//===- SSAUpdater.cpp - Unstructured SSA Update Tool ----------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the SSAUpdater class. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "ssaupdater" #include "llvm/Transforms/Utils/SSAUpdater.h" #include "llvm/Instructions.h" #include "llvm/ADT/DenseMap.h" #include "llvm/Support/AlignOf.h" #include "llvm/Support/Allocator.h" #include "llvm/Support/CFG.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; /// BBInfo - Per-basic block information used internally by SSAUpdater. /// The predecessors of each block are cached here since pred_iterator is /// slow and we need to iterate over the blocks at least a few times. class SSAUpdater::BBInfo { public: BasicBlock *BB; // Back-pointer to the corresponding block. Value *AvailableVal; // Value to use in this block. BBInfo *DefBB; // Block that defines the available value. int BlkNum; // Postorder number. BBInfo *IDom; // Immediate dominator. unsigned NumPreds; // Number of predecessor blocks. BBInfo **Preds; // Array[NumPreds] of predecessor blocks. PHINode *PHITag; // Marker for existing PHIs that match. BBInfo(BasicBlock *ThisBB, Value *V) : BB(ThisBB), AvailableVal(V), DefBB(V ? this : 0), BlkNum(0), IDom(0), NumPreds(0), Preds(0), PHITag(0) { } }; typedef DenseMap BBMapTy; typedef DenseMap AvailableValsTy; static AvailableValsTy &getAvailableVals(void *AV) { return *static_cast(AV); } static BBMapTy *getBBMap(void *BM) { return static_cast(BM); } SSAUpdater::SSAUpdater(SmallVectorImpl *NewPHI) : AV(0), PrototypeValue(0), BM(0), InsertedPHIs(NewPHI) {} SSAUpdater::~SSAUpdater() { delete &getAvailableVals(AV); } /// Initialize - Reset this object to get ready for a new set of SSA /// updates. ProtoValue is the value used to name PHI nodes. void SSAUpdater::Initialize(Value *ProtoValue) { if (AV == 0) AV = new AvailableValsTy(); else getAvailableVals(AV).clear(); PrototypeValue = ProtoValue; } /// HasValueForBlock - Return true if the SSAUpdater already has a value for /// the specified block. bool SSAUpdater::HasValueForBlock(BasicBlock *BB) const { return getAvailableVals(AV).count(BB); } /// AddAvailableValue - Indicate that a rewritten value is available in the /// specified block with the specified value. void SSAUpdater::AddAvailableValue(BasicBlock *BB, Value *V) { assert(PrototypeValue != 0 && "Need to initialize SSAUpdater"); assert(PrototypeValue->getType() == V->getType() && "All rewritten values must have the same type"); getAvailableVals(AV)[BB] = V; } /// IsEquivalentPHI - Check if PHI has the same incoming value as specified /// in ValueMapping for each predecessor block. static bool IsEquivalentPHI(PHINode *PHI, DenseMap &ValueMapping) { unsigned PHINumValues = PHI->getNumIncomingValues(); if (PHINumValues != ValueMapping.size()) return false; // Scan the phi to see if it matches. for (unsigned i = 0, e = PHINumValues; i != e; ++i) if (ValueMapping[PHI->getIncomingBlock(i)] != PHI->getIncomingValue(i)) { return false; } return true; } /// GetValueAtEndOfBlock - Construct SSA form, materializing a value that is /// live at the end of the specified block. Value *SSAUpdater::GetValueAtEndOfBlock(BasicBlock *BB) { assert(BM == 0 && "Unexpected Internal State"); Value *Res = GetValueAtEndOfBlockInternal(BB); assert(BM == 0 && "Unexpected Internal State"); return Res; } /// GetValueInMiddleOfBlock - Construct SSA form, materializing a value that /// is live in the middle of the specified block. /// /// GetValueInMiddleOfBlock is the same as GetValueAtEndOfBlock except in one /// important case: if there is a definition of the rewritten value after the /// 'use' in BB. Consider code like this: /// /// X1 = ... /// SomeBB: /// use(X) /// X2 = ... /// br Cond, SomeBB, OutBB /// /// In this case, there are two values (X1 and X2) added to the AvailableVals /// set by the client of the rewriter, and those values are both live out of /// their respective blocks. However, the use of X happens in the *middle* of /// a block. Because of this, we need to insert a new PHI node in SomeBB to /// merge the appropriate values, and this value isn't live out of the block. /// Value *SSAUpdater::GetValueInMiddleOfBlock(BasicBlock *BB) { // If there is no definition of the renamed variable in this block, just use // GetValueAtEndOfBlock to do our work. if (!HasValueForBlock(BB)) return GetValueAtEndOfBlock(BB); // Otherwise, we have the hard case. Get the live-in values for each // predecessor. SmallVector, 8> PredValues; Value *SingularValue = 0; // We can get our predecessor info by walking the pred_iterator list, but it // is relatively slow. If we already have PHI nodes in this block, walk one // of them to get the predecessor list instead. if (PHINode *SomePhi = dyn_cast(BB->begin())) { for (unsigned i = 0, e = SomePhi->getNumIncomingValues(); i != e; ++i) { BasicBlock *PredBB = SomePhi->getIncomingBlock(i); Value *PredVal = GetValueAtEndOfBlock(PredBB); PredValues.push_back(std::make_pair(PredBB, PredVal)); // Compute SingularValue. if (i == 0) SingularValue = PredVal; else if (PredVal != SingularValue) SingularValue = 0; } } else { bool isFirstPred = true; for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { BasicBlock *PredBB = *PI; Value *PredVal = GetValueAtEndOfBlock(PredBB); PredValues.push_back(std::make_pair(PredBB, PredVal)); // Compute SingularValue. if (isFirstPred) { SingularValue = PredVal; isFirstPred = false; } else if (PredVal != SingularValue) SingularValue = 0; } } // If there are no predecessors, just return undef. if (PredValues.empty()) return UndefValue::get(PrototypeValue->getType()); // Otherwise, if all the merged values are the same, just use it. if (SingularValue != 0) return SingularValue; // Otherwise, we do need a PHI: check to see if we already have one available // in this block that produces the right value. if (isa(BB->begin())) { DenseMap ValueMapping(PredValues.begin(), PredValues.end()); PHINode *SomePHI; for (BasicBlock::iterator It = BB->begin(); (SomePHI = dyn_cast(It)); ++It) { if (IsEquivalentPHI(SomePHI, ValueMapping)) return SomePHI; } } // Ok, we have no way out, insert a new one now. PHINode *InsertedPHI = PHINode::Create(PrototypeValue->getType(), PrototypeValue->getName(), &BB->front()); InsertedPHI->reserveOperandSpace(PredValues.size()); // Fill in all the predecessors of the PHI. for (unsigned i = 0, e = PredValues.size(); i != e; ++i) InsertedPHI->addIncoming(PredValues[i].second, PredValues[i].first); // See if the PHI node can be merged to a single value. This can happen in // loop cases when we get a PHI of itself and one other value. if (Value *ConstVal = InsertedPHI->hasConstantValue()) { InsertedPHI->eraseFromParent(); return ConstVal; } // If the client wants to know about all new instructions, tell it. if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI); DEBUG(dbgs() << " Inserted PHI: " << *InsertedPHI << "\n"); return InsertedPHI; } /// RewriteUse - Rewrite a use of the symbolic value. This handles PHI nodes, /// which use their value in the corresponding predecessor. void SSAUpdater::RewriteUse(Use &U) { Instruction *User = cast(U.getUser()); Value *V; if (PHINode *UserPN = dyn_cast(User)) V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U)); else V = GetValueInMiddleOfBlock(User->getParent()); U.set(V); } /// GetValueAtEndOfBlockInternal - Check to see if AvailableVals has an entry /// for the specified BB and if so, return it. If not, construct SSA form by /// first calculating the required placement of PHIs and then inserting new /// PHIs where needed. Value *SSAUpdater::GetValueAtEndOfBlockInternal(BasicBlock *BB) { AvailableValsTy &AvailableVals = getAvailableVals(AV); if (Value *V = AvailableVals[BB]) return V; // Pool allocation used internally by GetValueAtEndOfBlock. BumpPtrAllocator Allocator; BBMapTy BBMapObj; BM = &BBMapObj; SmallVector BlockList; BuildBlockList(BB, &BlockList, &Allocator); // Special case: bail out if BB is unreachable. if (BlockList.size() == 0) { BM = 0; return UndefValue::get(PrototypeValue->getType()); } FindDominators(&BlockList); FindPHIPlacement(&BlockList); FindAvailableVals(&BlockList); BM = 0; return BBMapObj[BB]->DefBB->AvailableVal; } /// FindPredecessorBlocks - Put the predecessors of Info->BB into the Preds /// vector, set Info->NumPreds, and allocate space in Info->Preds. static void FindPredecessorBlocks(SSAUpdater::BBInfo *Info, SmallVectorImpl *Preds, BumpPtrAllocator *Allocator) { // We can get our predecessor info by walking the pred_iterator list, // but it is relatively slow. If we already have PHI nodes in this // block, walk one of them to get the predecessor list instead. BasicBlock *BB = Info->BB; if (PHINode *SomePhi = dyn_cast(BB->begin())) { for (unsigned PI = 0, E = SomePhi->getNumIncomingValues(); PI != E; ++PI) Preds->push_back(SomePhi->getIncomingBlock(PI)); } else { for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) Preds->push_back(*PI); } Info->NumPreds = Preds->size(); Info->Preds = static_cast (Allocator->Allocate(Info->NumPreds * sizeof(SSAUpdater::BBInfo*), AlignOf::Alignment)); } /// BuildBlockList - Starting from the specified basic block, traverse back /// through its predecessors until reaching blocks with known values. Create /// BBInfo structures for the blocks and append them to the block list. void SSAUpdater::BuildBlockList(BasicBlock *BB, BlockListTy *BlockList, BumpPtrAllocator *Allocator) { AvailableValsTy &AvailableVals = getAvailableVals(AV); BBMapTy *BBMap = getBBMap(BM); SmallVector RootList; SmallVector WorkList; BBInfo *Info = new (*Allocator) BBInfo(BB, 0); (*BBMap)[BB] = Info; WorkList.push_back(Info); // Search backward from BB, creating BBInfos along the way and stopping when // reaching blocks that define the value. Record those defining blocks on // the RootList. SmallVector Preds; while (!WorkList.empty()) { Info = WorkList.pop_back_val(); Preds.clear(); FindPredecessorBlocks(Info, &Preds, Allocator); // Treat an unreachable predecessor as a definition with 'undef'. if (Info->NumPreds == 0) { Info->AvailableVal = UndefValue::get(PrototypeValue->getType()); Info->DefBB = Info; RootList.push_back(Info); continue; } for (unsigned p = 0; p != Info->NumPreds; ++p) { BasicBlock *Pred = Preds[p]; // Check if BBMap already has a BBInfo for the predecessor block. BBMapTy::value_type &BBMapBucket = BBMap->FindAndConstruct(Pred); if (BBMapBucket.second) { Info->Preds[p] = BBMapBucket.second; continue; } // Create a new BBInfo for the predecessor. Value *PredVal = AvailableVals.lookup(Pred); BBInfo *PredInfo = new (*Allocator) BBInfo(Pred, PredVal); BBMapBucket.second = PredInfo; Info->Preds[p] = PredInfo; if (PredInfo->AvailableVal) { RootList.push_back(PredInfo); continue; } WorkList.push_back(PredInfo); } } // Now that we know what blocks are backwards-reachable from the starting // block, do a forward depth-first traversal to assign postorder numbers // to those blocks. BBInfo *PseudoEntry = new (*Allocator) BBInfo(0, 0); unsigned BlkNum = 1; // Initialize the worklist with the roots from the backward traversal. while (!RootList.empty()) { Info = RootList.pop_back_val(); Info->IDom = PseudoEntry; Info->BlkNum = -1; WorkList.push_back(Info); } while (!WorkList.empty()) { Info = WorkList.back(); if (Info->BlkNum == -2) { // All the successors have been handled; assign the postorder number. Info->BlkNum = BlkNum++; // If not a root, put it on the BlockList. if (!Info->AvailableVal) BlockList->push_back(Info); WorkList.pop_back(); continue; } // Leave this entry on the worklist, but set its BlkNum to mark that its // successors have been put on the worklist. When it returns to the top // the list, after handling its successors, it will be assigned a number. Info->BlkNum = -2; // Add unvisited successors to the work list. for (succ_iterator SI = succ_begin(Info->BB), E = succ_end(Info->BB); SI != E; ++SI) { BBInfo *SuccInfo = (*BBMap)[*SI]; if (!SuccInfo || SuccInfo->BlkNum) continue; SuccInfo->BlkNum = -1; WorkList.push_back(SuccInfo); } } PseudoEntry->BlkNum = BlkNum; } /// IntersectDominators - This is the dataflow lattice "meet" operation for /// finding dominators. Given two basic blocks, it walks up the dominator /// tree until it finds a common dominator of both. It uses the postorder /// number of the blocks to determine how to do that. static SSAUpdater::BBInfo *IntersectDominators(SSAUpdater::BBInfo *Blk1, SSAUpdater::BBInfo *Blk2) { while (Blk1 != Blk2) { while (Blk1->BlkNum < Blk2->BlkNum) { Blk1 = Blk1->IDom; if (!Blk1) return Blk2; } while (Blk2->BlkNum < Blk1->BlkNum) { Blk2 = Blk2->IDom; if (!Blk2) return Blk1; } } return Blk1; } /// FindDominators - Calculate the dominator tree for the subset of the CFG /// corresponding to the basic blocks on the BlockList. This uses the /// algorithm from: "A Simple, Fast Dominance Algorithm" by Cooper, Harvey and /// Kennedy, published in Software--Practice and Experience, 2001, 4:1-10. /// Because the CFG subset does not include any edges leading into blocks that /// define the value, the results are not the usual dominator tree. The CFG /// subset has a single pseudo-entry node with edges to a set of root nodes /// for blocks that define the value. The dominators for this subset CFG are /// not the standard dominators but they are adequate for placing PHIs within /// the subset CFG. void SSAUpdater::FindDominators(BlockListTy *BlockList) { bool Changed; do { Changed = false; // Iterate over the list in reverse order, i.e., forward on CFG edges. for (BlockListTy::reverse_iterator I = BlockList->rbegin(), E = BlockList->rend(); I != E; ++I) { BBInfo *Info = *I; // Start with the first predecessor. assert(Info->NumPreds > 0 && "unreachable block"); BBInfo *NewIDom = Info->Preds[0]; // Iterate through the block's other predecessors. for (unsigned p = 1; p != Info->NumPreds; ++p) { BBInfo *Pred = Info->Preds[p]; NewIDom = IntersectDominators(NewIDom, Pred); } // Check if the IDom value has changed. if (NewIDom != Info->IDom) { Info->IDom = NewIDom; Changed = true; } } } while (Changed); } /// IsDefInDomFrontier - Search up the dominator tree from Pred to IDom for /// any blocks containing definitions of the value. If one is found, then the /// successor of Pred is in the dominance frontier for the definition, and /// this function returns true. static bool IsDefInDomFrontier(const SSAUpdater::BBInfo *Pred, const SSAUpdater::BBInfo *IDom) { for (; Pred != IDom; Pred = Pred->IDom) { if (Pred->DefBB == Pred) return true; } return false; } /// FindPHIPlacement - PHIs are needed in the iterated dominance frontiers of /// the known definitions. Iteratively add PHIs in the dom frontiers until /// nothing changes. Along the way, keep track of the nearest dominating /// definitions for non-PHI blocks. void SSAUpdater::FindPHIPlacement(BlockListTy *BlockList) { bool Changed; do { Changed = false; // Iterate over the list in reverse order, i.e., forward on CFG edges. for (BlockListTy::reverse_iterator I = BlockList->rbegin(), E = BlockList->rend(); I != E; ++I) { BBInfo *Info = *I; // If this block already needs a PHI, there is nothing to do here. if (Info->DefBB == Info) continue; // Default to use the same def as the immediate dominator. BBInfo *NewDefBB = Info->IDom->DefBB; for (unsigned p = 0; p != Info->NumPreds; ++p) { if (IsDefInDomFrontier(Info->Preds[p], Info->IDom)) { // Need a PHI here. NewDefBB = Info; break; } } // Check if anything changed. if (NewDefBB != Info->DefBB) { Info->DefBB = NewDefBB; Changed = true; } } } while (Changed); } /// FindAvailableVal - If this block requires a PHI, first check if an existing /// PHI matches the PHI placement and reaching definitions computed earlier, /// and if not, create a new PHI. Visit all the block's predecessors to /// calculate the available value for each one and fill in the incoming values /// for a new PHI. void SSAUpdater::FindAvailableVals(BlockListTy *BlockList) { AvailableValsTy &AvailableVals = getAvailableVals(AV); // Go through the worklist in forward order (i.e., backward through the CFG) // and check if existing PHIs can be used. If not, create empty PHIs where // they are needed. for (BlockListTy::iterator I = BlockList->begin(), E = BlockList->end(); I != E; ++I) { BBInfo *Info = *I; // Check if there needs to be a PHI in BB. if (Info->DefBB != Info) continue; // Look for an existing PHI. FindExistingPHI(Info->BB, BlockList); if (Info->AvailableVal) continue; PHINode *PHI = PHINode::Create(PrototypeValue->getType(), PrototypeValue->getName(), &Info->BB->front()); PHI->reserveOperandSpace(Info->NumPreds); Info->AvailableVal = PHI; AvailableVals[Info->BB] = PHI; } // Now go back through the worklist in reverse order to fill in the arguments // for any new PHIs added in the forward traversal. for (BlockListTy::reverse_iterator I = BlockList->rbegin(), E = BlockList->rend(); I != E; ++I) { BBInfo *Info = *I; if (Info->DefBB != Info) { // Record the available value at join nodes to speed up subsequent // uses of this SSAUpdater for the same value. if (Info->NumPreds > 1) AvailableVals[Info->BB] = Info->DefBB->AvailableVal; continue; } // Check if this block contains a newly added PHI. PHINode *PHI = dyn_cast(Info->AvailableVal); if (!PHI || PHI->getNumIncomingValues() == Info->NumPreds) continue; // Iterate through the block's predecessors. for (unsigned p = 0; p != Info->NumPreds; ++p) { BBInfo *PredInfo = Info->Preds[p]; BasicBlock *Pred = PredInfo->BB; // Skip to the nearest preceding definition. if (PredInfo->DefBB != PredInfo) PredInfo = PredInfo->DefBB; PHI->addIncoming(PredInfo->AvailableVal, Pred); } DEBUG(dbgs() << " Inserted PHI: " << *PHI << "\n"); // If the client wants to know about all new instructions, tell it. if (InsertedPHIs) InsertedPHIs->push_back(PHI); } } /// FindExistingPHI - Look through the PHI nodes in a block to see if any of /// them match what is needed. void SSAUpdater::FindExistingPHI(BasicBlock *BB, BlockListTy *BlockList) { PHINode *SomePHI; for (BasicBlock::iterator It = BB->begin(); (SomePHI = dyn_cast(It)); ++It) { if (CheckIfPHIMatches(SomePHI)) { RecordMatchingPHI(SomePHI); break; } // Match failed: clear all the PHITag values. for (BlockListTy::iterator I = BlockList->begin(), E = BlockList->end(); I != E; ++I) (*I)->PHITag = 0; } } /// CheckIfPHIMatches - Check if a PHI node matches the placement and values /// in the BBMap. bool SSAUpdater::CheckIfPHIMatches(PHINode *PHI) { BBMapTy *BBMap = getBBMap(BM); SmallVector WorkList; WorkList.push_back(PHI); // Mark that the block containing this PHI has been visited. (*BBMap)[PHI->getParent()]->PHITag = PHI; while (!WorkList.empty()) { PHI = WorkList.pop_back_val(); // Iterate through the PHI's incoming values. for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) { Value *IncomingVal = PHI->getIncomingValue(i); BBInfo *PredInfo = (*BBMap)[PHI->getIncomingBlock(i)]; // Skip to the nearest preceding definition. if (PredInfo->DefBB != PredInfo) PredInfo = PredInfo->DefBB; // Check if it matches the expected value. if (PredInfo->AvailableVal) { if (IncomingVal == PredInfo->AvailableVal) continue; return false; } // Check if the value is a PHI in the correct block. PHINode *IncomingPHIVal = dyn_cast(IncomingVal); if (!IncomingPHIVal || IncomingPHIVal->getParent() != PredInfo->BB) return false; // If this block has already been visited, check if this PHI matches. if (PredInfo->PHITag) { if (IncomingPHIVal == PredInfo->PHITag) continue; return false; } PredInfo->PHITag = IncomingPHIVal; WorkList.push_back(IncomingPHIVal); } } return true; } /// RecordMatchingPHI - For a PHI node that matches, record it and its input /// PHIs in both the BBMap and the AvailableVals mapping. void SSAUpdater::RecordMatchingPHI(PHINode *PHI) { BBMapTy *BBMap = getBBMap(BM); AvailableValsTy &AvailableVals = getAvailableVals(AV); SmallVector WorkList; WorkList.push_back(PHI); // Record this PHI. BasicBlock *BB = PHI->getParent(); AvailableVals[BB] = PHI; (*BBMap)[BB]->AvailableVal = PHI; while (!WorkList.empty()) { PHI = WorkList.pop_back_val(); // Iterate through the PHI's incoming values. for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) { PHINode *IncomingPHIVal = dyn_cast(PHI->getIncomingValue(i)); if (!IncomingPHIVal) continue; BB = IncomingPHIVal->getParent(); BBInfo *Info = (*BBMap)[BB]; if (!Info || Info->AvailableVal) continue; // Record the PHI and add it to the worklist. AvailableVals[BB] = IncomingPHIVal; Info->AvailableVal = IncomingPHIVal; WorkList.push_back(IncomingPHIVal); } } }