//===- MipsInstrInfo.cpp - Mips Instruction Information ---------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the Mips implementation of the TargetInstrInfo class. // //===----------------------------------------------------------------------===// #include "MipsInstrInfo.h" #include "MipsTargetMachine.h" #include "MipsMachineFunction.h" #include "llvm/ADT/STLExtras.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "MipsGenInstrInfo.inc" using namespace llvm; MipsInstrInfo::MipsInstrInfo(MipsTargetMachine &tm) : TargetInstrInfoImpl(MipsInsts, array_lengthof(MipsInsts)), TM(tm), RI(*TM.getSubtargetImpl(), *this) {} static bool isZeroImm(const MachineOperand &op) { return op.isImm() && op.getImm() == 0; } /// Return true if the instruction is a register to register move and /// leave the source and dest operands in the passed parameters. bool MipsInstrInfo:: isMoveInstr(const MachineInstr &MI, unsigned &SrcReg, unsigned &DstReg, unsigned &SrcSubIdx, unsigned &DstSubIdx) const { SrcSubIdx = DstSubIdx = 0; // No sub-registers. // addu $dst, $src, $zero || addu $dst, $zero, $src // or $dst, $src, $zero || or $dst, $zero, $src if ((MI.getOpcode() == Mips::ADDu) || (MI.getOpcode() == Mips::OR)) { if (MI.getOperand(1).getReg() == Mips::ZERO) { DstReg = MI.getOperand(0).getReg(); SrcReg = MI.getOperand(2).getReg(); return true; } else if (MI.getOperand(2).getReg() == Mips::ZERO) { DstReg = MI.getOperand(0).getReg(); SrcReg = MI.getOperand(1).getReg(); return true; } } // mov $fpDst, $fpSrc // mfc $gpDst, $fpSrc // mtc $fpDst, $gpSrc if (MI.getOpcode() == Mips::FMOV_S32 || MI.getOpcode() == Mips::FMOV_D32 || MI.getOpcode() == Mips::MFC1 || MI.getOpcode() == Mips::MTC1 || MI.getOpcode() == Mips::MOVCCRToCCR) { DstReg = MI.getOperand(0).getReg(); SrcReg = MI.getOperand(1).getReg(); return true; } // addiu $dst, $src, 0 if (MI.getOpcode() == Mips::ADDiu) { if ((MI.getOperand(1).isReg()) && (isZeroImm(MI.getOperand(2)))) { DstReg = MI.getOperand(0).getReg(); SrcReg = MI.getOperand(1).getReg(); return true; } } return false; } /// isLoadFromStackSlot - If the specified machine instruction is a direct /// load from a stack slot, return the virtual or physical register number of /// the destination along with the FrameIndex of the loaded stack slot. If /// not, return 0. This predicate must return 0 if the instruction has /// any side effects other than loading from the stack slot. unsigned MipsInstrInfo:: isLoadFromStackSlot(const MachineInstr *MI, int &FrameIndex) const { if ((MI->getOpcode() == Mips::LW) || (MI->getOpcode() == Mips::LWC1) || (MI->getOpcode() == Mips::LDC1)) { if ((MI->getOperand(2).isFI()) && // is a stack slot (MI->getOperand(1).isImm()) && // the imm is zero (isZeroImm(MI->getOperand(1)))) { FrameIndex = MI->getOperand(2).getIndex(); return MI->getOperand(0).getReg(); } } return 0; } /// isStoreToStackSlot - If the specified machine instruction is a direct /// store to a stack slot, return the virtual or physical register number of /// the source reg along with the FrameIndex of the loaded stack slot. If /// not, return 0. This predicate must return 0 if the instruction has /// any side effects other than storing to the stack slot. unsigned MipsInstrInfo:: isStoreToStackSlot(const MachineInstr *MI, int &FrameIndex) const { if ((MI->getOpcode() == Mips::SW) || (MI->getOpcode() == Mips::SWC1) || (MI->getOpcode() == Mips::SDC1)) { if ((MI->getOperand(2).isFI()) && // is a stack slot (MI->getOperand(1).isImm()) && // the imm is zero (isZeroImm(MI->getOperand(1)))) { FrameIndex = MI->getOperand(2).getIndex(); return MI->getOperand(0).getReg(); } } return 0; } /// insertNoop - If data hazard condition is found insert the target nop /// instruction. void MipsInstrInfo:: insertNoop(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI) const { DebugLoc DL = DebugLoc::getUnknownLoc(); if (MI != MBB.end()) DL = MI->getDebugLoc(); BuildMI(MBB, MI, DL, get(Mips::NOP)); } bool MipsInstrInfo:: copyRegToReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, unsigned DestReg, unsigned SrcReg, const TargetRegisterClass *DestRC, const TargetRegisterClass *SrcRC) const { DebugLoc DL = DebugLoc::getUnknownLoc(); if (I != MBB.end()) DL = I->getDebugLoc(); if (DestRC != SrcRC) { // Copy to/from FCR31 condition register if ((DestRC == Mips::CPURegsRegisterClass) && (SrcRC == Mips::CCRRegisterClass)) BuildMI(MBB, I, DL, get(Mips::CFC1), DestReg).addReg(SrcReg); else if ((DestRC == Mips::CCRRegisterClass) && (SrcRC == Mips::CPURegsRegisterClass)) BuildMI(MBB, I, DL, get(Mips::CTC1), DestReg).addReg(SrcReg); // Moves between coprocessors and cpu else if ((DestRC == Mips::CPURegsRegisterClass) && (SrcRC == Mips::FGR32RegisterClass)) BuildMI(MBB, I, DL, get(Mips::MFC1), DestReg).addReg(SrcReg); else if ((DestRC == Mips::FGR32RegisterClass) && (SrcRC == Mips::CPURegsRegisterClass)) BuildMI(MBB, I, DL, get(Mips::MTC1), DestReg).addReg(SrcReg); // Move from/to Hi/Lo registers else if ((DestRC == Mips::HILORegisterClass) && (SrcRC == Mips::CPURegsRegisterClass)) { unsigned Opc = (DestReg == Mips::HI) ? Mips::MTHI : Mips::MTLO; BuildMI(MBB, I, DL, get(Opc), DestReg); } else if ((SrcRC == Mips::HILORegisterClass) && (DestRC == Mips::CPURegsRegisterClass)) { unsigned Opc = (SrcReg == Mips::HI) ? Mips::MFHI : Mips::MFLO; BuildMI(MBB, I, DL, get(Opc), DestReg); // Can't copy this register } else return false; return true; } if (DestRC == Mips::CPURegsRegisterClass) BuildMI(MBB, I, DL, get(Mips::ADDu), DestReg).addReg(Mips::ZERO) .addReg(SrcReg); else if (DestRC == Mips::FGR32RegisterClass) BuildMI(MBB, I, DL, get(Mips::FMOV_S32), DestReg).addReg(SrcReg); else if (DestRC == Mips::AFGR64RegisterClass) BuildMI(MBB, I, DL, get(Mips::FMOV_D32), DestReg).addReg(SrcReg); else if (DestRC == Mips::CCRRegisterClass) BuildMI(MBB, I, DL, get(Mips::MOVCCRToCCR), DestReg).addReg(SrcReg); else // Can't copy this register return false; return true; } void MipsInstrInfo:: storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, unsigned SrcReg, bool isKill, int FI, const TargetRegisterClass *RC) const { unsigned Opc; DebugLoc DL = DebugLoc::getUnknownLoc(); if (I != MBB.end()) DL = I->getDebugLoc(); if (RC == Mips::CPURegsRegisterClass) Opc = Mips::SW; else if (RC == Mips::FGR32RegisterClass) Opc = Mips::SWC1; else { assert(RC == Mips::AFGR64RegisterClass); Opc = Mips::SDC1; } BuildMI(MBB, I, DL, get(Opc)).addReg(SrcReg, getKillRegState(isKill)) .addImm(0).addFrameIndex(FI); } void MipsInstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill, SmallVectorImpl &Addr, const TargetRegisterClass *RC, SmallVectorImpl &NewMIs) const { unsigned Opc; if (RC == Mips::CPURegsRegisterClass) Opc = Mips::SW; else if (RC == Mips::FGR32RegisterClass) Opc = Mips::SWC1; else { assert(RC == Mips::AFGR64RegisterClass); Opc = Mips::SDC1; } DebugLoc DL = DebugLoc::getUnknownLoc(); MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc)) .addReg(SrcReg, getKillRegState(isKill)); for (unsigned i = 0, e = Addr.size(); i != e; ++i) MIB.addOperand(Addr[i]); NewMIs.push_back(MIB); return; } void MipsInstrInfo:: loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, unsigned DestReg, int FI, const TargetRegisterClass *RC) const { unsigned Opc; if (RC == Mips::CPURegsRegisterClass) Opc = Mips::LW; else if (RC == Mips::FGR32RegisterClass) Opc = Mips::LWC1; else { assert(RC == Mips::AFGR64RegisterClass); Opc = Mips::LDC1; } DebugLoc DL = DebugLoc::getUnknownLoc(); if (I != MBB.end()) DL = I->getDebugLoc(); BuildMI(MBB, I, DL, get(Opc), DestReg).addImm(0).addFrameIndex(FI); } void MipsInstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg, SmallVectorImpl &Addr, const TargetRegisterClass *RC, SmallVectorImpl &NewMIs) const { unsigned Opc; if (RC == Mips::CPURegsRegisterClass) Opc = Mips::LW; else if (RC == Mips::FGR32RegisterClass) Opc = Mips::LWC1; else { assert(RC == Mips::AFGR64RegisterClass); Opc = Mips::LDC1; } DebugLoc DL = DebugLoc::getUnknownLoc(); MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg); for (unsigned i = 0, e = Addr.size(); i != e; ++i) MIB.addOperand(Addr[i]); NewMIs.push_back(MIB); return; } MachineInstr *MipsInstrInfo:: foldMemoryOperandImpl(MachineFunction &MF, MachineInstr* MI, const SmallVectorImpl &Ops, int FI) const { if (Ops.size() != 1) return NULL; MachineInstr *NewMI = NULL; switch (MI->getOpcode()) { case Mips::ADDu: if ((MI->getOperand(0).isReg()) && (MI->getOperand(1).isReg()) && (MI->getOperand(1).getReg() == Mips::ZERO) && (MI->getOperand(2).isReg())) { if (Ops[0] == 0) { // COPY -> STORE unsigned SrcReg = MI->getOperand(2).getReg(); bool isKill = MI->getOperand(2).isKill(); NewMI = BuildMI(MF, MI->getDebugLoc(), get(Mips::SW)) .addReg(SrcReg, getKillRegState(isKill)) .addImm(0).addFrameIndex(FI); } else { // COPY -> LOAD unsigned DstReg = MI->getOperand(0).getReg(); bool isDead = MI->getOperand(0).isDead(); NewMI = BuildMI(MF, MI->getDebugLoc(), get(Mips::LW)) .addReg(DstReg, RegState::Define | getDeadRegState(isDead)) .addImm(0).addFrameIndex(FI); } } break; case Mips::FMOV_S32: case Mips::FMOV_D32: if ((MI->getOperand(0).isReg()) && (MI->getOperand(1).isReg())) { const TargetRegisterClass *RC = RI.getRegClass(MI->getOperand(0).getReg()); unsigned StoreOpc, LoadOpc; if (RC == Mips::FGR32RegisterClass) { LoadOpc = Mips::LWC1; StoreOpc = Mips::SWC1; } else { assert(RC == Mips::AFGR64RegisterClass); LoadOpc = Mips::LDC1; StoreOpc = Mips::SDC1; } if (Ops[0] == 0) { // COPY -> STORE unsigned SrcReg = MI->getOperand(1).getReg(); bool isKill = MI->getOperand(1).isKill(); NewMI = BuildMI(MF, MI->getDebugLoc(), get(StoreOpc)) .addReg(SrcReg, getKillRegState(isKill)) .addImm(0).addFrameIndex(FI) ; } else { // COPY -> LOAD unsigned DstReg = MI->getOperand(0).getReg(); bool isDead = MI->getOperand(0).isDead(); NewMI = BuildMI(MF, MI->getDebugLoc(), get(LoadOpc)) .addReg(DstReg, RegState::Define | getDeadRegState(isDead)) .addImm(0).addFrameIndex(FI); } } break; } return NewMI; } //===----------------------------------------------------------------------===// // Branch Analysis //===----------------------------------------------------------------------===// /// GetCondFromBranchOpc - Return the Mips CC that matches /// the correspondent Branch instruction opcode. static Mips::CondCode GetCondFromBranchOpc(unsigned BrOpc) { switch (BrOpc) { default: return Mips::COND_INVALID; case Mips::BEQ : return Mips::COND_E; case Mips::BNE : return Mips::COND_NE; case Mips::BGTZ : return Mips::COND_GZ; case Mips::BGEZ : return Mips::COND_GEZ; case Mips::BLTZ : return Mips::COND_LZ; case Mips::BLEZ : return Mips::COND_LEZ; // We dont do fp branch analysis yet! case Mips::BC1T : case Mips::BC1F : return Mips::COND_INVALID; } } /// GetCondBranchFromCond - Return the Branch instruction /// opcode that matches the cc. unsigned Mips::GetCondBranchFromCond(Mips::CondCode CC) { switch (CC) { default: assert(0 && "Illegal condition code!"); case Mips::COND_E : return Mips::BEQ; case Mips::COND_NE : return Mips::BNE; case Mips::COND_GZ : return Mips::BGTZ; case Mips::COND_GEZ : return Mips::BGEZ; case Mips::COND_LZ : return Mips::BLTZ; case Mips::COND_LEZ : return Mips::BLEZ; case Mips::FCOND_F: case Mips::FCOND_UN: case Mips::FCOND_EQ: case Mips::FCOND_UEQ: case Mips::FCOND_OLT: case Mips::FCOND_ULT: case Mips::FCOND_OLE: case Mips::FCOND_ULE: case Mips::FCOND_SF: case Mips::FCOND_NGLE: case Mips::FCOND_SEQ: case Mips::FCOND_NGL: case Mips::FCOND_LT: case Mips::FCOND_NGE: case Mips::FCOND_LE: case Mips::FCOND_NGT: return Mips::BC1T; case Mips::FCOND_T: case Mips::FCOND_OR: case Mips::FCOND_NEQ: case Mips::FCOND_OGL: case Mips::FCOND_UGE: case Mips::FCOND_OGE: case Mips::FCOND_UGT: case Mips::FCOND_OGT: case Mips::FCOND_ST: case Mips::FCOND_GLE: case Mips::FCOND_SNE: case Mips::FCOND_GL: case Mips::FCOND_NLT: case Mips::FCOND_GE: case Mips::FCOND_NLE: case Mips::FCOND_GT: return Mips::BC1F; } } /// GetOppositeBranchCondition - Return the inverse of the specified /// condition, e.g. turning COND_E to COND_NE. Mips::CondCode Mips::GetOppositeBranchCondition(Mips::CondCode CC) { switch (CC) { default: assert(0 && "Illegal condition code!"); case Mips::COND_E : return Mips::COND_NE; case Mips::COND_NE : return Mips::COND_E; case Mips::COND_GZ : return Mips::COND_LEZ; case Mips::COND_GEZ : return Mips::COND_LZ; case Mips::COND_LZ : return Mips::COND_GEZ; case Mips::COND_LEZ : return Mips::COND_GZ; case Mips::FCOND_F : return Mips::FCOND_T; case Mips::FCOND_UN : return Mips::FCOND_OR; case Mips::FCOND_EQ : return Mips::FCOND_NEQ; case Mips::FCOND_UEQ: return Mips::FCOND_OGL; case Mips::FCOND_OLT: return Mips::FCOND_UGE; case Mips::FCOND_ULT: return Mips::FCOND_OGE; case Mips::FCOND_OLE: return Mips::FCOND_UGT; case Mips::FCOND_ULE: return Mips::FCOND_OGT; case Mips::FCOND_SF: return Mips::FCOND_ST; case Mips::FCOND_NGLE:return Mips::FCOND_GLE; case Mips::FCOND_SEQ: return Mips::FCOND_SNE; case Mips::FCOND_NGL: return Mips::FCOND_GL; case Mips::FCOND_LT: return Mips::FCOND_NLT; case Mips::FCOND_NGE: return Mips::FCOND_GE; case Mips::FCOND_LE: return Mips::FCOND_NLE; case Mips::FCOND_NGT: return Mips::FCOND_GT; } } bool MipsInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, SmallVectorImpl &Cond, bool AllowModify) const { // If the block has no terminators, it just falls into the block after it. MachineBasicBlock::iterator I = MBB.end(); if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) return false; // Get the last instruction in the block. MachineInstr *LastInst = I; // If there is only one terminator instruction, process it. unsigned LastOpc = LastInst->getOpcode(); if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) { if (!LastInst->getDesc().isBranch()) return true; // Unconditional branch if (LastOpc == Mips::J) { TBB = LastInst->getOperand(0).getMBB(); return false; } Mips::CondCode BranchCode = GetCondFromBranchOpc(LastInst->getOpcode()); if (BranchCode == Mips::COND_INVALID) return true; // Can't handle indirect branch. // Conditional branch // Block ends with fall-through condbranch. if (LastOpc != Mips::COND_INVALID) { int LastNumOp = LastInst->getNumOperands(); TBB = LastInst->getOperand(LastNumOp-1).getMBB(); Cond.push_back(MachineOperand::CreateImm(BranchCode)); for (int i=0; igetOperand(i)); } return false; } } // Get the instruction before it if it is a terminator. MachineInstr *SecondLastInst = I; // If there are three terminators, we don't know what sort of block this is. if (SecondLastInst && I != MBB.begin() && isUnpredicatedTerminator(--I)) return true; // If the block ends with Mips::J and a Mips::BNE/Mips::BEQ, handle it. unsigned SecondLastOpc = SecondLastInst->getOpcode(); Mips::CondCode BranchCode = GetCondFromBranchOpc(SecondLastOpc); if (BranchCode != Mips::COND_INVALID && LastOpc == Mips::J) { int SecondNumOp = SecondLastInst->getNumOperands(); TBB = SecondLastInst->getOperand(SecondNumOp-1).getMBB(); Cond.push_back(MachineOperand::CreateImm(BranchCode)); for (int i=0; igetOperand(i)); } FBB = LastInst->getOperand(0).getMBB(); return false; } // If the block ends with two unconditional branches, handle it. The last // one is not executed, so remove it. if ((SecondLastOpc == Mips::J) && (LastOpc == Mips::J)) { TBB = SecondLastInst->getOperand(0).getMBB(); I = LastInst; if (AllowModify) I->eraseFromParent(); return false; } // Otherwise, can't handle this. return true; } unsigned MipsInstrInfo:: InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB, const SmallVectorImpl &Cond) const { // FIXME this should probably have a DebugLoc argument DebugLoc dl = DebugLoc::getUnknownLoc(); // Shouldn't be a fall through. assert(TBB && "InsertBranch must not be told to insert a fallthrough"); assert((Cond.size() == 3 || Cond.size() == 2 || Cond.size() == 0) && "Mips branch conditions can have two|three components!"); if (FBB == 0) { // One way branch. if (Cond.empty()) { // Unconditional branch? BuildMI(&MBB, dl, get(Mips::J)).addMBB(TBB); } else { // Conditional branch. unsigned Opc = GetCondBranchFromCond((Mips::CondCode)Cond[0].getImm()); const TargetInstrDesc &TID = get(Opc); if (TID.getNumOperands() == 3) BuildMI(&MBB, dl, TID).addReg(Cond[1].getReg()) .addReg(Cond[2].getReg()) .addMBB(TBB); else BuildMI(&MBB, dl, TID).addReg(Cond[1].getReg()) .addMBB(TBB); } return 1; } // Two-way Conditional branch. unsigned Opc = GetCondBranchFromCond((Mips::CondCode)Cond[0].getImm()); const TargetInstrDesc &TID = get(Opc); if (TID.getNumOperands() == 3) BuildMI(&MBB, dl, TID).addReg(Cond[1].getReg()).addReg(Cond[2].getReg()) .addMBB(TBB); else BuildMI(&MBB, dl, TID).addReg(Cond[1].getReg()).addMBB(TBB); BuildMI(&MBB, dl, get(Mips::J)).addMBB(FBB); return 2; } unsigned MipsInstrInfo:: RemoveBranch(MachineBasicBlock &MBB) const { MachineBasicBlock::iterator I = MBB.end(); if (I == MBB.begin()) return 0; --I; if (I->getOpcode() != Mips::J && GetCondFromBranchOpc(I->getOpcode()) == Mips::COND_INVALID) return 0; // Remove the branch. I->eraseFromParent(); I = MBB.end(); if (I == MBB.begin()) return 1; --I; if (GetCondFromBranchOpc(I->getOpcode()) == Mips::COND_INVALID) return 1; // Remove the branch. I->eraseFromParent(); return 2; } /// BlockHasNoFallThrough - Analyze if MachineBasicBlock does not /// fall-through into its successor block. bool MipsInstrInfo:: BlockHasNoFallThrough(const MachineBasicBlock &MBB) const { if (MBB.empty()) return false; switch (MBB.back().getOpcode()) { case Mips::RET: // Return. case Mips::JR: // Indirect branch. case Mips::J: // Uncond branch. return true; default: return false; } } /// ReverseBranchCondition - Return the inverse opcode of the /// specified Branch instruction. bool MipsInstrInfo:: ReverseBranchCondition(SmallVectorImpl &Cond) const { assert( (Cond.size() == 3 || Cond.size() == 2) && "Invalid Mips branch condition!"); Cond[0].setImm(GetOppositeBranchCondition((Mips::CondCode)Cond[0].getImm())); return false; } /// getGlobalBaseReg - Return a virtual register initialized with the /// the global base register value. Output instructions required to /// initialize the register in the function entry block, if necessary. /// unsigned MipsInstrInfo::getGlobalBaseReg(MachineFunction *MF) const { MipsFunctionInfo *MipsFI = MF->getInfo(); unsigned GlobalBaseReg = MipsFI->getGlobalBaseReg(); if (GlobalBaseReg != 0) return GlobalBaseReg; // Insert the set of GlobalBaseReg into the first MBB of the function MachineBasicBlock &FirstMBB = MF->front(); MachineBasicBlock::iterator MBBI = FirstMBB.begin(); MachineRegisterInfo &RegInfo = MF->getRegInfo(); const TargetInstrInfo *TII = MF->getTarget().getInstrInfo(); GlobalBaseReg = RegInfo.createVirtualRegister(Mips::CPURegsRegisterClass); bool Ok = TII->copyRegToReg(FirstMBB, MBBI, GlobalBaseReg, Mips::GP, Mips::CPURegsRegisterClass, Mips::CPURegsRegisterClass); assert(Ok && "Couldn't assign to global base register!"); RegInfo.addLiveIn(Mips::GP); MipsFI->setGlobalBaseReg(GlobalBaseReg); return GlobalBaseReg; }