//===-- Mips16ISelLowering.h - Mips16 DAG Lowering Interface ----*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Subclass of MipsTargetLowering specialized for mips16. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "mips-lower" #include "Mips16ISelLowering.h" #include "MipsRegisterInfo.h" #include "MipsTargetMachine.h" #include "MCTargetDesc/MipsBaseInfo.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/Support/CommandLine.h" #include "llvm/Target/TargetInstrInfo.h" using namespace llvm; static cl::opt DontExpandCondPseudos16( "mips16-dont-expand-cond-pseudo", cl::init(false), cl::desc("Dont expand conditional move related " "pseudos for Mips 16"), cl::Hidden); namespace { struct Mips16Libcall { RTLIB::Libcall Libcall; const char *Name; bool operator<(const Mips16Libcall &RHS) const { return std::strcmp(Name, RHS.Name) < 0; } }; } // Libcalls for which no helper is generated. Sorted by name for binary search. static const Mips16Libcall HardFloatLibCalls[] = { { RTLIB::ADD_F64, "__mips16_adddf3" }, { RTLIB::ADD_F32, "__mips16_addsf3" }, { RTLIB::DIV_F64, "__mips16_divdf3" }, { RTLIB::DIV_F32, "__mips16_divsf3" }, { RTLIB::OEQ_F64, "__mips16_eqdf2" }, { RTLIB::OEQ_F32, "__mips16_eqsf2" }, { RTLIB::FPEXT_F32_F64, "__mips16_extendsfdf2" }, { RTLIB::FPTOSINT_F64_I32, "__mips16_fix_truncdfsi" }, { RTLIB::FPTOSINT_F32_I32, "__mips16_fix_truncsfsi" }, { RTLIB::SINTTOFP_I32_F64, "__mips16_floatsidf" }, { RTLIB::SINTTOFP_I32_F32, "__mips16_floatsisf" }, { RTLIB::UINTTOFP_I32_F64, "__mips16_floatunsidf" }, { RTLIB::UINTTOFP_I32_F32, "__mips16_floatunsisf" }, { RTLIB::OGE_F64, "__mips16_gedf2" }, { RTLIB::OGE_F32, "__mips16_gesf2" }, { RTLIB::OGT_F64, "__mips16_gtdf2" }, { RTLIB::OGT_F32, "__mips16_gtsf2" }, { RTLIB::OLE_F64, "__mips16_ledf2" }, { RTLIB::OLE_F32, "__mips16_lesf2" }, { RTLIB::OLT_F64, "__mips16_ltdf2" }, { RTLIB::OLT_F32, "__mips16_ltsf2" }, { RTLIB::MUL_F64, "__mips16_muldf3" }, { RTLIB::MUL_F32, "__mips16_mulsf3" }, { RTLIB::UNE_F64, "__mips16_nedf2" }, { RTLIB::UNE_F32, "__mips16_nesf2" }, { RTLIB::UNKNOWN_LIBCALL, "__mips16_ret_dc" }, // No associated libcall. { RTLIB::UNKNOWN_LIBCALL, "__mips16_ret_df" }, // No associated libcall. { RTLIB::UNKNOWN_LIBCALL, "__mips16_ret_sc" }, // No associated libcall. { RTLIB::UNKNOWN_LIBCALL, "__mips16_ret_sf" }, // No associated libcall. { RTLIB::SUB_F64, "__mips16_subdf3" }, { RTLIB::SUB_F32, "__mips16_subsf3" }, { RTLIB::FPROUND_F64_F32, "__mips16_truncdfsf2" }, { RTLIB::UO_F64, "__mips16_unorddf2" }, { RTLIB::UO_F32, "__mips16_unordsf2" } }; Mips16TargetLowering::Mips16TargetLowering(MipsTargetMachine &TM) : MipsTargetLowering(TM) { // // set up as if mips32 and then revert so we can test the mechanism // for switching addRegisterClass(MVT::i32, &Mips::CPURegsRegClass); addRegisterClass(MVT::f32, &Mips::FGR32RegClass); computeRegisterProperties(); clearRegisterClasses(); // Set up the register classes addRegisterClass(MVT::i32, &Mips::CPU16RegsRegClass); if (Subtarget->inMips16HardFloat()) setMips16HardFloatLibCalls(); setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Expand); setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Expand); setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Expand); setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Expand); setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Expand); setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Expand); setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Expand); setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Expand); setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand); setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand); setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand); setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand); setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand); computeRegisterProperties(); } const MipsTargetLowering * llvm::createMips16TargetLowering(MipsTargetMachine &TM) { return new Mips16TargetLowering(TM); } bool Mips16TargetLowering::allowsUnalignedMemoryAccesses(EVT VT, bool *Fast) const { return false; } MachineBasicBlock * Mips16TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *BB) const { switch (MI->getOpcode()) { default: return MipsTargetLowering::EmitInstrWithCustomInserter(MI, BB); case Mips::SelBeqZ: return emitSel16(Mips::BeqzRxImm16, MI, BB); case Mips::SelBneZ: return emitSel16(Mips::BnezRxImm16, MI, BB); case Mips::SelTBteqZCmpi: return emitSeliT16(Mips::BteqzX16, Mips::CmpiRxImmX16, MI, BB); case Mips::SelTBteqZSlti: return emitSeliT16(Mips::BteqzX16, Mips::SltiRxImmX16, MI, BB); case Mips::SelTBteqZSltiu: return emitSeliT16(Mips::BteqzX16, Mips::SltiuRxImmX16, MI, BB); case Mips::SelTBtneZCmpi: return emitSeliT16(Mips::BtnezX16, Mips::CmpiRxImmX16, MI, BB); case Mips::SelTBtneZSlti: return emitSeliT16(Mips::BtnezX16, Mips::SltiRxImmX16, MI, BB); case Mips::SelTBtneZSltiu: return emitSeliT16(Mips::BtnezX16, Mips::SltiuRxImmX16, MI, BB); case Mips::SelTBteqZCmp: return emitSelT16(Mips::BteqzX16, Mips::CmpRxRy16, MI, BB); case Mips::SelTBteqZSlt: return emitSelT16(Mips::BteqzX16, Mips::SltRxRy16, MI, BB); case Mips::SelTBteqZSltu: return emitSelT16(Mips::BteqzX16, Mips::SltuRxRy16, MI, BB); case Mips::SelTBtneZCmp: return emitSelT16(Mips::BtnezX16, Mips::CmpRxRy16, MI, BB); case Mips::SelTBtneZSlt: return emitSelT16(Mips::BtnezX16, Mips::SltRxRy16, MI, BB); case Mips::SelTBtneZSltu: return emitSelT16(Mips::BtnezX16, Mips::SltuRxRy16, MI, BB); case Mips::BteqzT8CmpX16: return emitFEXT_T8I816_ins(Mips::BteqzX16, Mips::CmpRxRy16, MI, BB); case Mips::BteqzT8SltX16: return emitFEXT_T8I816_ins(Mips::BteqzX16, Mips::SltRxRy16, MI, BB); case Mips::BteqzT8SltuX16: // TBD: figure out a way to get this or remove the instruction // altogether. return emitFEXT_T8I816_ins(Mips::BteqzX16, Mips::SltuRxRy16, MI, BB); case Mips::BtnezT8CmpX16: return emitFEXT_T8I816_ins(Mips::BtnezX16, Mips::CmpRxRy16, MI, BB); case Mips::BtnezT8SltX16: return emitFEXT_T8I816_ins(Mips::BtnezX16, Mips::SltRxRy16, MI, BB); case Mips::BtnezT8SltuX16: // TBD: figure out a way to get this or remove the instruction // altogether. return emitFEXT_T8I816_ins(Mips::BtnezX16, Mips::SltuRxRy16, MI, BB); case Mips::BteqzT8CmpiX16: return emitFEXT_T8I8I16_ins( Mips::BteqzX16, Mips::CmpiRxImm16, Mips::CmpiRxImmX16, false, MI, BB); case Mips::BteqzT8SltiX16: return emitFEXT_T8I8I16_ins( Mips::BteqzX16, Mips::SltiRxImm16, Mips::SltiRxImmX16, true, MI, BB); case Mips::BteqzT8SltiuX16: return emitFEXT_T8I8I16_ins( Mips::BteqzX16, Mips::SltiuRxImm16, Mips::SltiuRxImmX16, false, MI, BB); case Mips::BtnezT8CmpiX16: return emitFEXT_T8I8I16_ins( Mips::BtnezX16, Mips::CmpiRxImm16, Mips::CmpiRxImmX16, false, MI, BB); case Mips::BtnezT8SltiX16: return emitFEXT_T8I8I16_ins( Mips::BtnezX16, Mips::SltiRxImm16, Mips::SltiRxImmX16, true, MI, BB); case Mips::BtnezT8SltiuX16: return emitFEXT_T8I8I16_ins( Mips::BtnezX16, Mips::SltiuRxImm16, Mips::SltiuRxImmX16, false, MI, BB); break; case Mips::SltCCRxRy16: return emitFEXT_CCRX16_ins(Mips::SltRxRy16, MI, BB); break; case Mips::SltiCCRxImmX16: return emitFEXT_CCRXI16_ins (Mips::SltiRxImm16, Mips::SltiRxImmX16, MI, BB); case Mips::SltiuCCRxImmX16: return emitFEXT_CCRXI16_ins (Mips::SltiuRxImm16, Mips::SltiuRxImmX16, MI, BB); case Mips::SltuCCRxRy16: return emitFEXT_CCRX16_ins (Mips::SltuRxRy16, MI, BB); } } bool Mips16TargetLowering:: isEligibleForTailCallOptimization(const MipsCC &MipsCCInfo, unsigned NextStackOffset, const MipsFunctionInfo& FI) const { // No tail call optimization for mips16. return false; } void Mips16TargetLowering::setMips16HardFloatLibCalls() { for (unsigned I = 0; I != array_lengthof(HardFloatLibCalls); ++I) { assert((I == 0 || HardFloatLibCalls[I - 1] < HardFloatLibCalls[I]) && "Array not sorted!"); if (HardFloatLibCalls[I].Libcall != RTLIB::UNKNOWN_LIBCALL) setLibcallName(HardFloatLibCalls[I].Libcall, HardFloatLibCalls[I].Name); } setLibcallName(RTLIB::O_F64, "__mips16_unorddf2"); setLibcallName(RTLIB::O_F32, "__mips16_unordsf2"); } // // The Mips16 hard float is a crazy quilt inherited from gcc. I have a much // cleaner way to do all of this but it will have to wait until the traditional // gcc mechanism is completed. // // For Pic, in order for Mips16 code to call Mips32 code which according the abi // have either arguments or returned values placed in floating point registers, // we use a set of helper functions. (This includes functions which return type // complex which on Mips are returned in a pair of floating point registers). // // This is an encoding that we inherited from gcc. // In Mips traditional O32, N32 ABI, floating point numbers are passed in // floating point argument registers 1,2 only when the first and optionally // the second arguments are float (sf) or double (df). // For Mips16 we are only concerned with the situations where floating point // arguments are being passed in floating point registers by the ABI, because // Mips16 mode code cannot execute floating point instructions to load those // values and hence helper functions are needed. // The possibilities are (), (sf), (sf, sf), (sf, df), (df), (df, sf), (df, df) // the helper function suffixs for these are: // 0, 1, 5, 9, 2, 6, 10 // this suffix can then be calculated as follows: // for a given argument Arg: // Arg1x, Arg2x = 1 : Arg is sf // 2 : Arg is df // 0: Arg is neither sf or df // So this stub is the string for number Arg1x + Arg2x*4. // However not all numbers between 0 and 10 are possible, we check anyway and // assert if the impossible exists. // unsigned int Mips16TargetLowering::getMips16HelperFunctionStubNumber (ArgListTy &Args) const { unsigned int resultNum = 0; if (Args.size() >= 1) { Type *t = Args[0].Ty; if (t->isFloatTy()) { resultNum = 1; } else if (t->isDoubleTy()) { resultNum = 2; } } if (resultNum) { if (Args.size() >=2) { Type *t = Args[1].Ty; if (t->isFloatTy()) { resultNum += 4; } else if (t->isDoubleTy()) { resultNum += 8; } } } return resultNum; } // // prefixs are attached to stub numbers depending on the return type . // return type: float sf_ // double df_ // single complex sc_ // double complext dc_ // others NO PREFIX // // // The full name of a helper function is__mips16_call_stub + // return type dependent prefix + stub number // // // This is something that probably should be in a different source file and // perhaps done differently but my main purpose is to not waste runtime // on something that we can enumerate in the source. Another possibility is // to have a python script to generate these mapping tables. This will do // for now. There are a whole series of helper function mapping arrays, one // for each return type class as outlined above. There there are 11 possible // entries. Ones with 0 are ones which should never be selected // // All the arrays are similar except for ones which return neither // sf, df, sc, dc, in which only care about ones which have sf or df as a // first parameter. // #define P_ "__mips16_call_stub_" #define MAX_STUB_NUMBER 10 #define T1 P "1", P "2", 0, 0, P "5", P "6", 0, 0, P "9", P "10" #define T P "0" , T1 #define P P_ static char const * vMips16Helper[MAX_STUB_NUMBER+1] = {0, T1 }; #undef P #define P P_ "sf_" static char const * sfMips16Helper[MAX_STUB_NUMBER+1] = { T }; #undef P #define P P_ "df_" static char const * dfMips16Helper[MAX_STUB_NUMBER+1] = { T }; #undef P #define P P_ "sc_" static char const * scMips16Helper[MAX_STUB_NUMBER+1] = { T }; #undef P #define P P_ "dc_" static char const * dcMips16Helper[MAX_STUB_NUMBER+1] = { T }; #undef P #undef P_ const char* Mips16TargetLowering:: getMips16HelperFunction (Type* RetTy, ArgListTy &Args, bool &needHelper) const { const unsigned int stubNum = getMips16HelperFunctionStubNumber(Args); #ifndef NDEBUG const unsigned int maxStubNum = 10; assert(stubNum <= maxStubNum); const bool validStubNum[maxStubNum+1] = {true, true, true, false, false, true, true, false, false, true, true}; assert(validStubNum[stubNum]); #endif const char *result; if (RetTy->isFloatTy()) { result = sfMips16Helper[stubNum]; } else if (RetTy ->isDoubleTy()) { result = dfMips16Helper[stubNum]; } else if (RetTy->isStructTy()) { // check if it's complex if (RetTy->getNumContainedTypes() == 2) { if ((RetTy->getContainedType(0)->isFloatTy()) && (RetTy->getContainedType(1)->isFloatTy())) { result = scMips16Helper[stubNum]; } else if ((RetTy->getContainedType(0)->isDoubleTy()) && (RetTy->getContainedType(1)->isDoubleTy())) { result = dcMips16Helper[stubNum]; } else { llvm_unreachable("Uncovered condition"); } } else { llvm_unreachable("Uncovered condition"); } } else { if (stubNum == 0) { needHelper = false; return ""; } result = vMips16Helper[stubNum]; } needHelper = true; return result; } void Mips16TargetLowering:: getOpndList(SmallVectorImpl &Ops, std::deque< std::pair > &RegsToPass, bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage, CallLoweringInfo &CLI, SDValue Callee, SDValue Chain) const { SelectionDAG &DAG = CLI.DAG; const char* Mips16HelperFunction = 0; bool NeedMips16Helper = false; if (getTargetMachine().Options.UseSoftFloat && Subtarget->inMips16HardFloat()) { // // currently we don't have symbols tagged with the mips16 or mips32 // qualifier so we will assume that we don't know what kind it is. // and generate the helper // bool LookupHelper = true; if (ExternalSymbolSDNode *S = dyn_cast(CLI.Callee)) { Mips16Libcall Find = { RTLIB::UNKNOWN_LIBCALL, S->getSymbol() }; if (std::binary_search(HardFloatLibCalls, array_endof(HardFloatLibCalls), Find)) LookupHelper = false; } else if (GlobalAddressSDNode *G = dyn_cast(CLI.Callee)) { Mips16Libcall Find = { RTLIB::UNKNOWN_LIBCALL, G->getGlobal()->getName().data() }; if (std::binary_search(HardFloatLibCalls, array_endof(HardFloatLibCalls), Find)) LookupHelper = false; } if (LookupHelper) Mips16HelperFunction = getMips16HelperFunction(CLI.RetTy, CLI.Args, NeedMips16Helper); } SDValue JumpTarget = Callee; // T9 should contain the address of the callee function if // -reloction-model=pic or it is an indirect call. if (IsPICCall || !GlobalOrExternal) { unsigned V0Reg = Mips::V0; if (NeedMips16Helper) { RegsToPass.push_front(std::make_pair(V0Reg, Callee)); JumpTarget = DAG.getExternalSymbol(Mips16HelperFunction, getPointerTy()); JumpTarget = getAddrGlobal(JumpTarget, DAG, MipsII::MO_GOT); } else RegsToPass.push_front(std::make_pair((unsigned)Mips::T9, Callee)); } Ops.push_back(JumpTarget); MipsTargetLowering::getOpndList(Ops, RegsToPass, IsPICCall, GlobalOrExternal, InternalLinkage, CLI, Callee, Chain); } MachineBasicBlock *Mips16TargetLowering:: emitSel16(unsigned Opc, MachineInstr *MI, MachineBasicBlock *BB) const { if (DontExpandCondPseudos16) return BB; const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); DebugLoc DL = MI->getDebugLoc(); // To "insert" a SELECT_CC instruction, we actually have to insert the // diamond control-flow pattern. The incoming instruction knows the // destination vreg to set, the condition code register to branch on, the // true/false values to select between, and a branch opcode to use. const BasicBlock *LLVM_BB = BB->getBasicBlock(); MachineFunction::iterator It = BB; ++It; // thisMBB: // ... // TrueVal = ... // setcc r1, r2, r3 // bNE r1, r0, copy1MBB // fallthrough --> copy0MBB MachineBasicBlock *thisMBB = BB; MachineFunction *F = BB->getParent(); MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); F->insert(It, copy0MBB); F->insert(It, sinkMBB); // Transfer the remainder of BB and its successor edges to sinkMBB. sinkMBB->splice(sinkMBB->begin(), BB, llvm::next(MachineBasicBlock::iterator(MI)), BB->end()); sinkMBB->transferSuccessorsAndUpdatePHIs(BB); // Next, add the true and fallthrough blocks as its successors. BB->addSuccessor(copy0MBB); BB->addSuccessor(sinkMBB); BuildMI(BB, DL, TII->get(Opc)).addReg(MI->getOperand(3).getReg()) .addMBB(sinkMBB); // copy0MBB: // %FalseValue = ... // # fallthrough to sinkMBB BB = copy0MBB; // Update machine-CFG edges BB->addSuccessor(sinkMBB); // sinkMBB: // %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ] // ... BB = sinkMBB; BuildMI(*BB, BB->begin(), DL, TII->get(Mips::PHI), MI->getOperand(0).getReg()) .addReg(MI->getOperand(1).getReg()).addMBB(thisMBB) .addReg(MI->getOperand(2).getReg()).addMBB(copy0MBB); MI->eraseFromParent(); // The pseudo instruction is gone now. return BB; } MachineBasicBlock *Mips16TargetLowering::emitSelT16 (unsigned Opc1, unsigned Opc2, MachineInstr *MI, MachineBasicBlock *BB) const { if (DontExpandCondPseudos16) return BB; const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); DebugLoc DL = MI->getDebugLoc(); // To "insert" a SELECT_CC instruction, we actually have to insert the // diamond control-flow pattern. The incoming instruction knows the // destination vreg to set, the condition code register to branch on, the // true/false values to select between, and a branch opcode to use. const BasicBlock *LLVM_BB = BB->getBasicBlock(); MachineFunction::iterator It = BB; ++It; // thisMBB: // ... // TrueVal = ... // setcc r1, r2, r3 // bNE r1, r0, copy1MBB // fallthrough --> copy0MBB MachineBasicBlock *thisMBB = BB; MachineFunction *F = BB->getParent(); MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); F->insert(It, copy0MBB); F->insert(It, sinkMBB); // Transfer the remainder of BB and its successor edges to sinkMBB. sinkMBB->splice(sinkMBB->begin(), BB, llvm::next(MachineBasicBlock::iterator(MI)), BB->end()); sinkMBB->transferSuccessorsAndUpdatePHIs(BB); // Next, add the true and fallthrough blocks as its successors. BB->addSuccessor(copy0MBB); BB->addSuccessor(sinkMBB); BuildMI(BB, DL, TII->get(Opc2)).addReg(MI->getOperand(3).getReg()) .addReg(MI->getOperand(4).getReg()); BuildMI(BB, DL, TII->get(Opc1)).addMBB(sinkMBB); // copy0MBB: // %FalseValue = ... // # fallthrough to sinkMBB BB = copy0MBB; // Update machine-CFG edges BB->addSuccessor(sinkMBB); // sinkMBB: // %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ] // ... BB = sinkMBB; BuildMI(*BB, BB->begin(), DL, TII->get(Mips::PHI), MI->getOperand(0).getReg()) .addReg(MI->getOperand(1).getReg()).addMBB(thisMBB) .addReg(MI->getOperand(2).getReg()).addMBB(copy0MBB); MI->eraseFromParent(); // The pseudo instruction is gone now. return BB; } MachineBasicBlock *Mips16TargetLowering::emitSeliT16 (unsigned Opc1, unsigned Opc2, MachineInstr *MI, MachineBasicBlock *BB) const { if (DontExpandCondPseudos16) return BB; const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); DebugLoc DL = MI->getDebugLoc(); // To "insert" a SELECT_CC instruction, we actually have to insert the // diamond control-flow pattern. The incoming instruction knows the // destination vreg to set, the condition code register to branch on, the // true/false values to select between, and a branch opcode to use. const BasicBlock *LLVM_BB = BB->getBasicBlock(); MachineFunction::iterator It = BB; ++It; // thisMBB: // ... // TrueVal = ... // setcc r1, r2, r3 // bNE r1, r0, copy1MBB // fallthrough --> copy0MBB MachineBasicBlock *thisMBB = BB; MachineFunction *F = BB->getParent(); MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); F->insert(It, copy0MBB); F->insert(It, sinkMBB); // Transfer the remainder of BB and its successor edges to sinkMBB. sinkMBB->splice(sinkMBB->begin(), BB, llvm::next(MachineBasicBlock::iterator(MI)), BB->end()); sinkMBB->transferSuccessorsAndUpdatePHIs(BB); // Next, add the true and fallthrough blocks as its successors. BB->addSuccessor(copy0MBB); BB->addSuccessor(sinkMBB); BuildMI(BB, DL, TII->get(Opc2)).addReg(MI->getOperand(3).getReg()) .addImm(MI->getOperand(4).getImm()); BuildMI(BB, DL, TII->get(Opc1)).addMBB(sinkMBB); // copy0MBB: // %FalseValue = ... // # fallthrough to sinkMBB BB = copy0MBB; // Update machine-CFG edges BB->addSuccessor(sinkMBB); // sinkMBB: // %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ] // ... BB = sinkMBB; BuildMI(*BB, BB->begin(), DL, TII->get(Mips::PHI), MI->getOperand(0).getReg()) .addReg(MI->getOperand(1).getReg()).addMBB(thisMBB) .addReg(MI->getOperand(2).getReg()).addMBB(copy0MBB); MI->eraseFromParent(); // The pseudo instruction is gone now. return BB; } MachineBasicBlock *Mips16TargetLowering::emitFEXT_T8I816_ins(unsigned BtOpc, unsigned CmpOpc, MachineInstr *MI, MachineBasicBlock *BB) const { if (DontExpandCondPseudos16) return BB; const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); unsigned regX = MI->getOperand(0).getReg(); unsigned regY = MI->getOperand(1).getReg(); MachineBasicBlock *target = MI->getOperand(2).getMBB(); BuildMI(*BB, MI, MI->getDebugLoc(), TII->get(CmpOpc)).addReg(regX) .addReg(regY); BuildMI(*BB, MI, MI->getDebugLoc(), TII->get(BtOpc)).addMBB(target); MI->eraseFromParent(); // The pseudo instruction is gone now. return BB; } MachineBasicBlock *Mips16TargetLowering::emitFEXT_T8I8I16_ins( unsigned BtOpc, unsigned CmpiOpc, unsigned CmpiXOpc, bool ImmSigned, MachineInstr *MI, MachineBasicBlock *BB) const { if (DontExpandCondPseudos16) return BB; const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); unsigned regX = MI->getOperand(0).getReg(); int64_t imm = MI->getOperand(1).getImm(); MachineBasicBlock *target = MI->getOperand(2).getMBB(); unsigned CmpOpc; if (isUInt<8>(imm)) CmpOpc = CmpiOpc; else if ((!ImmSigned && isUInt<16>(imm)) || (ImmSigned && isInt<16>(imm))) CmpOpc = CmpiXOpc; else llvm_unreachable("immediate field not usable"); BuildMI(*BB, MI, MI->getDebugLoc(), TII->get(CmpOpc)).addReg(regX) .addImm(imm); BuildMI(*BB, MI, MI->getDebugLoc(), TII->get(BtOpc)).addMBB(target); MI->eraseFromParent(); // The pseudo instruction is gone now. return BB; } static unsigned Mips16WhichOp8uOr16simm (unsigned shortOp, unsigned longOp, int64_t Imm) { if (isUInt<8>(Imm)) return shortOp; else if (isInt<16>(Imm)) return longOp; else llvm_unreachable("immediate field not usable"); } MachineBasicBlock *Mips16TargetLowering::emitFEXT_CCRX16_ins( unsigned SltOpc, MachineInstr *MI, MachineBasicBlock *BB) const { if (DontExpandCondPseudos16) return BB; const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); unsigned CC = MI->getOperand(0).getReg(); unsigned regX = MI->getOperand(1).getReg(); unsigned regY = MI->getOperand(2).getReg(); BuildMI(*BB, MI, MI->getDebugLoc(), TII->get(SltOpc)).addReg(regX).addReg(regY); BuildMI(*BB, MI, MI->getDebugLoc(), TII->get(Mips::MoveR3216), CC).addReg(Mips::T8); MI->eraseFromParent(); // The pseudo instruction is gone now. return BB; } MachineBasicBlock *Mips16TargetLowering::emitFEXT_CCRXI16_ins( unsigned SltiOpc, unsigned SltiXOpc, MachineInstr *MI, MachineBasicBlock *BB )const { if (DontExpandCondPseudos16) return BB; const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); unsigned CC = MI->getOperand(0).getReg(); unsigned regX = MI->getOperand(1).getReg(); int64_t Imm = MI->getOperand(2).getImm(); unsigned SltOpc = Mips16WhichOp8uOr16simm(SltiOpc, SltiXOpc, Imm); BuildMI(*BB, MI, MI->getDebugLoc(), TII->get(SltOpc)).addReg(regX).addImm(Imm); BuildMI(*BB, MI, MI->getDebugLoc(), TII->get(Mips::MoveR3216), CC).addReg(Mips::T8); MI->eraseFromParent(); // The pseudo instruction is gone now. return BB; }