back(DAG.getConstant(NumElts, EVT)); else return SDOperand(); } // Let's see if the target supports this vector_shuffle. if (!TLI.isVectorClearMaskLegal(IdxOps, EVT, DAG)) return SDOperand(); // Return the new VECTOR_SHUFFLE node. MVT VT = MVT::getVectorVT(EVT, NumElts); std::vector Ops; LHS = DAG.getNode(ISD::BIT_CONVERT, VT, LHS); Ops.push_back(LHS); AddToWorkList(LHS.Val); std::vector ZeroOps(NumElts, DAG.getConstant(0, EVT)); Ops.push_back(DAG.getNode(ISD::BUILD_VECTOR, VT, &ZeroOps[0], ZeroOps.size())); Ops.push_back(DAG.getNode(ISD::BUILD_VECTOR, VT, &IdxOps[0], IdxOps.size())); SDOperand Result = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, &Ops[0], Ops.size()); if (VT != LHS.getValueType()) { Result = DAG.getNode(ISD::BIT_CONVERT, LHS.getValueType(), Result); } return Result; } } return SDOperand(); } /// SimplifyVBinOp - Visit a binary vector operation, like ADD. SDOperand DAGCombiner::SimplifyVBinOp(SDNode *N) { // After legalize, the target may be depending on adds and other // binary ops to provide legal ways to construct constants or other // things. Simplifying them may result in a loss of legality. if (AfterLegalize) return SDOperand(); MVT VT = N->getValueType(0); assert(VT.isVector() && "SimplifyVBinOp only works on vectors!"); MVT EltType = VT.getVectorElementType(); SDOperand LHS = N->getOperand(0); SDOperand RHS = N->getOperand(1); SDOperand Shuffle = XformToShuffleWithZero(N); if (Shuffle.Val) return Shuffle; // If the LHS and RHS are BUILD_VECTOR nodes, see if we can constant fold // this operation. if (LHS.getOpcode() == ISD::BUILD_VECTOR && RHS.getOpcode() == ISD::BUILD_VECTOR) { SmallVector Ops; for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { SDOperand LHSOp = LHS.getOperand(i); SDOperand RHSOp = RHS.getOperand(i); // If these two elements can't be folded, bail out. if ((LHSOp.getOpcode() != ISD::UNDEF && LHSOp.getOpcode() != ISD::Constant && LHSOp.getOpcode() != ISD::ConstantFP) || (RHSOp.getOpcode() != ISD::UNDEF && RHSOp.getOpcode() != ISD::Constant && RHSOp.getOpcode() != ISD::ConstantFP)) break; // Can't fold divide by zero. if (N->getOpcode() == ISD::SDIV || N->getOpcode() == ISD::UDIV || N->getOpcode() == ISD::FDIV) { if ((RHSOp.getOpcode() == ISD::Constant && cast(RHSOp.Val)->isNullValue()) || (RHSOp.getOpcode() == ISD::ConstantFP && cast(RHSOp.Val)->getValueAPF().isZero())) break; } Ops.push_back(DAG.getNode(N->getOpcode(), EltType, LHSOp, RHSOp)); AddToWorkList(Ops.back().Val); assert((Ops.back().getOpcode() == ISD::UNDEF || Ops.back().getOpcode() == ISD::Constant || Ops.back().getOpcode() == ISD::ConstantFP) && "Scalar binop didn't fold!"); } if (Ops.size() == LHS.getNumOperands()) { MVT VT = LHS.getValueType(); return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size()); } } return SDOperand(); } SDOperand DAGCombiner::SimplifySelect(SDOperand N0, SDOperand N1, SDOperand N2){ assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!"); SDOperand SCC = SimplifySelectCC(N0.getOperand(0), N0.getOperand(1), N1, N2, cast(N0.getOperand(2))->get()); // If we got a simplified select_cc node back from SimplifySelectCC, then // break it down into a new SETCC node, and a new SELECT node, and then return // the SELECT node, since we were called with a SELECT node. if (SCC.Val) { // Check to see if we got a select_cc back (to turn into setcc/select). // Otherwise, just return whatever node we got back, like fabs. if (SCC.getOpcode() == ISD::SELECT_CC) { SDOperand SETCC = DAG.getNode(ISD::SETCC, N0.getValueType(), SCC.getOperand(0), SCC.getOperand(1), SCC.getOperand(4)); AddToWorkList(SETCC.Val); return DAG.getNode(ISD::SELECT, SCC.getValueType(), SCC.getOperand(2), SCC.getOperand(3), SETCC); } return SCC; } return SDOperand(); } /// SimplifySelectOps - Given a SELECT or a SELECT_CC node, where LHS and RHS /// are the two values being selected between, see if we can simplify the /// select. Callers of this should assume that TheSelect is deleted if this /// returns true. As such, they should return the appropriate thing (e.g. the /// node) back to the top-level of the DAG combiner loop to avoid it being /// looked at. /// bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDOperand LHS, SDOperand RHS) { // If this is a select from two identical things, try to pull the operation // through the select. if (LHS.getOpcode() == RHS.getOpcode() && LHS.hasOneUse() && RHS.hasOneUse()){ // If this is a load and the token chain is identical, replace the select // of two loads with a load through a select of the address to load from. // This triggers in things like "select bool X, 10.0, 123.0" after the FP // constants have been dropped into the constant pool. if (LHS.getOpcode() == ISD::LOAD && // Do not let this transformation reduce the number of volatile loads. !cast(LHS)->isVolatile() && !cast(RHS)->isVolatile() && // Token chains must be identical. LHS.getOperand(0) == RHS.getOperand(0)) { LoadSDNode *LLD = cast(LHS); LoadSDNode *RLD = cast(RHS); // If this is an EXTLOAD, the VT's must match. if (LLD->getMemoryVT() == RLD->getMemoryVT()) { // FIXME: this conflates two src values, discarding one. This is not // the right thing to do, but nothing uses srcvalues now. When they do, // turn SrcValue into a list of locations. SDOperand Addr; if (TheSelect->getOpcode() == ISD::SELECT) { // Check that the condition doesn't reach either load. If so, folding // this will induce a cycle into the DAG. if (!LLD->isPredecessorOf(TheSelect->getOperand(0).Val) && !RLD->isPredecessorOf(TheSelect->getOperand(0).Val)) { Addr = DAG.getNode(ISD::SELECT, LLD->getBasePtr().getValueType(), TheSelect->getOperand(0), LLD->getBasePtr(), RLD->getBasePtr()); } } else { // Check that the condition doesn't reach either load. If so, folding // this will induce a cycle into the DAG. if (!LLD->isPredecessorOf(TheSelect->getOperand(0).Val) && !RLD->isPredecessorOf(TheSelect->getOperand(0).Val) && !LLD->isPredecessorOf(TheSelect->getOperand(1).Val) && !RLD->isPredecessorOf(TheSelect->getOperand(1).Val)) { Addr = DAG.getNode(ISD::SELECT_CC, LLD->getBasePtr().getValueType(), TheSelect->getOperand(0), TheSelect->getOperand(1), LLD->getBasePtr(), RLD->getBasePtr(), TheSelect->getOperand(4)); } } if (Addr.Val) { SDOperand Load; if (LLD->getExtensionType() == ISD::NON_EXTLOAD) Load = DAG.getLoad(TheSelect->getValueType(0), LLD->getChain(), Addr,LLD->getSrcValue(), LLD->getSrcValueOffset(), LLD->isVolatile(), LLD->getAlignment()); else { Load = DAG.getExtLoad(LLD->getExtensionType(), TheSelect->getValueType(0), LLD->getChain(), Addr, LLD->getSrcValue(), LLD->getSrcValueOffset(), LLD->getMemoryVT(), LLD->isVolatile(), LLD->getAlignment()); } // Users of the select now use the result of the load. CombineTo(TheSelect, Load); // Users of the old loads now use the new load's chain. We know the // old-load value is dead now. CombineTo(LHS.Val, Load.getValue(0), Load.getValue(1)); CombineTo(RHS.Val, Load.getValue(0), Load.getValue(1)); return true; } } } } return false; } SDOperand DAGCombiner::SimplifySelectCC(SDOperand N0, SDOperand N1, SDOperand N2, SDOperand N3, ISD::CondCode CC, bool NotExtCompare) { MVT VT = N2.getValueType(); ConstantSDNode *N1C = dyn_cast(N1.Val); ConstantSDNode *N2C = dyn_cast(N2.Val); ConstantSDNode *N3C = dyn_cast(N3.Val); // Determine if the condition we're dealing with is constant SDOperand SCC = SimplifySetCC(TLI.getSetCCResultType(N0), N0, N1, CC, false); if (SCC.Val) AddToWorkList(SCC.Val); ConstantSDNode *SCCC = dyn_cast_or_null(SCC.Val); // fold select_cc true, x, y -> x if (SCCC && !SCCC->isNullValue()) return N2; // fold select_cc false, x, y -> y if (SCCC && SCCC->isNullValue()) return N3; // Check to see if we can simplify the select into an fabs node if (ConstantFPSDNode *CFP = dyn_cast(N1)) { // Allow either -0.0 or 0.0 if (CFP->getValueAPF().isZero()) { // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs if ((CC == ISD::SETGE || CC == ISD::SETGT) && N0 == N2 && N3.getOpcode() == ISD::FNEG && N2 == N3.getOperand(0)) return DAG.getNode(ISD::FABS, VT, N0); // select (setl[te] X, +/-0.0), fneg(X), X -> fabs if ((CC == ISD::SETLT || CC == ISD::SETLE) && N0 == N3 && N2.getOpcode() == ISD::FNEG && N2.getOperand(0) == N3) return DAG.getNode(ISD::FABS, VT, N3); } } // Check to see if we can perform the "gzip trick", transforming // select_cc setlt X, 0, A, 0 -> and (sra X, size(X)-1), A if (N1C && N3C && N3C->isNullValue() && CC == ISD::SETLT && N0.getValueType().isInteger() && N2.getValueType().isInteger() && (N1C->isNullValue() || // (a < 0) ? b : 0 (N1C->getAPIntValue() == 1 && N0 == N2))) { // (a < 1) ? a : 0 MVT XType = N0.getValueType(); MVT AType = N2.getValueType(); if (XType.bitsGE(AType)) { // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a // single-bit constant. if (N2C && ((N2C->getAPIntValue() & (N2C->getAPIntValue()-1)) == 0)) { unsigned ShCtV = N2C->getAPIntValue().logBase2(); ShCtV = XType.getSizeInBits()-ShCtV-1; SDOperand ShCt = DAG.getConstant(ShCtV, TLI.getShiftAmountTy()); SDOperand Shift = DAG.getNode(ISD::SRL, XType, N0, ShCt); AddToWorkList(Shift.Val); if (XType.bitsGT(AType)) { Shift = DAG.getNode(ISD::TRUNCATE, AType, Shift); AddToWorkList(Shift.Val); } return DAG.getNode(ISD::AND, AType, Shift, N2); } SDOperand Shift = DAG.getNode(ISD::SRA, XType, N0, DAG.getConstant(XType.getSizeInBits()-1, TLI.getShiftAmountTy())); AddToWorkList(Shift.Val); if (XType.bitsGT(AType)) { Shift = DAG.getNode(ISD::TRUNCATE, AType, Shift); AddToWorkList(Shift.Val); } return DAG.getNode(ISD::AND, AType, Shift, N2); } } // fold select C, 16, 0 -> shl C, 4 if (N2C && N3C && N3C->isNullValue() && N2C->getAPIntValue().isPowerOf2() && TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult) { // If the caller doesn't want us to simplify this into a zext of a compare, // don't do it. if (NotExtCompare && N2C->getAPIntValue() == 1) return SDOperand(); // Get a SetCC of the condition // FIXME: Should probably make sure that setcc is legal if we ever have a // target where it isn't. SDOperand Temp, SCC; // cast from setcc result type to select result type if (AfterLegalize) { SCC = DAG.getSetCC(TLI.getSetCCResultType(N0), N0, N1, CC); if (N2.getValueType().bitsLT(SCC.getValueType())) Temp = DAG.getZeroExtendInReg(SCC, N2.getValueType()); else Temp = DAG.getNode(ISD::ZERO_EXTEND, N2.getValueType(), SCC); } else { SCC = DAG.getSetCC(MVT::i1, N0, N1, CC); Temp = DAG.getNode(ISD::ZERO_EXTEND, N2.getValueType(), SCC); } AddToWorkList(SCC.Val); AddToWorkList(Temp.Val); if (N2C->getAPIntValue() == 1) return Temp; // shl setcc result by log2 n2c return DAG.getNode(ISD::SHL, N2.getValueType(), Temp, DAG.getConstant(N2C->getAPIntValue().logBase2(), TLI.getShiftAmountTy())); } // Check to see if this is the equivalent of setcc // FIXME: Turn all of these into setcc if setcc if setcc is legal // otherwise, go ahead with the folds. if (0 && N3C && N3C->isNullValue() && N2C && (N2C->getAPIntValue() == 1ULL)) { MVT XType = N0.getValueType(); if (!AfterLegalize || TLI.isOperationLegal(ISD::SETCC, TLI.getSetCCResultType(N0))) { SDOperand Res = DAG.getSetCC(TLI.getSetCCResultType(N0), N0, N1, CC); if (Res.getValueType() != VT) Res = DAG.getNode(ISD::ZERO_EXTEND, VT, Res); return Res; } // seteq X, 0 -> srl (ctlz X, log2(size(X))) if (N1C && N1C->isNullValue() && CC == ISD::SETEQ && (!AfterLegalize || TLI.isOperationLegal(ISD::CTLZ, XType))) { SDOperand Ctlz = DAG.getNode(ISD::CTLZ, XType, N0); return DAG.getNode(ISD::SRL, XType, Ctlz, DAG.getConstant(Log2_32(XType.getSizeInBits()), TLI.getShiftAmountTy())); } // setgt X, 0 -> srl (and (-X, ~X), size(X)-1) if (N1C && N1C->isNullValue() && CC == ISD::SETGT) { SDOperand NegN0 = DAG.getNode(ISD::SUB, XType, DAG.getConstant(0, XType), N0); SDOperand NotN0 = DAG.getNode(ISD::XOR, XType, N0, DAG.getConstant(~0ULL, XType)); return DAG.getNode(ISD::SRL, XType, DAG.getNode(ISD::AND, XType, NegN0, NotN0), DAG.getConstant(XType.getSizeInBits()-1, TLI.getShiftAmountTy())); } // setgt X, -1 -> xor (srl (X, size(X)-1), 1) if (N1C && N1C->isAllOnesValue() && CC == ISD::SETGT) { SDOperand Sign = DAG.getNode(ISD::SRL, XType, N0, DAG.getConstant(XType.getSizeInBits()-1, TLI.getShiftAmountTy())); return DAG.getNode(ISD::XOR, XType, Sign, DAG.getConstant(1, XType)); } } // Check to see if this is an integer abs. select_cc setl[te] X, 0, -X, X -> // Y = sra (X, size(X)-1); xor (add (X, Y), Y) if (N1C && N1C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE) && N0 == N3 && N2.getOpcode() == ISD::SUB && N0 == N2.getOperand(1) && N2.getOperand(0) == N1 && N0.getValueType().isInteger()) { MVT XType = N0.getValueType(); SDOperand Shift = DAG.getNode(ISD::SRA, XType, N0, DAG.getConstant(XType.getSizeInBits()-1, TLI.getShiftAmountTy())); SDOperand Add = DAG.getNode(ISD::ADD, XType, N0, Shift); AddToWorkList(Shift.Val); AddToWorkList(Add.Val); return DAG.getNode(ISD::XOR, XType, Add, Shift); } // Check to see if this is an integer abs. select_cc setgt X, -1, X, -X -> // Y = sra (X, size(X)-1); xor (add (X, Y), Y) if (N1C && N1C->isAllOnesValue() && CC == ISD::SETGT && N0 == N2 && N3.getOpcode() == ISD::SUB && N0 == N3.getOperand(1)) { if (ConstantSDNode *SubC = dyn_cast(N3.getOperand(0))) { MVT XType = N0.getValueType(); if (SubC->isNullValue() && XType.isInteger()) { SDOperand Shift = DAG.getNode(ISD::SRA, XType, N0, DAG.getConstant(XType.getSizeInBits()-1, TLI.getShiftAmountTy())); SDOperand Add = DAG.getNode(ISD::ADD, XType, N0, Shift); AddToWorkList(Shift.Val); AddToWorkList(Add.Val); return DAG.getNode(ISD::XOR, XType, Add, Shift); } } } return SDOperand(); } /// SimplifySetCC - This is a stub for TargetLowering::SimplifySetCC. SDOperand DAGCombiner::SimplifySetCC(MVT VT, SDOperand N0, SDOperand N1, ISD::CondCode Cond, bool foldBooleans) { TargetLowering::DAGCombinerInfo DagCombineInfo(DAG, !AfterLegalize, false, this); return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo); } /// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant, /// return a DAG expression to select that will generate the same value by /// multiplying by a magic number. See: /// SDOperand DAGCombiner::BuildSDIV(SDNode *N) { std::vector Built; SDOperand S = TLI.BuildSDIV(N, DAG, &Built); for (std::vector::iterator ii = Built.begin(), ee = Built.end(); ii != ee; ++ii) AddToWorkList(*ii); return S; } /// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant, /// return a DAG expression to select that will generate the same value by /// multiplying by a magic number. See: /// SDOperand DAGCombiner::BuildUDIV(SDNode *N) { std::vector Built; SDOperand S = TLI.BuildUDIV(N, DAG, &Built); for (std::vector::iterator ii = Built.begin(), ee = Built.end(); ii != ee; ++ii) AddToWorkList(*ii); return S; } /// FindBaseOffset - Return true if base is known not to alias with anything /// but itself. Provides base object and offset as results. static bool FindBaseOffset(SDOperand Ptr, SDOperand &Base, int64_t &Offset) { // Assume it is a primitive operation. Base = Ptr; Offset = 0; // If it's an adding a simple constant then integrate the offset. if (Base.getOpcode() == ISD::ADD) { if (ConstantSDNode *C = dyn_cast(Base.getOperand(1))) { Base = Base.getOperand(0); Offset += C->getValue(); } } // If it's any of the following then it can't alias with anything but itself. return isa(Base) || isa(Base) || isa(Base); } /// isAlias - Return true if there is any possibility that the two addresses /// overlap. bool DAGCombiner::isAlias(SDOperand Ptr1, int64_t Size1, const Value *SrcValue1, int SrcValueOffset1, SDOperand Ptr2, int64_t Size2, const Value *SrcValue2, int SrcValueOffset2) { // If they are the same then they must be aliases. if (Ptr1 == Ptr2) return true; // Gather base node and offset information. SDOperand Base1, Base2; int64_t Offset1, Offset2; bool KnownBase1 = FindBaseOffset(Ptr1, Base1, Offset1); bool KnownBase2 = FindBaseOffset(Ptr2, Base2, Offset2); // If they have a same base address then... if (Base1 == Base2) { // Check to see if the addresses overlap. return!((Offset1 + Size1) <= Offset2 || (Offset2 + Size2) <= Offset1); } // If we know both bases then they can't alias. if (KnownBase1 && KnownBase2) return false; if (CombinerGlobalAA) { // Use alias analysis information. int64_t MinOffset = std::min(SrcValueOffset1, SrcValueOffset2); int64_t Overlap1 = Size1 + SrcValueOffset1 - MinOffset; int64_t Overlap2 = Size2 + SrcValueOffset2 - MinOffset; AliasAnalysis::AliasResult AAResult = AA.alias(SrcValue1, Overlap1, SrcValue2, Overlap2); if (AAResult == AliasAnalysis::NoAlias) return false; } // Otherwise we have to assume they alias. return true; } /// FindAliasInfo - Extracts the relevant alias information from the memory /// node. Returns true if the operand was a load. bool DAGCombiner::FindAliasInfo(SDNode *N, SDOperand &Ptr, int64_t &Size, const Value *&SrcValue, int &SrcValueOffset) { if (LoadSDNode *LD = dyn_cast(N)) { Ptr = LD->getBasePtr(); Size = LD->getMemoryVT().getSizeInBits() >> 3; SrcValue = LD->getSrcValue(); SrcValueOffset = LD->getSrcValueOffset(); return true; } else if (StoreSDNode *ST = dyn_cast(N)) { Ptr = ST->getBasePtr(); Size = ST->getMemoryVT().getSizeInBits() >> 3; SrcValue = ST->getSrcValue(); SrcValueOffset = ST->getSrcValueOffset(); } else { assert(0 && "FindAliasInfo expected a memory operand"); } return false; } /// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes, /// looking for aliasing nodes and adding them to the Aliases vector. void DAGCombiner::GatherAllAliases(SDNode *N, SDOperand OriginalChain, SmallVector &Aliases) { SmallVector Chains; // List of chains to visit. std::set Visited; // Visited node set. // Get alias information for node. SDOperand Ptr; int64_t Size; const Value *SrcValue; int SrcValueOffset; bool IsLoad = FindAliasInfo(N, Ptr, Size, SrcValue, SrcValueOffset); // Starting off. Chains.push_back(OriginalChain); // Look at each chain and determine if it is an alias. If so, add it to the // aliases list. If not, then continue up the chain looking for the next // candidate. while (!Chains.empty()) { SDOperand Chain = Chains.back(); Chains.pop_back(); // Don't bother if we've been before. if (Visited.find(Chain.Val) != Visited.end()) continue; Visited.insert(Chain.Val); switch (Chain.getOpcode()) { case ISD::EntryToken: // Entry token is ideal chain operand, but handled in FindBetterChain. break; case ISD::LOAD: case ISD::STORE: { // Get alias information for Chain. SDOperand OpPtr; int64_t OpSize; const Value *OpSrcValue; int OpSrcValueOffset; bool IsOpLoad = FindAliasInfo(Chain.Val, OpPtr, OpSize, OpSrcValue, OpSrcValueOffset); // If chain is alias then stop here. if (!(IsLoad && IsOpLoad) && isAlias(Ptr, Size, SrcValue, SrcValueOffset, OpPtr, OpSize, OpSrcValue, OpSrcValueOffset)) { Aliases.push_back(Chain); } else { // Look further up the chain. Chains.push_back(Chain.getOperand(0)); // Clean up old chain. AddToWorkList(Chain.Val); } break; } case ISD::TokenFactor: // We have to check each of the operands of the token factor, so we queue // then up. Adding the operands to the queue (stack) in reverse order // maintains the original order and increases the likelihood that getNode // will find a matching token factor (CSE.) for (unsigned n = Chain.getNumOperands(); n;) Chains.push_back(Chain.getOperand(--n)); // Eliminate the token factor if we can. AddToWorkList(Chain.Val); break; default: // For all other instructions we will just have to take what we can get. Aliases.push_back(Chain); break; } } } /// FindBetterChain - Walk up chain skipping non-aliasing memory nodes, looking /// for a better chain (aliasing node.) SDOperand DAGCombiner::FindBetterChain(SDNode *N, SDOperand OldChain) { SmallVector Aliases; // Ops for replacing token factor. // Accumulate all the aliases to this node. GatherAllAliases(N, OldChain, Aliases); if (Aliases.size() == 0) { // If no operands then chain to entry token. return DAG.getEntryNode(); } else if (Aliases.size() == 1) { // If a single operand then chain to it. We don't need to revisit it. return Aliases[0]; } // Construct a custom tailored token factor. SDOperand NewChain = DAG.getNode(ISD::TokenFactor, MVT::Other, &Aliases[0], Aliases.size()); // Make sure the old chain gets cleaned up. if (NewChain != OldChain) AddToWorkList(OldChain.Val); return NewChain; } // SelectionDAG::Combine - This is the entry point for the file. // void SelectionDAG::Combine(bool RunningAfterLegalize, AliasAnalysis &AA) { if (!RunningAfterLegalize && ViewDAGCombine1) viewGraph(); if (RunningAfterLegalize && ViewDAGCombine2) viewGraph(); /// run - This is the main entry point to this class. /// DAGCombiner(*this, AA).Run(RunningAfterLegalize); }