//===---- ScheduleDAGList.cpp - Implement a list scheduler for isel DAG ---===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This implements a top-down list scheduler, using standard algorithms. // The basic approach uses a priority queue of available nodes to schedule. // One at a time, nodes are taken from the priority queue (thus in priority // order), checked for legality to schedule, and emitted if legal. // // Nodes may not be legal to schedule either due to structural hazards (e.g. // pipeline or resource constraints) or because an input to the instruction has // not completed execution. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "pre-RA-sched" #include "llvm/CodeGen/ScheduleDAG.h" #include "llvm/CodeGen/SchedulerRegistry.h" #include "llvm/CodeGen/SelectionDAGISel.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Target/TargetData.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Compiler.h" #include "llvm/ADT/PriorityQueue.h" #include "llvm/ADT/Statistic.h" #include using namespace llvm; STATISTIC(NumNoops , "Number of noops inserted"); STATISTIC(NumStalls, "Number of pipeline stalls"); static RegisterScheduler tdListDAGScheduler("list-td", " Top-down list scheduler", createTDListDAGScheduler); namespace { //===----------------------------------------------------------------------===// /// ScheduleDAGList - The actual list scheduler implementation. This supports /// top-down scheduling. /// class VISIBILITY_HIDDEN ScheduleDAGList : public ScheduleDAG { private: /// AvailableQueue - The priority queue to use for the available SUnits. /// SchedulingPriorityQueue *AvailableQueue; /// PendingQueue - This contains all of the instructions whose operands have /// been issued, but their results are not ready yet (due to the latency of /// the operation). Once the operands becomes available, the instruction is /// added to the AvailableQueue. This keeps track of each SUnit and the /// number of cycles left to execute before the operation is available. std::vector > PendingQueue; /// HazardRec - The hazard recognizer to use. HazardRecognizer *HazardRec; public: ScheduleDAGList(SelectionDAG &dag, MachineBasicBlock *bb, const TargetMachine &tm, SchedulingPriorityQueue *availqueue, HazardRecognizer *HR) : ScheduleDAG(dag, bb, tm), AvailableQueue(availqueue), HazardRec(HR) { } ~ScheduleDAGList() { delete HazardRec; delete AvailableQueue; } void Schedule(); private: void ReleaseSucc(SUnit *SuccSU, bool isChain); void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle); void ListScheduleTopDown(); }; } // end anonymous namespace HazardRecognizer::~HazardRecognizer() {} /// Schedule - Schedule the DAG using list scheduling. void ScheduleDAGList::Schedule() { DOUT << "********** List Scheduling **********\n"; // Build scheduling units. BuildSchedUnits(); AvailableQueue->initNodes(SUnits); ListScheduleTopDown(); AvailableQueue->releaseState(); DOUT << "*** Final schedule ***\n"; DEBUG(dumpSchedule()); DOUT << "\n"; // Emit in scheduled order EmitSchedule(); } //===----------------------------------------------------------------------===// // Top-Down Scheduling //===----------------------------------------------------------------------===// /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to /// the PendingQueue if the count reaches zero. void ScheduleDAGList::ReleaseSucc(SUnit *SuccSU, bool isChain) { SuccSU->NumPredsLeft--; assert(SuccSU->NumPredsLeft >= 0 && "List scheduling internal error"); if (SuccSU->NumPredsLeft == 0) { // Compute how many cycles it will be before this actually becomes // available. This is the max of the start time of all predecessors plus // their latencies. unsigned AvailableCycle = 0; for (SUnit::pred_iterator I = SuccSU->Preds.begin(), E = SuccSU->Preds.end(); I != E; ++I) { // If this is a token edge, we don't need to wait for the latency of the // preceeding instruction (e.g. a long-latency load) unless there is also // some other data dependence. SUnit &Pred = *I->Dep; unsigned PredDoneCycle = Pred.Cycle; if (!I->isCtrl) PredDoneCycle += Pred.Latency; else if (Pred.Latency) PredDoneCycle += 1; AvailableCycle = std::max(AvailableCycle, PredDoneCycle); } PendingQueue.push_back(std::make_pair(AvailableCycle, SuccSU)); } } /// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending /// count of its successors. If a successor pending count is zero, add it to /// the Available queue. void ScheduleDAGList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) { DOUT << "*** Scheduling [" << CurCycle << "]: "; DEBUG(SU->dump(&DAG)); Sequence.push_back(SU); SU->Cycle = CurCycle; // Bottom up: release successors. for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); I != E; ++I) ReleaseSucc(I->Dep, I->isCtrl); } /// ListScheduleTopDown - The main loop of list scheduling for top-down /// schedulers. void ScheduleDAGList::ListScheduleTopDown() { unsigned CurCycle = 0; // All leaves to Available queue. for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { // It is available if it has no predecessors. if (SUnits[i].Preds.empty()) { AvailableQueue->push(&SUnits[i]); SUnits[i].isAvailable = SUnits[i].isPending = true; } } // While Available queue is not empty, grab the node with the highest // priority. If it is not ready put it back. Schedule the node. std::vector NotReady; Sequence.reserve(SUnits.size()); while (!AvailableQueue->empty() || !PendingQueue.empty()) { // Check to see if any of the pending instructions are ready to issue. If // so, add them to the available queue. for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) { if (PendingQueue[i].first == CurCycle) { AvailableQueue->push(PendingQueue[i].second); PendingQueue[i].second->isAvailable = true; PendingQueue[i] = PendingQueue.back(); PendingQueue.pop_back(); --i; --e; } else { assert(PendingQueue[i].first > CurCycle && "Negative latency?"); } } // If there are no instructions available, don't try to issue anything, and // don't advance the hazard recognizer. if (AvailableQueue->empty()) { ++CurCycle; continue; } SUnit *FoundSUnit = 0; SDNode *FoundNode = 0; bool HasNoopHazards = false; while (!AvailableQueue->empty()) { SUnit *CurSUnit = AvailableQueue->pop(); // Get the node represented by this SUnit. FoundNode = CurSUnit->Node; // If this is a pseudo op, like copyfromreg, look to see if there is a // real target node flagged to it. If so, use the target node. for (unsigned i = 0, e = CurSUnit->FlaggedNodes.size(); FoundNode->getOpcode() < ISD::BUILTIN_OP_END && i != e; ++i) FoundNode = CurSUnit->FlaggedNodes[i]; HazardRecognizer::HazardType HT = HazardRec->getHazardType(FoundNode); if (HT == HazardRecognizer::NoHazard) { FoundSUnit = CurSUnit; break; } // Remember if this is a noop hazard. HasNoopHazards |= HT == HazardRecognizer::NoopHazard; NotReady.push_back(CurSUnit); } // Add the nodes that aren't ready back onto the available list. if (!NotReady.empty()) { AvailableQueue->push_all(NotReady); NotReady.clear(); } // If we found a node to schedule, do it now. if (FoundSUnit) { ScheduleNodeTopDown(FoundSUnit, CurCycle); HazardRec->EmitInstruction(FoundNode); FoundSUnit->isScheduled = true; AvailableQueue->ScheduledNode(FoundSUnit); // If this is a pseudo-op node, we don't want to increment the current // cycle. if (FoundSUnit->Latency) // Don't increment CurCycle for pseudo-ops! ++CurCycle; } else if (!HasNoopHazards) { // Otherwise, we have a pipeline stall, but no other problem, just advance // the current cycle and try again. DOUT << "*** Advancing cycle, no work to do\n"; HazardRec->AdvanceCycle(); ++NumStalls; ++CurCycle; } else { // Otherwise, we have no instructions to issue and we have instructions // that will fault if we don't do this right. This is the case for // processors without pipeline interlocks and other cases. DOUT << "*** Emitting noop\n"; HazardRec->EmitNoop(); Sequence.push_back(0); // NULL SUnit* -> noop ++NumNoops; ++CurCycle; } } #ifndef NDEBUG // Verify that all SUnits were scheduled. bool AnyNotSched = false; for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { if (SUnits[i].NumPredsLeft != 0) { if (!AnyNotSched) cerr << "*** List scheduling failed! ***\n"; SUnits[i].dump(&DAG); cerr << "has not been scheduled!\n"; AnyNotSched = true; } } assert(!AnyNotSched); #endif } //===----------------------------------------------------------------------===// // LatencyPriorityQueue Implementation //===----------------------------------------------------------------------===// // // This is a SchedulingPriorityQueue that schedules using latency information to // reduce the length of the critical path through the basic block. // namespace { class LatencyPriorityQueue; /// Sorting functions for the Available queue. struct latency_sort : public std::binary_function { LatencyPriorityQueue *PQ; latency_sort(LatencyPriorityQueue *pq) : PQ(pq) {} latency_sort(const latency_sort &RHS) : PQ(RHS.PQ) {} bool operator()(const SUnit* left, const SUnit* right) const; }; } // end anonymous namespace namespace { class LatencyPriorityQueue : public SchedulingPriorityQueue { // SUnits - The SUnits for the current graph. std::vector *SUnits; // Latencies - The latency (max of latency from this node to the bb exit) // for each node. std::vector Latencies; /// NumNodesSolelyBlocking - This vector contains, for every node in the /// Queue, the number of nodes that the node is the sole unscheduled /// predecessor for. This is used as a tie-breaker heuristic for better /// mobility. std::vector NumNodesSolelyBlocking; PriorityQueue, latency_sort> Queue; public: LatencyPriorityQueue() : Queue(latency_sort(this)) { } void initNodes(std::vector &sunits) { SUnits = &sunits; // Calculate node priorities. CalculatePriorities(); } void addNode(const SUnit *SU) { Latencies.resize(SUnits->size(), -1); NumNodesSolelyBlocking.resize(SUnits->size(), 0); CalcLatency(*SU); } void updateNode(const SUnit *SU) { Latencies[SU->NodeNum] = -1; CalcLatency(*SU); } void releaseState() { SUnits = 0; Latencies.clear(); } unsigned getLatency(unsigned NodeNum) const { assert(NodeNum < Latencies.size()); return Latencies[NodeNum]; } unsigned getNumSolelyBlockNodes(unsigned NodeNum) const { assert(NodeNum < NumNodesSolelyBlocking.size()); return NumNodesSolelyBlocking[NodeNum]; } unsigned size() const { return Queue.size(); } bool empty() const { return Queue.empty(); } virtual void push(SUnit *U) { push_impl(U); } void push_impl(SUnit *U); void push_all(const std::vector &Nodes) { for (unsigned i = 0, e = Nodes.size(); i != e; ++i) push_impl(Nodes[i]); } SUnit *pop() { if (empty()) return NULL; SUnit *V = Queue.top(); Queue.pop(); return V; } void remove(SUnit *SU) { assert(!Queue.empty() && "Not in queue!"); Queue.erase_one(SU); } // ScheduledNode - As nodes are scheduled, we look to see if there are any // successor nodes that have a single unscheduled predecessor. If so, that // single predecessor has a higher priority, since scheduling it will make // the node available. void ScheduledNode(SUnit *Node); private: void CalculatePriorities(); int CalcLatency(const SUnit &SU); void AdjustPriorityOfUnscheduledPreds(SUnit *SU); SUnit *getSingleUnscheduledPred(SUnit *SU); }; } bool latency_sort::operator()(const SUnit *LHS, const SUnit *RHS) const { unsigned LHSNum = LHS->NodeNum; unsigned RHSNum = RHS->NodeNum; // The most important heuristic is scheduling the critical path. unsigned LHSLatency = PQ->getLatency(LHSNum); unsigned RHSLatency = PQ->getLatency(RHSNum); if (LHSLatency < RHSLatency) return true; if (LHSLatency > RHSLatency) return false; // After that, if two nodes have identical latencies, look to see if one will // unblock more other nodes than the other. unsigned LHSBlocked = PQ->getNumSolelyBlockNodes(LHSNum); unsigned RHSBlocked = PQ->getNumSolelyBlockNodes(RHSNum); if (LHSBlocked < RHSBlocked) return true; if (LHSBlocked > RHSBlocked) return false; // Finally, just to provide a stable ordering, use the node number as a // deciding factor. return LHSNum < RHSNum; } /// CalcNodePriority - Calculate the maximal path from the node to the exit. /// int LatencyPriorityQueue::CalcLatency(const SUnit &SU) { int &Latency = Latencies[SU.NodeNum]; if (Latency != -1) return Latency; std::vector WorkList; WorkList.push_back(&SU); while (!WorkList.empty()) { const SUnit *Cur = WorkList.back(); bool AllDone = true; int MaxSuccLatency = 0; for (SUnit::const_succ_iterator I = Cur->Succs.begin(),E = Cur->Succs.end(); I != E; ++I) { int SuccLatency = Latencies[I->Dep->NodeNum]; if (SuccLatency == -1) { AllDone = false; WorkList.push_back(I->Dep); } else { MaxSuccLatency = std::max(MaxSuccLatency, SuccLatency); } } if (AllDone) { Latencies[Cur->NodeNum] = MaxSuccLatency + Cur->Latency; WorkList.pop_back(); } } return Latency; } /// CalculatePriorities - Calculate priorities of all scheduling units. void LatencyPriorityQueue::CalculatePriorities() { Latencies.assign(SUnits->size(), -1); NumNodesSolelyBlocking.assign(SUnits->size(), 0); // For each node, calculate the maximal path from the node to the exit. std::vector > WorkList; for (unsigned i = 0, e = SUnits->size(); i != e; ++i) { const SUnit *SU = &(*SUnits)[i]; if (SU->Succs.empty()) WorkList.push_back(std::make_pair(SU, 0U)); } while (!WorkList.empty()) { const SUnit *SU = WorkList.back().first; unsigned SuccLat = WorkList.back().second; WorkList.pop_back(); int &Latency = Latencies[SU->NodeNum]; if (Latency == -1 || (SU->Latency + SuccLat) > (unsigned)Latency) { Latency = SU->Latency + SuccLat; for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end(); I != E; ++I) WorkList.push_back(std::make_pair(I->Dep, Latency)); } } } /// getSingleUnscheduledPred - If there is exactly one unscheduled predecessor /// of SU, return it, otherwise return null. SUnit *LatencyPriorityQueue::getSingleUnscheduledPred(SUnit *SU) { SUnit *OnlyAvailablePred = 0; for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) { SUnit &Pred = *I->Dep; if (!Pred.isScheduled) { // We found an available, but not scheduled, predecessor. If it's the // only one we have found, keep track of it... otherwise give up. if (OnlyAvailablePred && OnlyAvailablePred != &Pred) return 0; OnlyAvailablePred = &Pred; } } return OnlyAvailablePred; } void LatencyPriorityQueue::push_impl(SUnit *SU) { // Look at all of the successors of this node. Count the number of nodes that // this node is the sole unscheduled node for. unsigned NumNodesBlocking = 0; for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); I != E; ++I) if (getSingleUnscheduledPred(I->Dep) == SU) ++NumNodesBlocking; NumNodesSolelyBlocking[SU->NodeNum] = NumNodesBlocking; Queue.push(SU); } // ScheduledNode - As nodes are scheduled, we look to see if there are any // successor nodes that have a single unscheduled predecessor. If so, that // single predecessor has a higher priority, since scheduling it will make // the node available. void LatencyPriorityQueue::ScheduledNode(SUnit *SU) { for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); I != E; ++I) AdjustPriorityOfUnscheduledPreds(I->Dep); } /// AdjustPriorityOfUnscheduledPreds - One of the predecessors of SU was just /// scheduled. If SU is not itself available, then there is at least one /// predecessor node that has not been scheduled yet. If SU has exactly ONE /// unscheduled predecessor, we want to increase its priority: it getting /// scheduled will make this node available, so it is better than some other /// node of the same priority that will not make a node available. void LatencyPriorityQueue::AdjustPriorityOfUnscheduledPreds(SUnit *SU) { if (SU->isPending) return; // All preds scheduled. SUnit *OnlyAvailablePred = getSingleUnscheduledPred(SU); if (OnlyAvailablePred == 0 || !OnlyAvailablePred->isAvailable) return; // Okay, we found a single predecessor that is available, but not scheduled. // Since it is available, it must be in the priority queue. First remove it. remove(OnlyAvailablePred); // Reinsert the node into the priority queue, which recomputes its // NumNodesSolelyBlocking value. push(OnlyAvailablePred); } //===----------------------------------------------------------------------===// // Public Constructor Functions //===----------------------------------------------------------------------===// /// createTDListDAGScheduler - This creates a top-down list scheduler with a /// new hazard recognizer. This scheduler takes ownership of the hazard /// recognizer and deletes it when done. ScheduleDAG* llvm::createTDListDAGScheduler(SelectionDAGISel *IS, SelectionDAG *DAG, MachineBasicBlock *BB, bool Fast) { return new ScheduleDAGList(*DAG, BB, DAG->getTarget(), new LatencyPriorityQueue(), IS->CreateTargetHazardRecognizer()); }