//===-- RegAllocLinearScan.cpp - Linear Scan register allocator -----------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements a linear scan register allocator. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "regalloc" #include "llvm/Function.h" #include "llvm/CodeGen/LiveIntervals.h" #include "llvm/CodeGen/LiveVariables.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/SSARegMap.h" #include "llvm/Target/MRegisterInfo.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetRegInfo.h" #include "llvm/Support/CFG.h" #include "Support/Debug.h" #include "Support/DepthFirstIterator.h" #include "Support/Statistic.h" #include "Support/STLExtras.h" #include using namespace llvm; namespace { Statistic<> numSpilled ("ra-linearscan", "Number of registers spilled"); class RA : public MachineFunctionPass { public: typedef std::vector IntervalPtrs; private: MachineFunction* mf_; const TargetMachine* tm_; const MRegisterInfo* mri_; MachineBasicBlock* currentMbb_; MachineBasicBlock::iterator currentInstr_; typedef LiveIntervals::Intervals Intervals; const Intervals* li_; IntervalPtrs active_, inactive_; typedef std::vector Regs; Regs tempUseOperands_; Regs tempDefOperands_; Regs reserved_; typedef LiveIntervals::MachineBasicBlockPtrs MachineBasicBlockPtrs; MachineBasicBlockPtrs mbbs_; typedef std::vector Phys2VirtMap; Phys2VirtMap p2vMap_; typedef std::map Virt2PhysMap; Virt2PhysMap v2pMap_; typedef std::map Virt2StackSlotMap; Virt2StackSlotMap v2ssMap_; int instrAdded_; public: virtual const char* getPassName() const { return "Linear Scan Register Allocator"; } virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); AU.addRequired(); MachineFunctionPass::getAnalysisUsage(AU); } private: /// runOnMachineFunction - register allocate the whole function bool runOnMachineFunction(MachineFunction&); /// processActiveIntervals - expire old intervals and move /// non-overlapping ones to the incative list void processActiveIntervals(Intervals::const_iterator cur); /// processInactiveIntervals - expire old intervals and move /// overlapping ones to the active list void processInactiveIntervals(Intervals::const_iterator cur); /// assignStackSlotAtInterval - choose and spill /// interval. Currently we spill the interval with the last /// end point in the active and inactive lists and the current /// interval void assignStackSlotAtInterval(Intervals::const_iterator cur); /// /// register handling helpers /// /// reservePhysReg - reserves a physical register and spills /// any value assigned to it if any void reservePhysReg(unsigned reg); /// clearReservedPhysReg - marks pysical register as free for /// use void clearReservedPhysReg(unsigned reg); /// physRegAvailable - returns true if the specifed physical /// register is available bool physRegAvailable(unsigned physReg); /// getFreePhysReg - return a free physical register for this /// virtual register if we have one, otherwise return 0 unsigned getFreePhysReg(unsigned virtReg); /// tempPhysRegAvailable - returns true if the specifed /// temporary physical register is available bool tempPhysRegAvailable(unsigned physReg); /// getFreeTempPhysReg - return a free temprorary physical /// register for this register class if we have one (should /// never return 0) unsigned getFreeTempPhysReg(const TargetRegisterClass* rc); /// getFreeTempPhysReg - return a free temprorary physical /// register for this virtual register if we have one (should /// never return 0) unsigned getFreeTempPhysReg(unsigned virtReg) { const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(virtReg); return getFreeTempPhysReg(rc); } /// assignVirt2PhysReg - assigns the free physical register to /// the virtual register passed as arguments void assignVirt2PhysReg(unsigned virtReg, unsigned physReg); /// clearVirtReg - free the physical register associated with this /// virtual register and disassociate virtual->physical and /// physical->virtual mappings void clearVirtReg(unsigned virtReg); /// assignVirt2StackSlot - assigns this virtual register to a /// stack slot void assignVirt2StackSlot(unsigned virtReg); /// getStackSlot - returns the offset of the specified /// register on the stack int getStackSlot(unsigned virtReg); /// spillVirtReg - spills the virtual register void spillVirtReg(unsigned virtReg); /// loadPhysReg - loads to the physical register the value of /// the virtual register specifed. Virtual register must have /// an assigned stack slot void loadVirt2PhysReg(unsigned virtReg, unsigned physReg); void printVirt2PhysMap() const { std::cerr << "allocated registers:\n"; for (Virt2PhysMap::const_iterator i = v2pMap_.begin(), e = v2pMap_.end(); i != e; ++i) { std::cerr << '[' << i->first << ',' << mri_->getName(i->second) << "]\n"; } std::cerr << '\n'; } void printIntervals(const char* const str, RA::IntervalPtrs::const_iterator i, RA::IntervalPtrs::const_iterator e) const { if (str) std::cerr << str << " intervals:\n"; for (; i != e; ++i) { std::cerr << "\t\t" << **i << " -> "; if ((*i)->reg < MRegisterInfo::FirstVirtualRegister) { std::cerr << mri_->getName((*i)->reg); } else { std::cerr << mri_->getName(v2pMap_.find((*i)->reg)->second); } std::cerr << '\n'; } } }; } bool RA::runOnMachineFunction(MachineFunction &fn) { mf_ = &fn; tm_ = &fn.getTarget(); mri_ = tm_->getRegisterInfo(); li_ = &getAnalysis().getIntervals(); active_.clear(); inactive_.clear(); mbbs_ = getAnalysis().getOrderedMachineBasicBlockPtrs(); p2vMap_.resize(MRegisterInfo::FirstVirtualRegister-1); p2vMap_.clear(); v2pMap_.clear(); v2ssMap_.clear(); DEBUG( unsigned i = 0; for (MachineBasicBlockPtrs::iterator mbbi = mbbs_.begin(), mbbe = mbbs_.end(); mbbi != mbbe; ++mbbi) { MachineBasicBlock* mbb = *mbbi; std::cerr << mbb->getBasicBlock()->getName() << '\n'; for (MachineBasicBlock::iterator ii = mbb->begin(), ie = mbb->end(); ii != ie; ++ii) { MachineInstr* instr = *ii; std::cerr << i++ << "\t"; instr->print(std::cerr, *tm_); } } ); // FIXME: this will work only for the X86 backend. I need to // device an algorthm to select the minimal (considering register // aliasing) number of temp registers to reserve so that we have 2 // registers for each register class available. // reserve R32: EDI, EBX, // R16: DI, BX, // R8: DH, BH, // RFP: FP5, FP6 reserved_.push_back(19); /* EDI */ reserved_.push_back(17); /* EBX */ reserved_.push_back(12); /* DI */ reserved_.push_back( 7); /* BX */ reserved_.push_back(11); /* DH */ reserved_.push_back( 4); /* BH */ reserved_.push_back(28); /* FP5 */ reserved_.push_back(29); /* FP6 */ // liner scan algorithm for (Intervals::const_iterator i = li_->begin(), e = li_->end(); i != e; ++i) { DEBUG(std::cerr << "processing current interval: " << *i << '\n'); DEBUG(printIntervals("\tactive", active_.begin(), active_.end())); DEBUG(printIntervals("\tinactive", inactive_.begin(), inactive_.end())); processActiveIntervals(i); // processInactiveIntervals(i); // if this register is preallocated, look for an interval that // overlaps with it and assign it to a memory location if (i->reg < MRegisterInfo::FirstVirtualRegister) { reservePhysReg(i->reg); active_.push_back(&*i); } // otherwise we are allocating a virtual register. try to find // a free physical register or spill an interval in order to // assign it one (we could spill the current though). else { unsigned physReg = getFreePhysReg(i->reg); if (!physReg) { assignStackSlotAtInterval(i); } else { assignVirt2PhysReg(i->reg, physReg); active_.push_back(&*i); } } } DEBUG(std::cerr << "finished register allocation\n"); DEBUG(printVirt2PhysMap()); DEBUG(std::cerr << "Rewrite machine code:\n"); for (MachineBasicBlockPtrs::iterator mbbi = mbbs_.begin(), mbbe = mbbs_.end(); mbbi != mbbe; ++mbbi) { instrAdded_ = 0; currentMbb_ = *mbbi; for (currentInstr_ = currentMbb_->begin(); currentInstr_ != currentMbb_->end(); ++currentInstr_) { DEBUG(std::cerr << "\tinstruction: "; (*currentInstr_)->print(std::cerr, *tm_);); // use our current mapping and actually replace and // virtual register with its allocated physical registers DEBUG(std::cerr << "\t\treplacing virtual registers with mapped " "physical registers:\n"); for (unsigned i = 0, e = (*currentInstr_)->getNumOperands(); i != e; ++i) { MachineOperand& op = (*currentInstr_)->getOperand(i); if (op.isVirtualRegister()) { unsigned virtReg = op.getAllocatedRegNum(); unsigned physReg = v2pMap_[virtReg]; // if this virtual registers lives on the stack, // load it to a temporary physical register if (physReg) { DEBUG(std::cerr << "\t\t\t%reg" << virtReg << " -> " << mri_->getName(physReg) << '\n'); (*currentInstr_)->SetMachineOperandReg(i, physReg); } } } DEBUG(std::cerr << "\t\tloading temporarily used operands to " "registers:\n"); for (unsigned i = 0, e = (*currentInstr_)->getNumOperands(); i != e; ++i) { MachineOperand& op = (*currentInstr_)->getOperand(i); if (op.isVirtualRegister() && op.opIsUse()) { unsigned virtReg = op.getAllocatedRegNum(); unsigned physReg = v2pMap_[virtReg]; if (!physReg) { physReg = getFreeTempPhysReg(virtReg); } loadVirt2PhysReg(virtReg, physReg); tempUseOperands_.push_back(virtReg); (*currentInstr_)->SetMachineOperandReg(i, physReg); } } DEBUG(std::cerr << "\t\tclearing temporarily used operands:\n"); for (unsigned i = 0, e = tempUseOperands_.size(); i != e; ++i) { clearVirtReg(tempUseOperands_[i]); } tempUseOperands_.clear(); DEBUG(std::cerr << "\t\tassigning temporarily defined operands to " "registers:\n"); for (unsigned i = 0, e = (*currentInstr_)->getNumOperands(); i != e; ++i) { MachineOperand& op = (*currentInstr_)->getOperand(i); if (op.isVirtualRegister() && !op.opIsUse()) { unsigned virtReg = op.getAllocatedRegNum(); unsigned physReg = v2pMap_[virtReg]; if (!physReg) { physReg = getFreeTempPhysReg(virtReg); } if (op.opIsDefAndUse()) { loadVirt2PhysReg(virtReg, physReg); } else { assignVirt2PhysReg(virtReg, physReg); } tempDefOperands_.push_back(virtReg); (*currentInstr_)->SetMachineOperandReg(i, physReg); } } // if the instruction is a two address instruction and the // source operands are not identical we need to insert // extra instructions. unsigned opcode = (*currentInstr_)->getOpcode(); if (tm_->getInstrInfo().isTwoAddrInstr(opcode) && (*currentInstr_)->getOperand(0).getAllocatedRegNum() != (*currentInstr_)->getOperand(1).getAllocatedRegNum()) { assert((*currentInstr_)->getOperand(1).isRegister() && (*currentInstr_)->getOperand(1).getAllocatedRegNum() && (*currentInstr_)->getOperand(1).opIsUse() && "Two address instruction invalid"); unsigned regA = (*currentInstr_)->getOperand(0).getAllocatedRegNum(); unsigned regB = (*currentInstr_)->getOperand(1).getAllocatedRegNum(); unsigned regC = ((*currentInstr_)->getNumOperands() > 2 && (*currentInstr_)->getOperand(2).isRegister()) ? (*currentInstr_)->getOperand(2).getAllocatedRegNum() : 0; const TargetRegisterClass* rc = mri_->getRegClass(regA); // special case: "a = b op a". If b is a temporary // reserved register rewrite as: "b = b op a; a = b" // otherwise use a temporary reserved register t and // rewrite as: "t = b; t = t op a; a = t" if (regC && regA == regC) { // b is a temp reserved register if (find(reserved_.begin(), reserved_.end(), regB) != reserved_.end()) { (*currentInstr_)->SetMachineOperandReg(0, regB); ++currentInstr_; instrAdded_ += mri_->copyRegToReg(*currentMbb_, currentInstr_, regA, regB, rc); --currentInstr_; } // b is just a normal register else { unsigned tempReg = getFreeTempPhysReg(rc); assert (tempReg && "no free temp reserved physical register?"); instrAdded_ += mri_->copyRegToReg(*currentMbb_, currentInstr_, tempReg, regB, rc); (*currentInstr_)->SetMachineOperandReg(0, tempReg); (*currentInstr_)->SetMachineOperandReg(1, tempReg); ++currentInstr_; instrAdded_ += mri_->copyRegToReg(*currentMbb_, currentInstr_, regA, tempReg, rc); --currentInstr_; } } // "a = b op c" gets rewritten to "a = b; a = a op c" else { instrAdded_ += mri_->copyRegToReg(*currentMbb_, currentInstr_, regA, regB, rc); (*currentInstr_)->SetMachineOperandReg(1, regA); } } DEBUG(std::cerr << "\t\tspilling temporarily defined operands " "of this instruction:\n"); ++currentInstr_; // we want to insert after this instruction for (unsigned i = 0, e = tempDefOperands_.size(); i != e; ++i) { spillVirtReg(tempDefOperands_[i]); } --currentInstr_; // restore currentInstr_ iterator tempDefOperands_.clear(); } for (unsigned i = 0, e = p2vMap_.size(); i != e; ++i) { assert(p2vMap_[i] != i && "reserved physical registers at end of basic block?"); } } return true; } void RA::processActiveIntervals(Intervals::const_iterator cur) { DEBUG(std::cerr << "\tprocessing active intervals:\n"); for (IntervalPtrs::iterator i = active_.begin(); i != active_.end();) { unsigned reg = (*i)->reg; // remove expired intervals. we expire earlier because this if // an interval expires this is going to be the last use. in // this case we can reuse the register for a def in the same // instruction if ((*i)->expired(cur->start() + 1)) { DEBUG(std::cerr << "\t\tinterval " << **i << " expired\n"); if (reg < MRegisterInfo::FirstVirtualRegister) { clearReservedPhysReg(reg); } else { p2vMap_[v2pMap_[reg]] = 0; } // remove interval from active i = active_.erase(i); } // move not active intervals to inactive list // else if (!(*i)->overlaps(curIndex)) { // DEBUG(std::cerr << "\t\t\tinterval " << **i << " inactive\n"); // unmarkReg(virtReg); // // add interval to inactive // inactive_.push_back(*i); // // remove interval from active // i = active_.erase(i); // } else { ++i; } } } void RA::processInactiveIntervals(Intervals::const_iterator cur) { // DEBUG(std::cerr << "\tprocessing inactive intervals:\n"); // for (IntervalPtrs::iterator i = inactive_.begin(); i != inactive_.end();) { // unsigned virtReg = (*i)->reg; // // remove expired intervals // if ((*i)->expired(curIndex)) { // DEBUG(std::cerr << "\t\t\tinterval " << **i << " expired\n"); // freePhysReg(virtReg); // // remove from inactive // i = inactive_.erase(i); // } // // move re-activated intervals in active list // else if ((*i)->overlaps(curIndex)) { // DEBUG(std::cerr << "\t\t\tinterval " << **i << " active\n"); // markReg(virtReg); // // add to active // active_.push_back(*i); // // remove from inactive // i = inactive_.erase(i); // } // else { // ++i; // } // } } void RA::assignStackSlotAtInterval(Intervals::const_iterator cur) { DEBUG(std::cerr << "\t\tassigning stack slot at interval " << *cur << ":\n"); assert(!active_.empty() && "active set cannot be empty when choosing a register to spill"); const TargetRegisterClass* rcCur = mf_->getSSARegMap()->getRegClass(cur->reg); // find the interval for a virtual register that ends last in // active and belongs to the same register class as the current // interval IntervalPtrs::iterator lastEndActive = active_.begin(); for (IntervalPtrs::iterator e = active_.end(); lastEndActive != e; ++lastEndActive) { if ((*lastEndActive)->reg >= MRegisterInfo::FirstVirtualRegister) { const TargetRegisterClass* rc = mri_->getRegClass(v2pMap_[(*lastEndActive)->reg]); if (rcCur == rc) { break; } } } for (IntervalPtrs::iterator i = lastEndActive, e = active_.end(); i != e; ++i) { if ((*i)->reg >= MRegisterInfo::FirstVirtualRegister) { const TargetRegisterClass* rc = mri_->getRegClass(v2pMap_[(*i)->reg]); if (rcCur == rc && (*lastEndActive)->end() < (*i)->end()) { lastEndActive = i; } } } // find the interval for a virtual register that ends last in // inactive and belongs to the same register class as the current // interval IntervalPtrs::iterator lastEndInactive = inactive_.begin(); for (IntervalPtrs::iterator e = inactive_.end(); lastEndInactive != e; ++lastEndInactive) { if ((*lastEndInactive)->reg >= MRegisterInfo::FirstVirtualRegister) { const TargetRegisterClass* rc = mri_->getRegClass(v2pMap_[(*lastEndInactive)->reg]); if (rcCur == rc) { break; } } } for (IntervalPtrs::iterator i = lastEndInactive, e = inactive_.end(); i != e; ++i) { if ((*i)->reg >= MRegisterInfo::FirstVirtualRegister) { const TargetRegisterClass* rc = mri_->getRegClass(v2pMap_[(*i)->reg]); if (rcCur == rc && (*lastEndInactive)->end() < (*i)->end()) { lastEndInactive = i; } } } unsigned lastEndActiveInactive = 0; if (lastEndActive != active_.end() && lastEndActiveInactive < (*lastEndActive)->end()) { lastEndActiveInactive = (*lastEndActive)->end(); } if (lastEndInactive != inactive_.end() && lastEndActiveInactive < (*lastEndInactive)->end()) { lastEndActiveInactive = (*lastEndInactive)->end(); } if (lastEndActiveInactive > cur->end()) { if (lastEndInactive == inactive_.end() || (*lastEndActive)->end() > (*lastEndInactive)->end()) { assignVirt2StackSlot((*lastEndActive)->reg); active_.erase(lastEndActive); } else { assignVirt2StackSlot((*lastEndInactive)->reg); inactive_.erase(lastEndInactive); } unsigned physReg = getFreePhysReg(cur->reg); assert(physReg && "no free physical register after spill?"); assignVirt2PhysReg(cur->reg, physReg); active_.push_back(&*cur); } else { assignVirt2StackSlot(cur->reg); } } void RA::reservePhysReg(unsigned physReg) { DEBUG(std::cerr << "\t\t\treserving physical register: " << mri_->getName(physReg) << '\n'); // if this register holds a value spill it unsigned virtReg = p2vMap_[physReg]; if (virtReg != 0) { assert(virtReg != physReg && "reserving an already reserved phus reg?"); // remove interval from active for (IntervalPtrs::iterator i = active_.begin(), e = active_.end(); i != e; ++i) { if ((*i)->reg == virtReg) { active_.erase(i); break; } } assignVirt2StackSlot(virtReg); } p2vMap_[physReg] = physReg; // this denotes a reserved physical register } void RA::clearReservedPhysReg(unsigned physReg) { DEBUG(std::cerr << "\t\t\tclearing reserved physical register: " << mri_->getName(physReg) << '\n'); assert(p2vMap_[physReg] == physReg && "attempt to clear a non reserved physical register"); p2vMap_[physReg] = 0; } bool RA::physRegAvailable(unsigned physReg) { if (p2vMap_[physReg]) { return false; } // if it aliases other registers it is still not free for (const unsigned* as = mri_->getAliasSet(physReg); *as; ++as) { if (p2vMap_[*as]) { return false; } } // if it is one of the reserved registers it is still not free if (find(reserved_.begin(), reserved_.end(), physReg) != reserved_.end()) { return false; } return true; } unsigned RA::getFreePhysReg(unsigned virtReg) { DEBUG(std::cerr << "\t\tgetting free physical register: "); const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(virtReg); TargetRegisterClass::iterator reg = rc->allocation_order_begin(*mf_); TargetRegisterClass::iterator regEnd = rc->allocation_order_end(*mf_); for (; reg != regEnd; ++reg) { if (physRegAvailable(*reg)) { assert(*reg != 0 && "Cannot use register!"); DEBUG(std::cerr << mri_->getName(*reg) << '\n'); return *reg; // Found an unused register! } } DEBUG(std::cerr << "no free register\n"); return 0; } bool RA::tempPhysRegAvailable(unsigned physReg) { assert(find(reserved_.begin(), reserved_.end(), physReg) != reserved_.end() && "cannot call this method with a non reserved temp register"); if (p2vMap_[physReg]) { return false; } // if it aliases other registers it is still not free for (const unsigned* as = mri_->getAliasSet(physReg); *as; ++as) { if (p2vMap_[*as]) { return false; } } return true; } unsigned RA::getFreeTempPhysReg(const TargetRegisterClass* rc) { DEBUG(std::cerr << "\t\tgetting free temporary physical register: "); for (Regs::const_iterator reg = reserved_.begin(), regEnd = reserved_.end(); reg != regEnd; ++reg) { if (rc == mri_->getRegClass(*reg) && tempPhysRegAvailable(*reg)) { assert(*reg != 0 && "Cannot use register!"); DEBUG(std::cerr << mri_->getName(*reg) << '\n'); return *reg; // Found an unused register! } } assert(0 && "no free temporary physical register?"); return 0; } void RA::assignVirt2PhysReg(unsigned virtReg, unsigned physReg) { assert((physRegAvailable(physReg) || find(reserved_.begin(), reserved_.end(), physReg) != reserved_.end()) && "attempt to allocate to a not available physical register"); v2pMap_[virtReg] = physReg; p2vMap_[physReg] = virtReg; } void RA::clearVirtReg(unsigned virtReg) { Virt2PhysMap::iterator it = v2pMap_.find(virtReg); assert(it != v2pMap_.end() && "attempting to clear a not allocated virtual register"); unsigned physReg = it->second; p2vMap_[physReg] = 0; v2pMap_[virtReg] = 0; // this marks that this virtual register // lives on the stack DEBUG(std::cerr << "\t\t\tcleared register " << mri_->getName(physReg) << "\n"); } void RA::assignVirt2StackSlot(unsigned virtReg) { const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(virtReg); int frameIndex = mf_->getFrameInfo()->CreateStackObject(rc); bool inserted = v2ssMap_.insert(std::make_pair(virtReg, frameIndex)).second; assert(inserted && "attempt to assign stack slot to already assigned register?"); // if the virtual register was previously assigned clear the mapping // and free the virtual register if (v2pMap_.find(virtReg) != v2pMap_.end()) { clearVirtReg(virtReg); } else { v2pMap_[virtReg] = 0; // this marks that this virtual register // lives on the stack } } int RA::getStackSlot(unsigned virtReg) { // use lower_bound so that we can do a possibly O(1) insert later // if necessary Virt2StackSlotMap::iterator it = v2ssMap_.find(virtReg); assert(it != v2ssMap_.end() && "attempt to get stack slot on register that does not live on the stack"); return it->second; } void RA::spillVirtReg(unsigned virtReg) { DEBUG(std::cerr << "\t\t\tspilling register: " << virtReg); const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(virtReg); int frameIndex = getStackSlot(virtReg); DEBUG(std::cerr << " to stack slot #" << frameIndex << '\n'); ++numSpilled; instrAdded_ += mri_->storeRegToStackSlot(*currentMbb_, currentInstr_, v2pMap_[virtReg], frameIndex, rc); clearVirtReg(virtReg); } void RA::loadVirt2PhysReg(unsigned virtReg, unsigned physReg) { DEBUG(std::cerr << "\t\t\tloading register: " << virtReg); const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(virtReg); int frameIndex = getStackSlot(virtReg); DEBUG(std::cerr << " from stack slot #" << frameIndex << '\n'); instrAdded_ += mri_->loadRegFromStackSlot(*currentMbb_, currentInstr_, physReg, frameIndex, rc); assignVirt2PhysReg(virtReg, physReg); } FunctionPass* llvm::createLinearScanRegisterAllocator() { return new RA(); }