//===-- SlotCalculator.cpp - Calculate what slots values land in ----------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements a useful analysis step to figure out what numbered slots // values in a program will land in (keeping track of per plane information). // // This is used when writing a file to disk, either in bytecode or assembly. // //===----------------------------------------------------------------------===// #include "SlotCalculator.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Function.h" #include "llvm/InlineAsm.h" #include "llvm/Instructions.h" #include "llvm/Module.h" #include "llvm/SymbolTable.h" #include "llvm/TypeSymbolTable.h" #include "llvm/Type.h" #include "llvm/Analysis/ConstantsScanner.h" #include "llvm/ADT/PostOrderIterator.h" #include "llvm/ADT/STLExtras.h" #include #include using namespace llvm; #ifndef NDEBUG #include "llvm/Support/Streams.h" #include "llvm/Support/CommandLine.h" static cl::opt SlotCalculatorDebugOption("scdebug",cl::init(false), cl::desc("Enable SlotCalculator debug output"), cl::Hidden); #define SC_DEBUG(X) if (SlotCalculatorDebugOption) cerr << X #else #define SC_DEBUG(X) #endif void SlotCalculator::insertPrimitives() { // Preload the table with the built-in types. These built-in types are // inserted first to ensure that they have low integer indices which helps to // keep bytecode sizes small. Note that the first group of indices must match // the Type::TypeIDs for the primitive types. After that the integer types are // added, but the order and value is not critical. What is critical is that // the indices of these "well known" slot numbers be properly maintained in // Reader.h which uses them directly to extract values of these types. SC_DEBUG("Inserting primitive types:\n"); // See WellKnownTypeSlots in Reader.h insertType(Type::VoidTy, true); // 0: VoidTySlot insertType(Type::FloatTy, true); // 1: FloatTySlot insertType(Type::DoubleTy, true); // 2: DoubleTySlot insertType(Type::LabelTy, true); // 3: LabelTySlot assert(TypeMap.size() == Type::FirstDerivedTyID && "Invalid primitive insert"); // Above here *must* correspond 1:1 with the primitive types. insertType(Type::Int1Ty, true); // 4: BoolTySlot insertType(Type::Int8Ty, true); // 5: Int8TySlot insertType(Type::Int16Ty, true); // 6: Int16TySlot insertType(Type::Int32Ty, true); // 7: Int32TySlot insertType(Type::Int64Ty, true); // 8: Int64TySlot } SlotCalculator::SlotCalculator(const Module *M ) { ModuleContainsAllFunctionConstants = false; ModuleTypeLevel = 0; TheModule = M; insertPrimitives(); if (M == 0) return; // Empty table... processModule(); } SlotCalculator::SlotCalculator(const Function *M ) { ModuleContainsAllFunctionConstants = false; TheModule = M ? M->getParent() : 0; insertPrimitives(); if (TheModule == 0) return; // Empty table... processModule(); // Process module level stuff incorporateFunction(M); // Start out in incorporated state } SlotCalculator::TypePlane &SlotCalculator::getPlane(unsigned Plane) { // Okay we are just returning an entry out of the main Table. Make sure the // plane exists and return it. if (Plane >= Table.size()) Table.resize(Plane+1); return Table[Plane]; } // processModule - Process all of the module level function declarations and // types that are available. // void SlotCalculator::processModule() { SC_DEBUG("begin processModule!\n"); // Add all of the global variables to the value table... // for (Module::const_global_iterator I = TheModule->global_begin(), E = TheModule->global_end(); I != E; ++I) getOrCreateSlot(I); // Scavenge the types out of the functions, then add the functions themselves // to the value table... // for (Module::const_iterator I = TheModule->begin(), E = TheModule->end(); I != E; ++I) getOrCreateSlot(I); // Add all of the module level constants used as initializers // for (Module::const_global_iterator I = TheModule->global_begin(), E = TheModule->global_end(); I != E; ++I) if (I->hasInitializer()) getOrCreateSlot(I->getInitializer()); // Now that all global constants have been added, rearrange constant planes // that contain constant strings so that the strings occur at the start of the // plane, not somewhere in the middle. // for (unsigned plane = 0, e = Table.size(); plane != e; ++plane) { if (const ArrayType *AT = dyn_cast(Types[plane])) if (AT->getElementType() == Type::Int8Ty) { TypePlane &Plane = Table[plane]; unsigned FirstNonStringID = 0; for (unsigned i = 0, e = Plane.size(); i != e; ++i) if (isa(Plane[i]) || (isa(Plane[i]) && cast(Plane[i])->isString())) { // Check to see if we have to shuffle this string around. If not, // don't do anything. if (i != FirstNonStringID) { // Swap the plane entries.... std::swap(Plane[i], Plane[FirstNonStringID]); // Keep the NodeMap up to date. NodeMap[Plane[i]] = i; NodeMap[Plane[FirstNonStringID]] = FirstNonStringID; } ++FirstNonStringID; } } } // Scan all of the functions for their constants, which allows us to emit // more compact modules. This is optional, and is just used to compactify // the constants used by different functions together. // // This functionality tends to produce smaller bytecode files. This should // not be used in the future by clients that want to, for example, build and // emit functions on the fly. For now, however, it is unconditionally // enabled. ModuleContainsAllFunctionConstants = true; SC_DEBUG("Inserting function constants:\n"); for (Module::const_iterator F = TheModule->begin(), E = TheModule->end(); F != E; ++F) { for (const_inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) { for (User::const_op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) { if ((isa(*OI) && !isa(*OI)) || isa(*OI)) getOrCreateSlot(*OI); } getOrCreateSlot(I->getType()); } processSymbolTableConstants(&F->getValueSymbolTable()); } // Insert constants that are named at module level into the slot pool so that // the module symbol table can refer to them... SC_DEBUG("Inserting SymbolTable values:\n"); processTypeSymbolTable(&TheModule->getTypeSymbolTable()); processValueSymbolTable(&TheModule->getValueSymbolTable()); // Now that we have collected together all of the information relevant to the // module, compactify the type table if it is particularly big and outputting // a bytecode file. The basic problem we run into is that some programs have // a large number of types, which causes the type field to overflow its size, // which causes instructions to explode in size (particularly call // instructions). To avoid this behavior, we "sort" the type table so that // all non-value types are pushed to the end of the type table, giving nice // low numbers to the types that can be used by instructions, thus reducing // the amount of explodage we suffer. if (Types.size() >= 64) { unsigned FirstNonValueTypeID = 0; for (unsigned i = 0, e = Types.size(); i != e; ++i) if (Types[i]->isFirstClassType() || Types[i]->isPrimitiveType()) { // Check to see if we have to shuffle this type around. If not, don't // do anything. if (i != FirstNonValueTypeID) { // Swap the type ID's. std::swap(Types[i], Types[FirstNonValueTypeID]); // Keep the TypeMap up to date. TypeMap[Types[i]] = i; TypeMap[Types[FirstNonValueTypeID]] = FirstNonValueTypeID; // When we move a type, make sure to move its value plane as needed. if (Table.size() > FirstNonValueTypeID) { if (Table.size() <= i) Table.resize(i+1); std::swap(Table[i], Table[FirstNonValueTypeID]); } } ++FirstNonValueTypeID; } } SC_DEBUG("end processModule!\n"); } // processTypeSymbolTable - Insert all of the type sin the specified symbol // table. void SlotCalculator::processTypeSymbolTable(const TypeSymbolTable *ST) { for (TypeSymbolTable::const_iterator TI = ST->begin(), TE = ST->end(); TI != TE; ++TI ) getOrCreateSlot(TI->second); } // processSymbolTable - Insert all of the values in the specified symbol table // into the values table... // void SlotCalculator::processValueSymbolTable(const SymbolTable *ST) { for (SymbolTable::plane_const_iterator PI = ST->plane_begin(), PE = ST->plane_end(); PI != PE; ++PI) for (SymbolTable::value_const_iterator VI = PI->second.begin(), VE = PI->second.end(); VI != VE; ++VI) getOrCreateSlot(VI->second); } void SlotCalculator::processSymbolTableConstants(const SymbolTable *ST) { // Now do the constant values in all planes for (SymbolTable::plane_const_iterator PI = ST->plane_begin(), PE = ST->plane_end(); PI != PE; ++PI) for (SymbolTable::value_const_iterator VI = PI->second.begin(), VE = PI->second.end(); VI != VE; ++VI) if (isa(VI->second) && !isa(VI->second)) getOrCreateSlot(VI->second); } void SlotCalculator::incorporateFunction(const Function *F) { assert((ModuleLevel.empty() || ModuleTypeLevel == 0) && "Module already incorporated!"); SC_DEBUG("begin processFunction!\n"); // Update the ModuleLevel entries to be accurate. ModuleLevel.resize(getNumPlanes()); for (unsigned i = 0, e = getNumPlanes(); i != e; ++i) ModuleLevel[i] = getPlane(i).size(); ModuleTypeLevel = Types.size(); // Iterate over function arguments, adding them to the value table... for(Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) getOrCreateSlot(I); if (!ModuleContainsAllFunctionConstants) { // Iterate over all of the instructions in the function, looking for // constant values that are referenced. Add these to the value pools // before any nonconstant values. This will be turned into the constant // pool for the bytecode writer. // // Emit all of the constants that are being used by the instructions in // the function... for (constant_iterator CI = constant_begin(F), CE = constant_end(F); CI != CE; ++CI) getOrCreateSlot(*CI); // If there is a symbol table, it is possible that the user has names for // constants that are not being used. In this case, we will have problems // if we don't emit the constants now, because otherwise we will get // symbol table references to constants not in the output. Scan for these // constants now. // processSymbolTableConstants(&F->getValueSymbolTable()); } SC_DEBUG("Inserting Instructions:\n"); // Add all of the instructions to the type planes... for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB) { getOrCreateSlot(BB); for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) { getOrCreateSlot(I); } } SC_DEBUG("end processFunction!\n"); } void SlotCalculator::purgeFunction() { assert((ModuleLevel.size() != 0 || ModuleTypeLevel != 0) && "Module not incorporated!"); unsigned NumModuleTypes = ModuleLevel.size(); SC_DEBUG("begin purgeFunction!\n"); // Next, remove values from existing type planes for (unsigned i = 0; i != NumModuleTypes; ++i) { // Size of plane before function came unsigned ModuleLev = getModuleLevel(i); assert(int(ModuleLev) >= 0 && "BAD!"); TypePlane &Plane = getPlane(i); assert(ModuleLev <= Plane.size() && "module levels higher than elements?"); while (Plane.size() != ModuleLev) { assert(!isa(Plane.back()) && "Functions cannot define globals!"); NodeMap.erase(Plane.back()); // Erase from nodemap Plane.pop_back(); // Shrink plane } } // We don't need this state anymore, free it up. ModuleLevel.clear(); ModuleTypeLevel = 0; // Finally, remove any type planes defined by the function... while (Table.size() > NumModuleTypes) { TypePlane &Plane = Table.back(); SC_DEBUG("Removing Plane " << (Table.size()-1) << " of size " << Plane.size() << "\n"); while (Plane.size()) { assert(!isa(Plane.back()) && "Functions cannot define globals!"); NodeMap.erase(Plane.back()); // Erase from nodemap Plane.pop_back(); // Shrink plane } Table.pop_back(); // Nuke the plane, we don't like it. } SC_DEBUG("end purgeFunction!\n"); } static inline bool hasNullValue(const Type *Ty) { return Ty != Type::LabelTy && Ty != Type::VoidTy && !isa(Ty); } int SlotCalculator::getSlot(const Value *V) const { std::map::const_iterator I = NodeMap.find(V); if (I != NodeMap.end()) return (int)I->second; return -1; } int SlotCalculator::getSlot(const Type*T) const { std::map::const_iterator I = TypeMap.find(T); if (I != TypeMap.end()) return (int)I->second; return -1; } int SlotCalculator::getOrCreateSlot(const Value *V) { if (V->getType() == Type::VoidTy) return -1; int SlotNo = getSlot(V); // Check to see if it's already in! if (SlotNo != -1) return SlotNo; if (const GlobalValue *GV = dyn_cast(V)) assert(GV->getParent() != 0 && "Global not embedded into a module!"); if (!isa(V)) // Initializers for globals are handled explicitly if (const Constant *C = dyn_cast(V)) { // Do not index the characters that make up constant strings. We emit // constant strings as special entities that don't require their // individual characters to be emitted. if (!isa(C) || !cast(C)->isString()) { // This makes sure that if a constant has uses (for example an array of // const ints), that they are inserted also. // for (User::const_op_iterator I = C->op_begin(), E = C->op_end(); I != E; ++I) getOrCreateSlot(*I); } else { assert(ModuleLevel.empty() && "How can a constant string be directly accessed in a function?"); // Otherwise, if we are emitting a bytecode file and this IS a string, // remember it. if (!C->isNullValue()) ConstantStrings.push_back(cast(C)); } } return insertValue(V); } int SlotCalculator::getOrCreateSlot(const Type* T) { int SlotNo = getSlot(T); // Check to see if it's already in! if (SlotNo != -1) return SlotNo; return insertType(T); } int SlotCalculator::insertValue(const Value *D, bool dontIgnore) { assert(D && "Can't insert a null value!"); assert(getSlot(D) == -1 && "Value is already in the table!"); // If this node does not contribute to a plane, or if the node has a // name and we don't want names, then ignore the silly node... Note that types // do need slot numbers so that we can keep track of where other values land. // if (!dontIgnore) // Don't ignore nonignorables! if (D->getType() == Type::VoidTy ) { // Ignore void type nodes SC_DEBUG("ignored value " << *D << "\n"); return -1; // We do need types unconditionally though } // Okay, everything is happy, actually insert the silly value now... return doInsertValue(D); } int SlotCalculator::insertType(const Type *Ty, bool dontIgnore) { assert(Ty && "Can't insert a null type!"); assert(getSlot(Ty) == -1 && "Type is already in the table!"); // Insert the current type before any subtypes. This is important because // recursive types elements are inserted in a bottom up order. Changing // this here can break things. For example: // // global { \2 * } { { \2 }* null } // int ResultSlot = doInsertType(Ty); SC_DEBUG(" Inserted type: " << Ty->getDescription() << " slot=" << ResultSlot << "\n"); // Loop over any contained types in the definition... in post // order. for (po_iterator I = po_begin(Ty), E = po_end(Ty); I != E; ++I) { if (*I != Ty) { const Type *SubTy = *I; // If we haven't seen this sub type before, add it to our type table! if (getSlot(SubTy) == -1) { SC_DEBUG(" Inserting subtype: " << SubTy->getDescription() << "\n"); doInsertType(SubTy); SC_DEBUG(" Inserted subtype: " << SubTy->getDescription() << "\n"); } } } return ResultSlot; } // doInsertValue - This is a small helper function to be called only // be insertValue. // int SlotCalculator::doInsertValue(const Value *D) { const Type *Typ = D->getType(); unsigned Ty; // Used for debugging DefSlot=-1 assertion... //if (Typ == Type::TypeTy) // llvm_cerr << "Inserting type '"<(D)->getDescription() <<"'!\n"; if (Typ->isDerivedType()) { int ValSlot = getSlot(Typ); if (ValSlot == -1) { // Have we already entered this type? // Nope, this is the first we have seen the type, process it. ValSlot = insertType(Typ, true); assert(ValSlot != -1 && "ProcessType returned -1 for a type?"); } Ty = (unsigned)ValSlot; } else { Ty = Typ->getTypeID(); } if (Table.size() <= Ty) // Make sure we have the type plane allocated... Table.resize(Ty+1, TypePlane()); // If this is the first value to get inserted into the type plane, make sure // to insert the implicit null value... if (Table[Ty].empty() && hasNullValue(Typ)) { Value *ZeroInitializer = Constant::getNullValue(Typ); // If we are pushing zeroinit, it will be handled below. if (D != ZeroInitializer) { Table[Ty].push_back(ZeroInitializer); NodeMap[ZeroInitializer] = 0; } } // Insert node into table and NodeMap... unsigned DestSlot = NodeMap[D] = Table[Ty].size(); Table[Ty].push_back(D); SC_DEBUG(" Inserting value [" << Ty << "] = " << *D << " slot=" << DestSlot << " ["); // G = Global, C = Constant, T = Type, F = Function, o = other SC_DEBUG((isa(D) ? "G" : (isa(D) ? "C" : (isa(D) ? "F" : "o")))); SC_DEBUG("]\n"); return (int)DestSlot; } // doInsertType - This is a small helper function to be called only // be insertType. // int SlotCalculator::doInsertType(const Type *Ty) { // Insert node into table and NodeMap... unsigned DestSlot = TypeMap[Ty] = Types.size(); Types.push_back(Ty); SC_DEBUG(" Inserting type [" << DestSlot << "] = " << *Ty << "\n" ); return (int)DestSlot; }