//===-- MachineFunction.cpp -----------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Collect native machine code information for a function. This allows // target-specific information about the generated code to be stored with each // function. // //===----------------------------------------------------------------------===// #include "llvm/DerivedTypes.h" #include "llvm/Function.h" #include "llvm/Instructions.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Config/config.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineJumpTableInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/Passes.h" #include "llvm/Target/TargetData.h" #include "llvm/Target/TargetLowering.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetFrameInfo.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/GraphWriter.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; namespace { struct VISIBILITY_HIDDEN Printer : public MachineFunctionPass { static char ID; raw_ostream &OS; const std::string Banner; Printer(raw_ostream &os, const std::string &banner) : MachineFunctionPass(&ID), OS(os), Banner(banner) {} const char *getPassName() const { return "MachineFunction Printer"; } virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); MachineFunctionPass::getAnalysisUsage(AU); } bool runOnMachineFunction(MachineFunction &MF) { OS << Banner; MF.print(OS); return false; } }; char Printer::ID = 0; } /// Returns a newly-created MachineFunction Printer pass. The default banner is /// empty. /// FunctionPass *llvm::createMachineFunctionPrinterPass(raw_ostream &OS, const std::string &Banner){ return new Printer(OS, Banner); } //===---------------------------------------------------------------------===// // MachineFunction implementation //===---------------------------------------------------------------------===// void ilist_traits::deleteNode(MachineBasicBlock *MBB) { MBB->getParent()->DeleteMachineBasicBlock(MBB); } MachineFunction::MachineFunction(Function *F, const TargetMachine &TM) : Fn(F), Target(TM) { if (TM.getRegisterInfo()) RegInfo = new (Allocator.Allocate()) MachineRegisterInfo(*TM.getRegisterInfo()); else RegInfo = 0; MFInfo = 0; FrameInfo = new (Allocator.Allocate()) MachineFrameInfo(*TM.getFrameInfo()); ConstantPool = new (Allocator.Allocate()) MachineConstantPool(TM.getTargetData()); Alignment = TM.getTargetLowering()->getFunctionAlignment(F); // Set up jump table. const TargetData &TD = *TM.getTargetData(); bool IsPic = TM.getRelocationModel() == Reloc::PIC_; unsigned EntrySize = IsPic ? 4 : TD.getPointerSize(); unsigned TyAlignment = IsPic ? TD.getABITypeAlignment(Type::getInt32Ty(F->getContext())) : TD.getPointerABIAlignment(); JumpTableInfo = new (Allocator.Allocate()) MachineJumpTableInfo(EntrySize, TyAlignment); } MachineFunction::~MachineFunction() { BasicBlocks.clear(); InstructionRecycler.clear(Allocator); BasicBlockRecycler.clear(Allocator); if (RegInfo) { RegInfo->~MachineRegisterInfo(); Allocator.Deallocate(RegInfo); } if (MFInfo) { MFInfo->~MachineFunctionInfo(); Allocator.Deallocate(MFInfo); } FrameInfo->~MachineFrameInfo(); Allocator.Deallocate(FrameInfo); ConstantPool->~MachineConstantPool(); Allocator.Deallocate(ConstantPool); JumpTableInfo->~MachineJumpTableInfo(); Allocator.Deallocate(JumpTableInfo); } /// RenumberBlocks - This discards all of the MachineBasicBlock numbers and /// recomputes them. This guarantees that the MBB numbers are sequential, /// dense, and match the ordering of the blocks within the function. If a /// specific MachineBasicBlock is specified, only that block and those after /// it are renumbered. void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) { if (empty()) { MBBNumbering.clear(); return; } MachineFunction::iterator MBBI, E = end(); if (MBB == 0) MBBI = begin(); else MBBI = MBB; // Figure out the block number this should have. unsigned BlockNo = 0; if (MBBI != begin()) BlockNo = prior(MBBI)->getNumber()+1; for (; MBBI != E; ++MBBI, ++BlockNo) { if (MBBI->getNumber() != (int)BlockNo) { // Remove use of the old number. if (MBBI->getNumber() != -1) { assert(MBBNumbering[MBBI->getNumber()] == &*MBBI && "MBB number mismatch!"); MBBNumbering[MBBI->getNumber()] = 0; } // If BlockNo is already taken, set that block's number to -1. if (MBBNumbering[BlockNo]) MBBNumbering[BlockNo]->setNumber(-1); MBBNumbering[BlockNo] = MBBI; MBBI->setNumber(BlockNo); } } // Okay, all the blocks are renumbered. If we have compactified the block // numbering, shrink MBBNumbering now. assert(BlockNo <= MBBNumbering.size() && "Mismatch!"); MBBNumbering.resize(BlockNo); } /// CreateMachineInstr - Allocate a new MachineInstr. Use this instead /// of `new MachineInstr'. /// MachineInstr * MachineFunction::CreateMachineInstr(const TargetInstrDesc &TID, DebugLoc DL, bool NoImp) { return new (InstructionRecycler.Allocate(Allocator)) MachineInstr(TID, DL, NoImp); } /// CloneMachineInstr - Create a new MachineInstr which is a copy of the /// 'Orig' instruction, identical in all ways except the the instruction /// has no parent, prev, or next. /// MachineInstr * MachineFunction::CloneMachineInstr(const MachineInstr *Orig) { return new (InstructionRecycler.Allocate(Allocator)) MachineInstr(*this, *Orig); } /// DeleteMachineInstr - Delete the given MachineInstr. /// void MachineFunction::DeleteMachineInstr(MachineInstr *MI) { // Clear the instructions memoperands. This must be done manually because // the instruction's parent pointer is now null, so it can't properly // deallocate them on its own. MI->clearMemOperands(*this); MI->~MachineInstr(); InstructionRecycler.Deallocate(Allocator, MI); } /// CreateMachineBasicBlock - Allocate a new MachineBasicBlock. Use this /// instead of `new MachineBasicBlock'. /// MachineBasicBlock * MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) { return new (BasicBlockRecycler.Allocate(Allocator)) MachineBasicBlock(*this, bb); } /// DeleteMachineBasicBlock - Delete the given MachineBasicBlock. /// void MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) { assert(MBB->getParent() == this && "MBB parent mismatch!"); MBB->~MachineBasicBlock(); BasicBlockRecycler.Deallocate(Allocator, MBB); } void MachineFunction::dump() const { print(errs()); } void MachineFunction::print(raw_ostream &OS) const { OS << "# Machine code for " << Fn->getName() << "():\n"; // Print Frame Information FrameInfo->print(*this, OS); // Print JumpTable Information JumpTableInfo->print(OS); // Print Constant Pool ConstantPool->print(OS); const TargetRegisterInfo *TRI = getTarget().getRegisterInfo(); if (RegInfo && !RegInfo->livein_empty()) { OS << "Live Ins:"; for (MachineRegisterInfo::livein_iterator I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) { if (TRI) OS << " " << TRI->getName(I->first); else OS << " Reg #" << I->first; if (I->second) OS << " in VR#" << I->second << ' '; } OS << '\n'; } if (RegInfo && !RegInfo->liveout_empty()) { OS << "Live Outs:"; for (MachineRegisterInfo::liveout_iterator I = RegInfo->liveout_begin(), E = RegInfo->liveout_end(); I != E; ++I) if (TRI) OS << ' ' << TRI->getName(*I); else OS << " Reg #" << *I; OS << '\n'; } for (const_iterator BB = begin(), E = end(); BB != E; ++BB) BB->print(OS); OS << "\n# End machine code for " << Fn->getName() << "().\n\n"; } namespace llvm { template<> struct DOTGraphTraits : public DefaultDOTGraphTraits { static std::string getGraphName(const MachineFunction *F) { return "CFG for '" + F->getFunction()->getNameStr() + "' function"; } static std::string getNodeLabel(const MachineBasicBlock *Node, const MachineFunction *Graph, bool ShortNames) { if (ShortNames && Node->getBasicBlock() && !Node->getBasicBlock()->getName().empty()) return Node->getBasicBlock()->getNameStr() + ":"; std::string OutStr; { raw_string_ostream OSS(OutStr); if (ShortNames) OSS << Node->getNumber() << ':'; else Node->print(OSS); } if (OutStr[0] == '\n') OutStr.erase(OutStr.begin()); // Process string output to make it nicer... for (unsigned i = 0; i != OutStr.length(); ++i) if (OutStr[i] == '\n') { // Left justify OutStr[i] = '\\'; OutStr.insert(OutStr.begin()+i+1, 'l'); } return OutStr; } }; } void MachineFunction::viewCFG() const { #ifndef NDEBUG ViewGraph(this, "mf" + getFunction()->getNameStr()); #else errs() << "SelectionDAG::viewGraph is only available in debug builds on " << "systems with Graphviz or gv!\n"; #endif // NDEBUG } void MachineFunction::viewCFGOnly() const { #ifndef NDEBUG ViewGraph(this, "mf" + getFunction()->getNameStr(), true); #else errs() << "SelectionDAG::viewGraph is only available in debug builds on " << "systems with Graphviz or gv!\n"; #endif // NDEBUG } /// addLiveIn - Add the specified physical register as a live-in value and /// create a corresponding virtual register for it. unsigned MachineFunction::addLiveIn(unsigned PReg, const TargetRegisterClass *RC) { assert(RC->contains(PReg) && "Not the correct regclass!"); unsigned VReg = getRegInfo().createVirtualRegister(RC); getRegInfo().addLiveIn(PReg, VReg); return VReg; } /// getOrCreateDebugLocID - Look up the DebugLocTuple index with the given /// source file, line, and column. If none currently exists, create a new /// DebugLocTuple, and insert it into the DebugIdMap. unsigned MachineFunction::getOrCreateDebugLocID(MDNode *CompileUnit, unsigned Line, unsigned Col) { DebugLocTuple Tuple(CompileUnit, Line, Col); DenseMap::iterator II = DebugLocInfo.DebugIdMap.find(Tuple); if (II != DebugLocInfo.DebugIdMap.end()) return II->second; // Add a new tuple. unsigned Id = DebugLocInfo.DebugLocations.size(); DebugLocInfo.DebugLocations.push_back(Tuple); DebugLocInfo.DebugIdMap[Tuple] = Id; return Id; } /// getDebugLocTuple - Get the DebugLocTuple for a given DebugLoc object. DebugLocTuple MachineFunction::getDebugLocTuple(DebugLoc DL) const { unsigned Idx = DL.getIndex(); assert(Idx < DebugLocInfo.DebugLocations.size() && "Invalid index into debug locations!"); return DebugLocInfo.DebugLocations[Idx]; } //===----------------------------------------------------------------------===// // MachineFrameInfo implementation //===----------------------------------------------------------------------===// /// CreateFixedObject - Create a new object at a fixed location on the stack. /// All fixed objects should be created before other objects are created for /// efficiency. By default, fixed objects are immutable. This returns an /// index with a negative value. /// int MachineFrameInfo::CreateFixedObject(uint64_t Size, int64_t SPOffset, bool Immutable) { assert(Size != 0 && "Cannot allocate zero size fixed stack objects!"); Objects.insert(Objects.begin(), StackObject(Size, 1, SPOffset, Immutable)); return -++NumFixedObjects; } BitVector MachineFrameInfo::getPristineRegs(const MachineBasicBlock *MBB) const { assert(MBB && "MBB must be valid"); const MachineFunction *MF = MBB->getParent(); assert(MF && "MBB must be part of a MachineFunction"); const TargetMachine &TM = MF->getTarget(); const TargetRegisterInfo *TRI = TM.getRegisterInfo(); BitVector BV(TRI->getNumRegs()); // Before CSI is calculated, no registers are considered pristine. They can be // freely used and PEI will make sure they are saved. if (!isCalleeSavedInfoValid()) return BV; for (const unsigned *CSR = TRI->getCalleeSavedRegs(MF); CSR && *CSR; ++CSR) BV.set(*CSR); // The entry MBB always has all CSRs pristine. if (MBB == &MF->front()) return BV; // On other MBBs the saved CSRs are not pristine. const std::vector &CSI = getCalleeSavedInfo(); for (std::vector::const_iterator I = CSI.begin(), E = CSI.end(); I != E; ++I) BV.reset(I->getReg()); return BV; } void MachineFrameInfo::print(const MachineFunction &MF, raw_ostream &OS) const{ const TargetFrameInfo *FI = MF.getTarget().getFrameInfo(); int ValOffset = (FI ? FI->getOffsetOfLocalArea() : 0); for (unsigned i = 0, e = Objects.size(); i != e; ++i) { const StackObject &SO = Objects[i]; OS << " : "; if (SO.Size == ~0ULL) { OS << "dead\n"; continue; } if (SO.Size == 0) OS << "variable sized"; else OS << "size is " << SO.Size << " byte" << (SO.Size != 1 ? "s," : ","); OS << " alignment is " << SO.Alignment << " byte" << (SO.Alignment != 1 ? "s," : ","); if (i < NumFixedObjects) OS << " fixed"; if (i < NumFixedObjects || SO.SPOffset != -1) { int64_t Off = SO.SPOffset - ValOffset; OS << " at location [SP"; if (Off > 0) OS << "+" << Off; else if (Off < 0) OS << Off; OS << "]"; } OS << "\n"; } if (HasVarSizedObjects) OS << " Stack frame contains variable sized objects\n"; } void MachineFrameInfo::dump(const MachineFunction &MF) const { print(MF, errs()); } //===----------------------------------------------------------------------===// // MachineJumpTableInfo implementation //===----------------------------------------------------------------------===// /// getJumpTableIndex - Create a new jump table entry in the jump table info /// or return an existing one. /// unsigned MachineJumpTableInfo::getJumpTableIndex( const std::vector &DestBBs) { assert(!DestBBs.empty() && "Cannot create an empty jump table!"); for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) if (JumpTables[i].MBBs == DestBBs) return i; JumpTables.push_back(MachineJumpTableEntry(DestBBs)); return JumpTables.size()-1; } /// ReplaceMBBInJumpTables - If Old is the target of any jump tables, update /// the jump tables to branch to New instead. bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old, MachineBasicBlock *New) { assert(Old != New && "Not making a change?"); bool MadeChange = false; for (size_t i = 0, e = JumpTables.size(); i != e; ++i) { MachineJumpTableEntry &JTE = JumpTables[i]; for (size_t j = 0, e = JTE.MBBs.size(); j != e; ++j) if (JTE.MBBs[j] == Old) { JTE.MBBs[j] = New; MadeChange = true; } } return MadeChange; } void MachineJumpTableInfo::print(raw_ostream &OS) const { // FIXME: this is lame, maybe we could print out the MBB numbers or something // like {1, 2, 4, 5, 3, 0} for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) { OS << " has " << JumpTables[i].MBBs.size() << " entries\n"; } } void MachineJumpTableInfo::dump() const { print(errs()); } //===----------------------------------------------------------------------===// // MachineConstantPool implementation //===----------------------------------------------------------------------===// const Type *MachineConstantPoolEntry::getType() const { if (isMachineConstantPoolEntry()) return Val.MachineCPVal->getType(); return Val.ConstVal->getType(); } unsigned MachineConstantPoolEntry::getRelocationInfo() const { if (isMachineConstantPoolEntry()) return Val.MachineCPVal->getRelocationInfo(); return Val.ConstVal->getRelocationInfo(); } MachineConstantPool::~MachineConstantPool() { for (unsigned i = 0, e = Constants.size(); i != e; ++i) if (Constants[i].isMachineConstantPoolEntry()) delete Constants[i].Val.MachineCPVal; } /// getConstantPoolIndex - Create a new entry in the constant pool or return /// an existing one. User must specify the log2 of the minimum required /// alignment for the object. /// unsigned MachineConstantPool::getConstantPoolIndex(Constant *C, unsigned Alignment) { assert(Alignment && "Alignment must be specified!"); if (Alignment > PoolAlignment) PoolAlignment = Alignment; // Check to see if we already have this constant. // // FIXME, this could be made much more efficient for large constant pools. for (unsigned i = 0, e = Constants.size(); i != e; ++i) if (Constants[i].Val.ConstVal == C && (Constants[i].getAlignment() & (Alignment - 1)) == 0) return i; Constants.push_back(MachineConstantPoolEntry(C, Alignment)); return Constants.size()-1; } unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V, unsigned Alignment) { assert(Alignment && "Alignment must be specified!"); if (Alignment > PoolAlignment) PoolAlignment = Alignment; // Check to see if we already have this constant. // // FIXME, this could be made much more efficient for large constant pools. int Idx = V->getExistingMachineCPValue(this, Alignment); if (Idx != -1) return (unsigned)Idx; Constants.push_back(MachineConstantPoolEntry(V, Alignment)); return Constants.size()-1; } void MachineConstantPool::print(raw_ostream &OS) const { for (unsigned i = 0, e = Constants.size(); i != e; ++i) { OS << " is"; if (Constants[i].isMachineConstantPoolEntry()) Constants[i].Val.MachineCPVal->print(OS); else OS << *(Value*)Constants[i].Val.ConstVal; OS << " , alignment=" << Constants[i].getAlignment(); OS << "\n"; } } void MachineConstantPool::dump() const { print(errs()); }