//===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the TwoAddress instruction pass which is used // by most register allocators. Two-Address instructions are rewritten // from: // // A = B op C // // to: // // A = B // A op= C // // Note that if a register allocator chooses to use this pass, that it // has to be capable of handling the non-SSA nature of these rewritten // virtual registers. // // It is also worth noting that the duplicate operand of the two // address instruction is removed. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "twoaddrinstr" #include "llvm/CodeGen/Passes.h" #include "llvm/Function.h" #include "llvm/CodeGen/LiveVariables.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/Target/MRegisterInfo.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Compiler.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/STLExtras.h" using namespace llvm; STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions"); STATISTIC(NumCommuted , "Number of instructions commuted to coalesce"); STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address"); namespace { struct VISIBILITY_HIDDEN TwoAddressInstructionPass : public MachineFunctionPass { static char ID; // Pass identification, replacement for typeid TwoAddressInstructionPass() : MachineFunctionPass((intptr_t)&ID) {} virtual void getAnalysisUsage(AnalysisUsage &AU) const; /// runOnMachineFunction - pass entry point bool runOnMachineFunction(MachineFunction&); }; char TwoAddressInstructionPass::ID = 0; RegisterPass X("twoaddressinstruction", "Two-Address instruction pass"); } const PassInfo *llvm::TwoAddressInstructionPassID = X.getPassInfo(); void TwoAddressInstructionPass::getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); AU.addPreserved(); AU.addPreservedID(MachineLoopInfoID); AU.addPreservedID(MachineDominatorsID); AU.addPreservedID(PHIEliminationID); MachineFunctionPass::getAnalysisUsage(AU); } /// runOnMachineFunction - Reduce two-address instructions to two /// operands. /// bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) { DOUT << "Machine Function\n"; const TargetMachine &TM = MF.getTarget(); const TargetInstrInfo &TII = *TM.getInstrInfo(); LiveVariables &LV = getAnalysis(); bool MadeChange = false; DOUT << "********** REWRITING TWO-ADDR INSTRS **********\n"; DOUT << "********** Function: " << MF.getFunction()->getName() << '\n'; for (MachineFunction::iterator mbbi = MF.begin(), mbbe = MF.end(); mbbi != mbbe; ++mbbi) { for (MachineBasicBlock::iterator mi = mbbi->begin(), me = mbbi->end(); mi != me; ++mi) { const TargetInstrDescriptor *TID = mi->getDesc(); bool FirstTied = true; for (unsigned si = 1, e = TID->getNumOperands(); si < e; ++si) { int ti = TID->getOperandConstraint(si, TOI::TIED_TO); if (ti == -1) continue; if (FirstTied) { ++NumTwoAddressInstrs; DOUT << '\t'; DEBUG(mi->print(*cerr.stream(), &TM)); } FirstTied = false; assert(mi->getOperand(si).isRegister() && mi->getOperand(si).getReg() && mi->getOperand(si).isUse() && "two address instruction invalid"); // if the two operands are the same we just remove the use // and mark the def as def&use, otherwise we have to insert a copy. if (mi->getOperand(ti).getReg() != mi->getOperand(si).getReg()) { // rewrite: // a = b op c // to: // a = b // a = a op c unsigned regA = mi->getOperand(ti).getReg(); unsigned regB = mi->getOperand(si).getReg(); assert(MRegisterInfo::isVirtualRegister(regA) && MRegisterInfo::isVirtualRegister(regB) && "cannot update physical register live information"); #ifndef NDEBUG // First, verify that we don't have a use of a in the instruction (a = // b + a for example) because our transformation will not work. This // should never occur because we are in SSA form. for (unsigned i = 0; i != mi->getNumOperands(); ++i) assert((int)i == ti || !mi->getOperand(i).isRegister() || mi->getOperand(i).getReg() != regA); #endif // If this instruction is not the killing user of B, see if we can // rearrange the code to make it so. Making it the killing user will // allow us to coalesce A and B together, eliminating the copy we are // about to insert. if (!LV.KillsRegister(mi, regB)) { // If this instruction is commutative, check to see if C dies. If // so, swap the B and C operands. This makes the live ranges of A // and C joinable. // FIXME: This code also works for A := B op C instructions. if ((TID->Flags & M_COMMUTABLE) && mi->getNumOperands() >= 3) { assert(mi->getOperand(3-si).isRegister() && "Not a proper commutative instruction!"); unsigned regC = mi->getOperand(3-si).getReg(); if (LV.KillsRegister(mi, regC)) { DOUT << "2addr: COMMUTING : " << *mi; MachineInstr *NewMI = TII.commuteInstruction(mi); if (NewMI == 0) { DOUT << "2addr: COMMUTING FAILED!\n"; } else { DOUT << "2addr: COMMUTED TO: " << *NewMI; // If the instruction changed to commute it, update livevar. if (NewMI != mi) { LV.instructionChanged(mi, NewMI); // Update live variables mbbi->insert(mi, NewMI); // Insert the new inst mbbi->erase(mi); // Nuke the old inst. mi = NewMI; } ++NumCommuted; regB = regC; goto InstructionRearranged; } } } // If this instruction is potentially convertible to a true // three-address instruction, if (TID->Flags & M_CONVERTIBLE_TO_3_ADDR) { // FIXME: This assumes there are no more operands which are tied // to another register. #ifndef NDEBUG for (unsigned i = si+1, e = TID->getNumOperands(); i < e; ++i) assert(TID->getOperandConstraint(i, TOI::TIED_TO) == -1); #endif if (MachineInstr *New = TII.convertToThreeAddress(mbbi, mi, LV)) { DOUT << "2addr: CONVERTING 2-ADDR: " << *mi; DOUT << "2addr: TO 3-ADDR: " << *New; mbbi->erase(mi); // Nuke the old inst. mi = New; ++NumConvertedTo3Addr; // Done with this instruction. break; } } } InstructionRearranged: const TargetRegisterClass* rc = MF.getRegInfo().getRegClass(regA); TII.copyRegToReg(*mbbi, mi, regA, regB, rc, rc); MachineBasicBlock::iterator prevMi = prior(mi); DOUT << "\t\tprepend:\t"; DEBUG(prevMi->print(*cerr.stream(), &TM)); // Update live variables for regA LiveVariables::VarInfo& varInfo = LV.getVarInfo(regA); varInfo.DefInst = prevMi; // update live variables for regB LiveVariables::VarInfo& varInfoB = LV.getVarInfo(regB); // regB is used in this BB. varInfoB.UsedBlocks[mbbi->getNumber()] = true; if (LV.removeVirtualRegisterKilled(regB, mbbi, mi)) LV.addVirtualRegisterKilled(regB, prevMi); if (LV.removeVirtualRegisterDead(regB, mbbi, mi)) LV.addVirtualRegisterDead(regB, prevMi); // replace all occurences of regB with regA for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) { if (mi->getOperand(i).isRegister() && mi->getOperand(i).getReg() == regB) mi->getOperand(i).setReg(regA); } } assert(mi->getOperand(ti).isDef() && mi->getOperand(si).isUse()); mi->getOperand(ti).setReg(mi->getOperand(si).getReg()); MadeChange = true; DOUT << "\t\trewrite to:\t"; DEBUG(mi->print(*cerr.stream(), &TM)); } } } return MadeChange; }