//===- LoopStrengthReduce.cpp - Strength Reduce GEPs in Loops -------------===// // // The LLVM Compiler Infrastructure // // This file was developed by Nate Begeman and is distributed under the // University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass performs a strength reduction on array references inside loops that // have as one or more of their components the loop induction variable. This is // accomplished by creating a new Value to hold the initial value of the array // access for the first iteration, and then creating a new GEP instruction in // the loop to increment the value by the appropriate amount. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "loop-reduce" #include "llvm/Transforms/Scalar.h" #include "llvm/Constants.h" #include "llvm/Instructions.h" #include "llvm/Type.h" #include "llvm/DerivedTypes.h" #include "llvm/Analysis/Dominators.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/ScalarEvolutionExpander.h" #include "llvm/Support/CFG.h" #include "llvm/Support/GetElementPtrTypeIterator.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Target/TargetData.h" #include "llvm/ADT/Statistic.h" #include "llvm/Support/Debug.h" #include #include using namespace llvm; namespace { Statistic<> NumReduced ("loop-reduce", "Number of GEPs strength reduced"); class GEPCache { public: GEPCache() : CachedPHINode(0), Map() {} GEPCache *get(Value *v) { std::map::iterator I = Map.find(v); if (I == Map.end()) I = Map.insert(std::pair(v, GEPCache())).first; return &I->second; } PHINode *CachedPHINode; std::map Map; }; /// IVStrideUse - Keep track of one use of a strided induction variable, where /// the stride is stored externally. The Offset member keeps track of the /// offset from the IV, User is the actual user of the operand, and 'Operand' /// is the operand # of the User that is the use. struct IVStrideUse { SCEVHandle Offset; Instruction *User; Value *OperandValToReplace; IVStrideUse(const SCEVHandle &Offs, Instruction *U, Value *O) : Offset(Offs), User(U), OperandValToReplace(O) {} }; /// IVUsersOfOneStride - This structure keeps track of all instructions that /// have an operand that is based on the trip count multiplied by some stride. /// The stride for all of these users is common and kept external to this /// structure. struct IVUsersOfOneStride { /// Users - Keep track of all of the users of this stride as well as the /// initial value and the operand that uses the IV. std::vector Users; void addUser(const SCEVHandle &Offset,Instruction *User, Value *Operand) { Users.push_back(IVStrideUse(Offset, User, Operand)); } }; class LoopStrengthReduce : public FunctionPass { LoopInfo *LI; DominatorSet *DS; ScalarEvolution *SE; const TargetData *TD; const Type *UIntPtrTy; bool Changed; /// MaxTargetAMSize - This is the maximum power-of-two scale value that the /// target can handle for free with its addressing modes. unsigned MaxTargetAMSize; /// IVUsesByStride - Keep track of all uses of induction variables that we /// are interested in. The key of the map is the stride of the access. std::map IVUsesByStride; /// CastedBasePointers - As we need to lower getelementptr instructions, we /// cast the pointer input to uintptr_t. This keeps track of the casted /// values for the pointers we have processed so far. std::map CastedBasePointers; /// DeadInsts - Keep track of instructions we may have made dead, so that /// we can remove them after we are done working. std::set DeadInsts; public: LoopStrengthReduce(unsigned MTAMS = 1) : MaxTargetAMSize(MTAMS) { } virtual bool runOnFunction(Function &) { LI = &getAnalysis(); DS = &getAnalysis(); SE = &getAnalysis(); TD = &getAnalysis(); UIntPtrTy = TD->getIntPtrType(); Changed = false; for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) runOnLoop(*I); return Changed; } virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesCFG(); AU.addRequiredID(LoopSimplifyID); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); } private: void runOnLoop(Loop *L); bool AddUsersIfInteresting(Instruction *I, Loop *L); void AnalyzeGetElementPtrUsers(GetElementPtrInst *GEP, Instruction *I, Loop *L); void StrengthReduceStridedIVUsers(Value *Stride, IVUsersOfOneStride &Uses, Loop *L, bool isOnlyStride); void strengthReduceGEP(GetElementPtrInst *GEPI, Loop *L, GEPCache* GEPCache, Instruction *InsertBefore, std::set &DeadInsts); void DeleteTriviallyDeadInstructions(std::set &Insts); }; RegisterOpt X("loop-reduce", "Strength Reduce GEP Uses of Ind. Vars"); } FunctionPass *llvm::createLoopStrengthReducePass(unsigned MaxTargetAMSize) { return new LoopStrengthReduce(MaxTargetAMSize); } /// DeleteTriviallyDeadInstructions - If any of the instructions is the /// specified set are trivially dead, delete them and see if this makes any of /// their operands subsequently dead. void LoopStrengthReduce:: DeleteTriviallyDeadInstructions(std::set &Insts) { while (!Insts.empty()) { Instruction *I = *Insts.begin(); Insts.erase(Insts.begin()); if (isInstructionTriviallyDead(I)) { for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) if (Instruction *U = dyn_cast(I->getOperand(i))) Insts.insert(U); SE->deleteInstructionFromRecords(I); I->eraseFromParent(); Changed = true; } } } /// CanReduceSCEV - Return true if we can strength reduce this scalar evolution /// in the specified loop. static bool CanReduceSCEV(const SCEVHandle &SH, Loop *L) { SCEVAddRecExpr *AddRec = dyn_cast(SH); if (!AddRec || AddRec->getLoop() != L) return false; // FIXME: Generalize to non-affine IV's. if (!AddRec->isAffine()) return false; // FIXME: generalize to IV's with more complex strides (must emit stride // expression outside of loop!) if (isa(AddRec->getOperand(1))) return true; // We handle steps by unsigned values, because we know we won't have to insert // a cast for them. if (SCEVUnknown *SU = dyn_cast(AddRec->getOperand(1))) if (SU->getValue()->getType()->isUnsigned()) return true; // Otherwise, no, we can't handle it yet. return false; } /// GetAdjustedIndex - Adjust the specified GEP sequential type index to match /// the size of the pointer type, and scale it by the type size. static SCEVHandle GetAdjustedIndex(const SCEVHandle &Idx, uint64_t TySize, const Type *UIntPtrTy) { SCEVHandle Result = Idx; if (Result->getType()->getUnsignedVersion() != UIntPtrTy) { if (UIntPtrTy->getPrimitiveSize() < Result->getType()->getPrimitiveSize()) Result = SCEVTruncateExpr::get(Result, UIntPtrTy); else Result = SCEVZeroExtendExpr::get(Result, UIntPtrTy); } // This index is scaled by the type size being indexed. if (TySize != 1) Result = SCEVMulExpr::get(Result, SCEVConstant::get(ConstantUInt::get(UIntPtrTy, TySize))); return Result; } /// AnalyzeGetElementPtrUsers - Analyze all of the users of the specified /// getelementptr instruction, adding them to the IVUsesByStride table. Note /// that we only want to analyze a getelementptr instruction once, and it can /// have multiple operands that are uses of the indvar (e.g. A[i][i]). Because /// of this, we only process a GEP instruction if its first recurrent operand is /// "op", otherwise we will either have already processed it or we will sometime /// later. void LoopStrengthReduce::AnalyzeGetElementPtrUsers(GetElementPtrInst *GEP, Instruction *Op, Loop *L) { // Analyze all of the subscripts of this getelementptr instruction, looking // for uses that are determined by the trip count of L. First, skip all // operands the are not dependent on the IV. // Build up the base expression. Insert an LLVM cast of the pointer to // uintptr_t first. Value *BasePtr; if (Constant *CB = dyn_cast(GEP->getOperand(0))) BasePtr = ConstantExpr::getCast(CB, UIntPtrTy); else { Value *&BP = CastedBasePointers[GEP->getOperand(0)]; if (BP == 0) { BasicBlock::iterator InsertPt; if (isa(GEP->getOperand(0))) { InsertPt = GEP->getParent()->getParent()->begin()->begin(); } else { InsertPt = cast(GEP->getOperand(0)); if (InvokeInst *II = dyn_cast(GEP->getOperand(0))) InsertPt = II->getNormalDest()->begin(); else ++InsertPt; } // Do not insert casts into the middle of PHI node blocks. while (isa(InsertPt)) ++InsertPt; BP = new CastInst(GEP->getOperand(0), UIntPtrTy, GEP->getOperand(0)->getName(), InsertPt); } BasePtr = BP; } SCEVHandle Base = SCEVUnknown::get(BasePtr); gep_type_iterator GTI = gep_type_begin(GEP); unsigned i = 1; for (; GEP->getOperand(i) != Op; ++i, ++GTI) { // If this is a use of a recurrence that we can analyze, and it comes before // Op does in the GEP operand list, we will handle this when we process this // operand. if (const StructType *STy = dyn_cast(*GTI)) { const StructLayout *SL = TD->getStructLayout(STy); unsigned Idx = cast(GEP->getOperand(i))->getValue(); uint64_t Offset = SL->MemberOffsets[Idx]; Base = SCEVAddExpr::get(Base, SCEVUnknown::getIntegerSCEV(Offset, UIntPtrTy)); } else { SCEVHandle Idx = SE->getSCEV(GEP->getOperand(i)); // If this operand is reducible, and it's not the one we are looking at // currently, do not process the GEP at this time. if (CanReduceSCEV(Idx, L)) return; Base = SCEVAddExpr::get(Base, GetAdjustedIndex(Idx, TD->getTypeSize(GTI.getIndexedType()), UIntPtrTy)); } } // Get the index, convert it to intptr_t. SCEVHandle GEPIndexExpr = GetAdjustedIndex(SE->getSCEV(Op), TD->getTypeSize(GTI.getIndexedType()), UIntPtrTy); // Process all remaining subscripts in the GEP instruction. for (++i, ++GTI; i != GEP->getNumOperands(); ++i, ++GTI) if (const StructType *STy = dyn_cast(*GTI)) { const StructLayout *SL = TD->getStructLayout(STy); unsigned Idx = cast(GEP->getOperand(i))->getValue(); uint64_t Offset = SL->MemberOffsets[Idx]; Base = SCEVAddExpr::get(Base, SCEVUnknown::getIntegerSCEV(Offset, UIntPtrTy)); } else { SCEVHandle Idx = SE->getSCEV(GEP->getOperand(i)); if (CanReduceSCEV(Idx, L)) { // Another IV subscript GEPIndexExpr = SCEVAddExpr::get(GEPIndexExpr, GetAdjustedIndex(Idx, TD->getTypeSize(GTI.getIndexedType()), UIntPtrTy)); assert(CanReduceSCEV(GEPIndexExpr, L) && "Cannot reduce the sum of two reducible SCEV's??"); } else { Base = SCEVAddExpr::get(Base, GetAdjustedIndex(Idx, TD->getTypeSize(GTI.getIndexedType()), UIntPtrTy)); } } assert(CanReduceSCEV(GEPIndexExpr, L) && "Non reducible idx??"); // FIXME: If the base is not loop invariant, we currently cannot emit this. if (!Base->isLoopInvariant(L)) { DEBUG(std::cerr << "IGNORING GEP due to non-invaiant base: " << *Base << "\n"); return; } Base = SCEVAddExpr::get(Base, cast(GEPIndexExpr)->getStart()); SCEVHandle Stride = cast(GEPIndexExpr)->getOperand(1); DEBUG(std::cerr << "GEP BASE : " << *Base << "\n"); DEBUG(std::cerr << "GEP STRIDE: " << *Stride << "\n"); Value *Step = 0; // Step of ISE. if (SCEVConstant *SC = dyn_cast(Stride)) /// Always get the step value as an unsigned value. Step = ConstantExpr::getCast(SC->getValue(), SC->getValue()->getType()->getUnsignedVersion()); else Step = cast(Stride)->getValue(); assert(Step->getType()->isUnsigned() && "Bad step value!"); // Now that we know the base and stride contributed by the GEP instruction, // process all users. for (Value::use_iterator UI = GEP->use_begin(), E = GEP->use_end(); UI != E; ++UI) { Instruction *User = cast(*UI); // Do not infinitely recurse on PHI nodes. if (isa(User) && User->getParent() == L->getHeader()) continue; // If this is an instruction defined in a nested loop, or outside this loop, // don't mess with it. if (LI->getLoopFor(User->getParent()) != L) continue; DEBUG(std::cerr << "FOUND USER: " << *User << " OF STRIDE: " << *Step << " BASE = " << *Base << "\n"); // Okay, we found a user that we cannot reduce. Analyze the instruction // and decide what to do with it. IVUsesByStride[Step].addUser(Base, User, GEP); } } /// AddUsersIfInteresting - Inspect the specified instruction. If it is a /// reducible SCEV, recursively add its users to the IVUsesByStride set and /// return true. Otherwise, return false. bool LoopStrengthReduce::AddUsersIfInteresting(Instruction *I, Loop *L) { if (I->getType() == Type::VoidTy) return false; SCEVHandle ISE = SE->getSCEV(I); if (!CanReduceSCEV(ISE, L)) return false; SCEVAddRecExpr *AR = cast(ISE); SCEVHandle Start = AR->getStart(); // Get the step value, canonicalizing to an unsigned integer type so that // lookups in the map will match. Value *Step = 0; // Step of ISE. if (SCEVConstant *SC = dyn_cast(AR->getOperand(1))) /// Always get the step value as an unsigned value. Step = ConstantExpr::getCast(SC->getValue(), SC->getValue()->getType()->getUnsignedVersion()); else Step = cast(AR->getOperand(1))->getValue(); assert(Step->getType()->isUnsigned() && "Bad step value!"); std::set AnalyzedGEPs; for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;++UI){ Instruction *User = cast(*UI); // Do not infinitely recurse on PHI nodes. if (isa(User) && User->getParent() == L->getHeader()) continue; // If this is an instruction defined in a nested loop, or outside this loop, // don't recurse into it. if (LI->getLoopFor(User->getParent()) != L) { DEBUG(std::cerr << "FOUND USER in nested loop: " << *User << " OF SCEV: " << *ISE << "\n"); // Okay, we found a user that we cannot reduce. Analyze the instruction // and decide what to do with it. IVUsesByStride[Step].addUser(Start, User, I); continue; } // Next, see if this user is analyzable itself! if (!AddUsersIfInteresting(User, L)) { if (GetElementPtrInst *GEP = dyn_cast(User)) { // If this is a getelementptr instruction, figure out what linear // expression of induction variable is actually being used. // if (AnalyzedGEPs.insert(GEP).second) // Not already analyzed? AnalyzeGetElementPtrUsers(GEP, I, L); } else { DEBUG(std::cerr << "FOUND USER: " << *User << " OF SCEV: " << *ISE << "\n"); // Okay, we found a user that we cannot reduce. Analyze the instruction // and decide what to do with it. IVUsesByStride[Step].addUser(Start, User, I); } } } return true; } namespace { /// BasedUser - For a particular base value, keep information about how we've /// partitioned the expression so far. struct BasedUser { /// Inst - The instruction using the induction variable. Instruction *Inst; /// OperandValToReplace - The operand value of Inst to replace with the /// EmittedBase. Value *OperandValToReplace; /// Imm - The immediate value that should be added to the base immediately /// before Inst, because it will be folded into the imm field of the /// instruction. SCEVHandle Imm; /// EmittedBase - The actual value* to use for the base value of this /// operation. This is null if we should just use zero so far. Value *EmittedBase; BasedUser(Instruction *I, Value *Op, const SCEVHandle &IMM) : Inst(I), OperandValToReplace(Op), Imm(IMM), EmittedBase(0) {} // No need to compare these. bool operator<(const BasedUser &BU) const { return 0; } void dump() const; }; } void BasedUser::dump() const { std::cerr << " Imm=" << *Imm; if (EmittedBase) std::cerr << " EB=" << *EmittedBase; std::cerr << " Inst: " << *Inst; } /// isTargetConstant - Return true if the following can be referenced by the /// immediate field of a target instruction. static bool isTargetConstant(const SCEVHandle &V) { // FIXME: Look at the target to decide if &GV is a legal constant immediate. if (isa(V)) return true; return false; // ENABLE this for x86 if (SCEVUnknown *SU = dyn_cast(V)) if (ConstantExpr *CE = dyn_cast(SU->getValue())) if (CE->getOpcode() == Instruction::Cast) if (isa(CE->getOperand(0))) // FIXME: should check to see that the dest is uintptr_t! return true; return false; } /// GetImmediateValues - Look at Val, and pull out any additions of constants /// that can fit into the immediate field of instructions in the target. static SCEVHandle GetImmediateValues(SCEVHandle Val, bool isAddress) { if (!isAddress) return SCEVUnknown::getIntegerSCEV(0, Val->getType()); if (isTargetConstant(Val)) return Val; if (SCEVAddExpr *SAE = dyn_cast(Val)) { unsigned i = 0; for (; i != SAE->getNumOperands(); ++i) if (isTargetConstant(SAE->getOperand(i))) { SCEVHandle ImmVal = SAE->getOperand(i); // If there are any other immediates that we can handle here, pull them // out too. for (++i; i != SAE->getNumOperands(); ++i) if (isTargetConstant(SAE->getOperand(i))) ImmVal = SCEVAddExpr::get(ImmVal, SAE->getOperand(i)); return ImmVal; } } else if (SCEVAddRecExpr *SARE = dyn_cast(Val)) { // Try to pull immediates out of the start value of nested addrec's. return GetImmediateValues(SARE->getStart(), isAddress); } return SCEVUnknown::getIntegerSCEV(0, Val->getType()); } /// StrengthReduceStridedIVUsers - Strength reduce all of the users of a single /// stride of IV. All of the users may have different starting values, and this /// may not be the only stride (we know it is if isOnlyStride is true). void LoopStrengthReduce::StrengthReduceStridedIVUsers(Value *Stride, IVUsersOfOneStride &Uses, Loop *L, bool isOnlyStride) { // Transform our list of users and offsets to a bit more complex table. In // this new vector, the first entry for each element is the base of the // strided access, and the second is the BasedUser object for the use. We // progressively move information from the first to the second entry, until we // eventually emit the object. std::vector > UsersToProcess; UsersToProcess.reserve(Uses.Users.size()); SCEVHandle ZeroBase = SCEVUnknown::getIntegerSCEV(0, Uses.Users[0].Offset->getType()); for (unsigned i = 0, e = Uses.Users.size(); i != e; ++i) UsersToProcess.push_back(std::make_pair(Uses.Users[i].Offset, BasedUser(Uses.Users[i].User, Uses.Users[i].OperandValToReplace, ZeroBase))); // First pass, figure out what we can represent in the immediate fields of // instructions. If we can represent anything there, move it to the imm // fields of the BasedUsers. for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i) { bool isAddress = isa(UsersToProcess[i].second.Inst) || isa(UsersToProcess[i].second.Inst); UsersToProcess[i].second.Imm = GetImmediateValues(UsersToProcess[i].first, isAddress); UsersToProcess[i].first = SCEV::getMinusSCEV(UsersToProcess[i].first, UsersToProcess[i].second.Imm); DEBUG(std::cerr << "BASE: " << *UsersToProcess[i].first); DEBUG(UsersToProcess[i].second.dump()); } SCEVExpander Rewriter(*SE, *LI); BasicBlock *Preheader = L->getLoopPreheader(); Instruction *PreInsertPt = Preheader->getTerminator(); Instruction *PhiInsertBefore = L->getHeader()->begin(); assert(isa(PhiInsertBefore) && "How could this loop have IV's without any phis?"); PHINode *SomeLoopPHI = cast(PhiInsertBefore); assert(SomeLoopPHI->getNumIncomingValues() == 2 && "This loop isn't canonicalized right"); BasicBlock *LatchBlock = SomeLoopPHI->getIncomingBlock(SomeLoopPHI->getIncomingBlock(0) == Preheader); DEBUG(std::cerr << "INSERTING IVs of STRIDE " << *Stride << ":\n"); // FIXME: This loop needs increasing levels of intelligence. // STAGE 0: just emit everything as its own base. // STAGE 1: factor out common vars from bases, and try and push resulting // constants into Imm field. <-- We are here // STAGE 2: factor out large constants to try and make more constants // acceptable for target loads and stores. // Sort by the base value, so that all IVs with identical bases are next to // each other. std::sort(UsersToProcess.begin(), UsersToProcess.end()); while (!UsersToProcess.empty()) { SCEVHandle Base = UsersToProcess.front().first; DEBUG(std::cerr << " INSERTING PHI with BASE = " << *Base << ":\n"); // Create a new Phi for this base, and stick it in the loop header. const Type *ReplacedTy = Base->getType(); PHINode *NewPHI = new PHINode(ReplacedTy, "iv.", PhiInsertBefore); // Emit the initial base value into the loop preheader, and add it to the // Phi node. Value *BaseV = Rewriter.expandCodeFor(Base, PreInsertPt, ReplacedTy); NewPHI->addIncoming(BaseV, Preheader); // Emit the increment of the base value before the terminator of the loop // latch block, and add it to the Phi node. SCEVHandle Inc = SCEVAddExpr::get(SCEVUnknown::get(NewPHI), SCEVUnknown::get(Stride)); Value *IncV = Rewriter.expandCodeFor(Inc, LatchBlock->getTerminator(), ReplacedTy); IncV->setName(NewPHI->getName()+".inc"); NewPHI->addIncoming(IncV, LatchBlock); // Emit the code to add the immediate offset to the Phi value, just before // the instructions that we identified as using this stride and base. while (!UsersToProcess.empty() && UsersToProcess.front().first == Base) { BasedUser &User = UsersToProcess.front().second; // Clear the SCEVExpander's expression map so that we are guaranteed // to have the code emitted where we expect it. Rewriter.clear(); SCEVHandle NewValSCEV = SCEVAddExpr::get(SCEVUnknown::get(NewPHI), User.Imm); Value *Replaced = User.OperandValToReplace; Value *newVal = Rewriter.expandCodeFor(NewValSCEV, User.Inst, Replaced->getType()); // Replace the use of the operand Value with the new Phi we just created. User.Inst->replaceUsesOfWith(Replaced, newVal); DEBUG(std::cerr << " CHANGED: IMM =" << *User.Imm << " Inst = " << *User.Inst); // Mark old value we replaced as possibly dead, so that it is elminated // if we just replaced the last use of that value. DeadInsts.insert(cast(Replaced)); UsersToProcess.erase(UsersToProcess.begin()); ++NumReduced; } // TODO: Next, find out which base index is the most common, pull it out. } // IMPORTANT TODO: Figure out how to partition the IV's with this stride, but // different starting values, into different PHIs. // BEFORE writing this, it's probably useful to handle GEP's. // NOTE: pull all constants together, for REG+IMM addressing, include &GV in // 'IMM' if the target supports it. } void LoopStrengthReduce::runOnLoop(Loop *L) { // First step, transform all loops nesting inside of this loop. for (LoopInfo::iterator I = L->begin(), E = L->end(); I != E; ++I) runOnLoop(*I); // Next, find all uses of induction variables in this loop, and catagorize // them by stride. Start by finding all of the PHI nodes in the header for // this loop. If they are induction variables, inspect their uses. for (BasicBlock::iterator I = L->getHeader()->begin(); isa(I); ++I) AddUsersIfInteresting(I, L); // If we have nothing to do, return. //if (IVUsesByStride.empty()) return; // FIXME: We can widen subreg IV's here for RISC targets. e.g. instead of // doing computation in byte values, promote to 32-bit values if safe. // FIXME: Attempt to reuse values across multiple IV's. In particular, we // could have something like "for(i) { foo(i*8); bar(i*16) }", which should be // codegened as "for (j = 0;; j+=8) { foo(j); bar(j+j); }" on X86/PPC. Need // to be careful that IV's are all the same type. Only works for intptr_t // indvars. // If we only have one stride, we can more aggressively eliminate some things. bool HasOneStride = IVUsesByStride.size() == 1; for (std::map::iterator SI = IVUsesByStride.begin(), E = IVUsesByStride.end(); SI != E; ++SI) StrengthReduceStridedIVUsers(SI->first, SI->second, L, HasOneStride); // Clean up after ourselves if (!DeadInsts.empty()) { DeleteTriviallyDeadInstructions(DeadInsts); BasicBlock::iterator I = L->getHeader()->begin(); PHINode *PN; while ((PN = dyn_cast(I))) { ++I; // Preincrement iterator to avoid invalidating it when deleting PN. // At this point, we know that we have killed one or more GEP instructions. // It is worth checking to see if the cann indvar is also dead, so that we // can remove it as well. The requirements for the cann indvar to be // considered dead are: // 1. the cann indvar has one use // 2. the use is an add instruction // 3. the add has one use // 4. the add is used by the cann indvar // If all four cases above are true, then we can remove both the add and // the cann indvar. // FIXME: this needs to eliminate an induction variable even if it's being // compared against some value to decide loop termination. if (PN->hasOneUse()) { BinaryOperator *BO = dyn_cast(*(PN->use_begin())); if (BO && BO->hasOneUse()) { if (PN == *(BO->use_begin())) { DeadInsts.insert(BO); // Break the cycle, then delete the PHI. PN->replaceAllUsesWith(UndefValue::get(PN->getType())); SE->deleteInstructionFromRecords(PN); PN->eraseFromParent(); } } } } DeleteTriviallyDeadInstructions(DeadInsts); } IVUsesByStride.clear(); CastedBasePointers.clear(); return; }