//===-- PoolAllocate.cpp - Pool Allocation Pass ---------------------------===// // // This transform changes programs so that disjoint data structures are // allocated out of different pools of memory, increasing locality and shrinking // pointer size. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/IPO/PoolAllocate.h" #include "llvm/Transforms/CloneFunction.h" #include "llvm/Analysis/DataStructure.h" #include "llvm/Analysis/DataStructureGraph.h" #include "llvm/Pass.h" #include "llvm/Module.h" #include "llvm/Function.h" #include "llvm/iMemory.h" #include "llvm/iTerminators.h" #include "llvm/iOther.h" #include "llvm/ConstantVals.h" #include "llvm/Target/TargetData.h" #include "llvm/Support/InstVisitor.h" #include "Support/DepthFirstIterator.h" #include "Support/STLExtras.h" #include // FIXME: This is dependant on the sparc backend layout conventions!! static TargetData TargetData("test"); namespace { // ScalarInfo - Information about an LLVM value that we know points to some // datastructure we are processing. // struct ScalarInfo { Value *Val; // Scalar value in Current Function DSNode *Node; // DataStructure node it points to Value *PoolHandle; // PoolTy* LLVM value ScalarInfo(Value *V, DSNode *N, Value *PH) : Val(V), Node(N), PoolHandle(PH) { assert(V && N && PH && "Null value passed to ScalarInfo ctor!"); } }; // CallArgInfo - Information on one operand for a call that got expanded. struct CallArgInfo { int ArgNo; // Call argument number this corresponds to DSNode *Node; // The graph node for the pool Value *PoolHandle; // The LLVM value that is the pool pointer CallArgInfo(int Arg, DSNode *N, Value *PH) : ArgNo(Arg), Node(N), PoolHandle(PH) { assert(Arg >= -1 && N && PH && "Illegal values to CallArgInfo ctor!"); } // operator< when sorting, sort by argument number. bool operator<(const CallArgInfo &CAI) const { return ArgNo < CAI.ArgNo; } }; // TransformFunctionInfo - Information about how a function eeds to be // transformed. // struct TransformFunctionInfo { // ArgInfo - Maintain information about the arguments that need to be // processed. Each pair corresponds to an argument (whose number is the // first element) that needs to have a pool pointer (the second element) // passed into the transformed function with it. // // As a special case, "argument" number -1 corresponds to the return value. // vector ArgInfo; // Func - The function to be transformed... Function *Func; // The call instruction that is used to map CallArgInfo PoolHandle values // into the new function values. CallInst *Call; // default ctor... TransformFunctionInfo() : Func(0), Call(0) {} bool operator<(const TransformFunctionInfo &TFI) const { if (Func < TFI.Func) return true; if (Func > TFI.Func) return false; if (ArgInfo.size() < TFI.ArgInfo.size()) return true; if (ArgInfo.size() > TFI.ArgInfo.size()) return false; return ArgInfo < TFI.ArgInfo; } void finalizeConstruction() { // Sort the vector so that the return value is first, followed by the // argument records, in order. Note that this must be a stable sort so // that the entries with the same sorting criteria (ie they are multiple // pool entries for the same argument) are kept in depth first order. stable_sort(ArgInfo.begin(), ArgInfo.end()); } }; // Define the pass class that we implement... class PoolAllocate : public Pass { // PoolTy - The type of a scalar value that contains a pool pointer. PointerType *PoolTy; public: PoolAllocate() { // Initialize the PoolTy instance variable, since the type never changes. vector PoolElements; PoolElements.push_back(PointerType::get(Type::SByteTy)); PoolElements.push_back(Type::UIntTy); PoolTy = PointerType::get(StructType::get(PoolElements)); // PoolTy = { sbyte*, uint }* CurModule = 0; DS = 0; PoolInit = PoolDestroy = PoolAlloc = PoolFree = 0; } bool run(Module *M); // getAnalysisUsageInfo - This function requires data structure information // to be able to see what is pool allocatable. // virtual void getAnalysisUsageInfo(Pass::AnalysisSet &Required, Pass::AnalysisSet &,Pass::AnalysisSet &) { Required.push_back(DataStructure::ID); } public: // CurModule - The module being processed. Module *CurModule; // DS - The data structure graph for the module being processed. DataStructure *DS; // Prototypes that we add to support pool allocation... Function *PoolInit, *PoolDestroy, *PoolAlloc, *PoolFree; // The map of already transformed functions... note that the keys of this // map do not have meaningful values for 'Call' or the 'PoolHandle' elements // of the ArgInfo elements. // map TransformedFunctions; // getTransformedFunction - Get a transformed function, or return null if // the function specified hasn't been transformed yet. // Function *getTransformedFunction(TransformFunctionInfo &TFI) const { map::const_iterator I = TransformedFunctions.find(TFI); if (I != TransformedFunctions.end()) return I->second; return 0; } // addPoolPrototypes - Add prototypes for the pool methods to the specified // module and update the Pool* instance variables to point to them. // void addPoolPrototypes(Module *M); // CreatePools - Insert instructions into the function we are processing to // create all of the memory pool objects themselves. This also inserts // destruction code. Add an alloca for each pool that is allocated to the // PoolDescriptors map. // void CreatePools(Function *F, const vector &Allocs, map &PoolDescriptors); // processFunction - Convert a function to use pool allocation where // available. // bool processFunction(Function *F); // transformFunctionBody - This transforms the instruction in 'F' to use the // pools specified in PoolDescriptors when modifying data structure nodes // specified in the PoolDescriptors map. IPFGraph is the closed data // structure graph for F, of which the PoolDescriptor nodes come from. // void transformFunctionBody(Function *F, FunctionDSGraph &IPFGraph, map &PoolDescriptors); // transformFunction - Transform the specified function the specified way. // It we have already transformed that function that way, don't do anything. // The nodes in the TransformFunctionInfo come out of callers data structure // graph. // void transformFunction(TransformFunctionInfo &TFI, FunctionDSGraph &CallerIPGraph); }; } // isNotPoolableAlloc - This is a predicate that returns true if the specified // allocation node in a data structure graph is eligable for pool allocation. // static bool isNotPoolableAlloc(const AllocDSNode *DS) { if (DS->isAllocaNode()) return true; // Do not pool allocate alloca's. MallocInst *MI = cast(DS->getAllocation()); if (MI->isArrayAllocation() && !isa(MI->getArraySize())) return true; // Do not allow variable size allocations... return false; } // processFunction - Convert a function to use pool allocation where // available. // bool PoolAllocate::processFunction(Function *F) { // Get the closed datastructure graph for the current function... if there are // any allocations in this graph that are not escaping, we need to pool // allocate them here! // FunctionDSGraph &IPGraph = DS->getClosedDSGraph(F); // Get all of the allocations that do not escape the current function. Since // they are still live (they exist in the graph at all), this means we must // have scalar references to these nodes, but the scalars are never returned. // vector Allocs; IPGraph.getNonEscapingAllocations(Allocs); // Filter out allocations that we cannot handle. Currently, this includes // variable sized array allocations and alloca's (which we do not want to // pool allocate) // Allocs.erase(remove_if(Allocs.begin(), Allocs.end(), isNotPoolableAlloc), Allocs.end()); if (Allocs.empty()) return false; // Nothing to do. // Insert instructions into the function we are processing to create all of // the memory pool objects themselves. This also inserts destruction code. // This fills in the PoolDescriptors map to associate the alloc node with the // allocation of the memory pool corresponding to it. // map PoolDescriptors; CreatePools(F, Allocs, PoolDescriptors); // Now we need to figure out what called methods we need to transform, and // how. To do this, we look at all of the scalars, seeing which functions are // either used as a scalar value (so they return a data structure), or are // passed one of our scalar values. // transformFunctionBody(F, IPGraph, PoolDescriptors); return true; } class FunctionBodyTransformer : public InstVisitor { PoolAllocate &PoolAllocator; vector &Scalars; map &CallMap; const ScalarInfo &getScalar(const Value *V) { for (unsigned i = 0, e = Scalars.size(); i != e; ++i) if (Scalars[i].Val == V) return Scalars[i]; assert(0 && "Scalar not found in getScalar!"); abort(); return Scalars[0]; } // updateScalars - Map the scalars array entries that look like 'From' to look // like 'To'. // void updateScalars(Value *From, Value *To) { for (unsigned i = 0, e = Scalars.size(); i != e; ++i) if (Scalars[i].Val == From) Scalars[i].Val = To; } public: FunctionBodyTransformer(PoolAllocate &PA, vector &S, map &C) : PoolAllocator(PA), Scalars(S), CallMap(C) {} void visitMemAccessInst(MemAccessInst *MAI) { // Don't do anything to load, store, or GEP yet... } // Convert a malloc instruction into a call to poolalloc void visitMallocInst(MallocInst *I) { const ScalarInfo &SC = getScalar(I); BasicBlock *BB = I->getParent(); BasicBlock::iterator MI = find(BB->begin(), BB->end(), I); BB->getInstList().remove(MI); // Remove the Malloc instruction from the BB // Create a new call to poolalloc before the malloc instruction vector Args; Args.push_back(SC.PoolHandle); CallInst *Call = new CallInst(PoolAllocator.PoolAlloc, Args, I->getName()); MI = BB->getInstList().insert(MI, Call)+1; // If the type desired is not void*, cast it now... Value *Ptr = Call; if (Call->getType() != I->getType()) { CastInst *CI = new CastInst(Ptr, I->getType(), I->getName()); BB->getInstList().insert(MI, CI); Ptr = CI; } // Change everything that used the malloc to now use the pool alloc... I->replaceAllUsesWith(Ptr); // Update the scalars array... updateScalars(I, Ptr); // Delete the instruction now. delete I; } // Convert the free instruction into a call to poolfree void visitFreeInst(FreeInst *I) { Value *Ptr = I->getOperand(0); const ScalarInfo &SC = getScalar(Ptr); BasicBlock *BB = I->getParent(); BasicBlock::iterator FI = find(BB->begin(), BB->end(), I); // If the value is not an sbyte*, convert it now! if (Ptr->getType() != PointerType::get(Type::SByteTy)) { CastInst *CI = new CastInst(Ptr, PointerType::get(Type::SByteTy), Ptr->getName()); FI = BB->getInstList().insert(FI, CI)+1; Ptr = CI; } // Create a new call to poolfree before the free instruction vector Args; Args.push_back(SC.PoolHandle); Args.push_back(Ptr); CallInst *Call = new CallInst(PoolAllocator.PoolFree, Args); FI = BB->getInstList().insert(FI, Call)+1; // Remove the old free instruction... delete BB->getInstList().remove(FI); } // visitCallInst - Create a new call instruction with the extra arguments for // all of the memory pools that the call needs. // void visitCallInst(CallInst *I) { TransformFunctionInfo &TI = CallMap[I]; BasicBlock *BB = I->getParent(); BasicBlock::iterator CI = find(BB->begin(), BB->end(), I); BB->getInstList().remove(CI); // Remove the old call instruction // Start with all of the old arguments... vector Args(I->op_begin()+1, I->op_end()); // Add all of the pool arguments... for (unsigned i = 0, e = TI.ArgInfo.size(); i != e; ++i) Args.push_back(TI.ArgInfo[i].PoolHandle); Function *NF = PoolAllocator.getTransformedFunction(TI); CallInst *NewCall = new CallInst(NF, Args, I->getName()); BB->getInstList().insert(CI, NewCall); // Change everything that used the malloc to now use the pool alloc... if (I->getType() != Type::VoidTy) { I->replaceAllUsesWith(NewCall); // Update the scalars array... updateScalars(I, NewCall); } delete I; // Delete the old call instruction now... } void visitPHINode(PHINode *PN) { // Handle PHI Node } void visitInstruction(Instruction *I) { cerr << "Unknown instruction to FunctionBodyTransformer:\n"; I->dump(); } }; static void addCallInfo(TransformFunctionInfo &TFI, CallInst *CI, int Arg, DSNode *GraphNode, map &PoolDescriptors) { // For now, add the entire graph that is pointed to by the call argument. // This graph can and should be pruned to only what the function itself will // use, because often this will be a dramatically smaller subset of what we // are providing. // for (df_iterator I = df_begin(GraphNode), E = df_end(GraphNode); I != E; ++I) { TFI.ArgInfo.push_back(CallArgInfo(Arg, *I, PoolDescriptors[*I])); } assert(CI->getCalledFunction() && "Cannot handle indirect calls yet!"); assert(TFI.Func == 0 || TFI.Func == CI->getCalledFunction() && "Function call record should always call the same function!"); assert(TFI.Call == 0 || TFI.Call == CI && "Call element already filled in with different value!"); TFI.Func = CI->getCalledFunction(); TFI.Call = CI; } // transformFunctionBody - This transforms the instruction in 'F' to use the // pools specified in PoolDescriptors when modifying data structure nodes // specified in the PoolDescriptors map. Specifically, scalar values specified // in the Scalars vector must be remapped. IPFGraph is the closed data // structure graph for F, of which the PoolDescriptor nodes come from. // void PoolAllocate::transformFunctionBody(Function *F, FunctionDSGraph &IPFGraph, map &PoolDescriptors) { // Loop through the value map looking for scalars that refer to nonescaping // allocations. Add them to the Scalars vector. Note that we may have // multiple entries in the Scalars vector for each value if it points to more // than one object. // map &ValMap = IPFGraph.getValueMap(); vector Scalars; for (map::iterator I = ValMap.begin(), E = ValMap.end(); I != E; ++I) { const PointerValSet &PVS = I->second; // Set of things pointed to by scalar assert(PVS.size() == 1 && "Only handle scalars that point to one thing so far!"); // Check to see if the scalar points to a data structure node... for (unsigned i = 0, e = PVS.size(); i != e; ++i) { assert(PVS[i].Index == 0 && "Nonzero not handled yet!"); // If the allocation is in the nonescaping set... map::iterator AI = PoolDescriptors.find(PVS[i].Node); if (AI != PoolDescriptors.end()) // Add it to the list of scalars Scalars.push_back(ScalarInfo(I->first, PVS[i].Node, AI->second)); } } cerr << "In '" << F->getName() << "': Found the following values that point to poolable nodes:\n"; for (unsigned i = 0, e = Scalars.size(); i != e; ++i) Scalars[i].Val->dump(); // CallMap - Contain an entry for every call instruction that needs to be // transformed. Each entry in the map contains information about what we need // to do to each call site to change it to work. // map CallMap; // Now we need to figure out what called methods we need to transform, and // how. To do this, we look at all of the scalars, seeing which functions are // either used as a scalar value (so they return a data structure), or are // passed one of our scalar values. // for (unsigned i = 0, e = Scalars.size(); i != e; ++i) { Value *ScalarVal = Scalars[i].Val; // Check to see if the scalar _IS_ a call... if (CallInst *CI = dyn_cast(ScalarVal)) // If so, add information about the pool it will be returning... addCallInfo(CallMap[CI], CI, -1, Scalars[i].Node, PoolDescriptors); // Check to see if the scalar is an operand to a call... for (Value::use_iterator UI = ScalarVal->use_begin(), UE = ScalarVal->use_end(); UI != UE; ++UI) { if (CallInst *CI = dyn_cast(*UI)) { // Find out which operand this is to the call instruction... User::op_iterator OI = find(CI->op_begin(), CI->op_end(), ScalarVal); assert(OI != CI->op_end() && "Call on use list but not an operand!?"); assert(OI != CI->op_begin() && "Pointer operand is call destination?"); // FIXME: This is broken if the same pointer is passed to a call more // than once! It will get multiple entries for the first pointer. // Add the operand number and pool handle to the call table... addCallInfo(CallMap[CI], CI, OI-CI->op_begin()-1, Scalars[i].Node, PoolDescriptors); } } } // Print out call map... for (map::iterator I = CallMap.begin(); I != CallMap.end(); ++I) { cerr << "\nFor call: "; I->first->dump(); I->second.finalizeConstruction(); cerr << I->second.Func->getName() << " must pass pool pointer for args #"; for (unsigned i = 0; i < I->second.ArgInfo.size(); ++i) cerr << I->second.ArgInfo[i].ArgNo << ", "; cerr << "\n"; } // Loop through all of the call nodes, recursively creating the new functions // that we want to call... This uses a map to prevent infinite recursion and // to avoid duplicating functions unneccesarily. // for (map::iterator I = CallMap.begin(), E = CallMap.end(); I != E; ++I) { // Make sure the entries are sorted. I->second.finalizeConstruction(); // Transform all of the functions we need, or at least ensure there is a // cached version available. transformFunction(I->second, IPFGraph); } // Now that all of the functions that we want to call are available, transform // the local method so that it uses the pools locally and passes them to the // functions that we just hacked up. // // First step, find the instructions to be modified. vector InstToFix; for (unsigned i = 0, e = Scalars.size(); i != e; ++i) { Value *ScalarVal = Scalars[i].Val; // Check to see if the scalar _IS_ an instruction. If so, it is involved. if (Instruction *Inst = dyn_cast(ScalarVal)) InstToFix.push_back(Inst); // All all of the instructions that use the scalar as an operand... for (Value::use_iterator UI = ScalarVal->use_begin(), UE = ScalarVal->use_end(); UI != UE; ++UI) InstToFix.push_back(dyn_cast(*UI)); } // Eliminate duplicates by sorting, then removing equal neighbors. sort(InstToFix.begin(), InstToFix.end()); InstToFix.erase(unique(InstToFix.begin(), InstToFix.end()), InstToFix.end()); // Use a FunctionBodyTransformer to transform all of the involved instructions FunctionBodyTransformer FBT(*this, Scalars, CallMap); for (unsigned i = 0, e = InstToFix.size(); i != e; ++i) FBT.visit(InstToFix[i]); // Since we have liberally hacked the function to pieces, we want to inform // the datastructure pass that its internal representation is out of date. // DS->invalidateFunction(F); } static void addNodeMapping(DSNode *SrcNode, const PointerValSet &PVS, map &NodeMapping) { for (unsigned i = 0, e = PVS.size(); i != e; ++i) if (NodeMapping[SrcNode].add(PVS[i])) { // Not in map yet? assert(PVS[i].Index == 0 && "Node indexing not supported yet!"); DSNode *DestNode = PVS[i].Node; // Loop over all of the outgoing links in the mapped graph for (unsigned l = 0, le = DestNode->getNumOutgoingLinks(); l != le; ++l) { PointerValSet &SrcSet = SrcNode->getOutgoingLink(l); const PointerValSet &DestSet = DestNode->getOutgoingLink(l); assert((!SrcSet.empty() || DestSet.empty()) && "Dest graph should be a proper subset of the src graph!"); // Add all of the node mappings now! for (unsigned si = 0, se = SrcSet.size(); si != se; ++si) { assert(SrcSet[si].Index == 0 && "Can't handle node offset!"); addNodeMapping(SrcSet[si].Node, DestSet, NodeMapping); } } } } // CalculateNodeMapping - There is a partial isomorphism between the graph // passed in and the graph that is actually used by the function. We need to // figure out what this mapping is so that we can transformFunctionBody the // instructions in the function itself. Note that every node in the graph that // we are interested in must be both in the local graph of the called function, // and in the local graph of the calling function. Because of this, we only // define the mapping for these nodes [conveniently these are the only nodes we // CAN define a mapping for...] // // The roots of the graph that we are transforming is rooted in the arguments // passed into the function from the caller. This is where we start our // mapping calculation. // // The NodeMapping calculated maps from the callers graph to the called graph. // static void CalculateNodeMapping(TransformFunctionInfo &TFI, FunctionDSGraph &CallerGraph, FunctionDSGraph &CalledGraph, map &NodeMapping) { int LastArgNo = -2; for (unsigned i = 0, e = TFI.ArgInfo.size(); i != e; ++i) { // Figure out what nodes in the called graph the TFI.ArgInfo[i].Node node // corresponds to... // // Only consider first node of sequence. Extra nodes may may be added // to the TFI if the data structure requires more nodes than just the // one the argument points to. We are only interested in the one the // argument points to though. // if (TFI.ArgInfo[i].ArgNo != LastArgNo) { if (TFI.ArgInfo[i].ArgNo == -1) { addNodeMapping(TFI.ArgInfo[i].Node, CalledGraph.getRetNodes(), NodeMapping); } else { // Figure out which node argument # ArgNo points to in the called graph. Value *Arg = TFI.Func->getArgumentList()[TFI.ArgInfo[i].ArgNo]; addNodeMapping(TFI.ArgInfo[i].Node, CalledGraph.getValueMap()[Arg], NodeMapping); } LastArgNo = TFI.ArgInfo[i].ArgNo; } } } // transformFunction - Transform the specified function the specified way. It // we have already transformed that function that way, don't do anything. The // nodes in the TransformFunctionInfo come out of callers data structure graph. // void PoolAllocate::transformFunction(TransformFunctionInfo &TFI, FunctionDSGraph &CallerIPGraph) { if (getTransformedFunction(TFI)) return; // Function xformation already done? const FunctionType *OldFuncType = TFI.Func->getFunctionType(); assert(!OldFuncType->isVarArg() && "Vararg functions not handled yet!"); // Build the type for the new function that we are transforming vector ArgTys; for (unsigned i = 0, e = OldFuncType->getNumParams(); i != e; ++i) ArgTys.push_back(OldFuncType->getParamType(i)); // Add one pool pointer for every argument that needs to be supplemented. ArgTys.insert(ArgTys.end(), TFI.ArgInfo.size(), PoolTy); // Build the new function type... const // FIXME when types are not const FunctionType *NewFuncType = FunctionType::get(OldFuncType->getReturnType(), ArgTys,OldFuncType->isVarArg()); // The new function is internal, because we know that only we can call it. // This also helps subsequent IP transformations to eliminate duplicated pool // pointers. [in the future when they are implemented]. // Function *NewFunc = new Function(NewFuncType, true, TFI.Func->getName()+".poolxform"); CurModule->getFunctionList().push_back(NewFunc); // Add the newly formed function to the TransformedFunctions table so that // infinite recursion does not occur! // TransformedFunctions[TFI] = NewFunc; // Add arguments to the function... starting with all of the old arguments vector ArgMap; for (unsigned i = 0, e = TFI.Func->getArgumentList().size(); i != e; ++i) { const FunctionArgument *OFA = TFI.Func->getArgumentList()[i]; FunctionArgument *NFA = new FunctionArgument(OFA->getType(),OFA->getName()); NewFunc->getArgumentList().push_back(NFA); ArgMap.push_back(NFA); // Keep track of the arguments } // Now add all of the arguments corresponding to pools passed in... for (unsigned i = 0, e = TFI.ArgInfo.size(); i != e; ++i) { string Name; if (TFI.ArgInfo[i].ArgNo == -1) Name = "retpool"; else Name = ArgMap[TFI.ArgInfo[i].ArgNo]->getName(); // Get the arg name FunctionArgument *NFA = new FunctionArgument(PoolTy, Name+".pool"); NewFunc->getArgumentList().push_back(NFA); } // Now clone the body of the old function into the new function... CloneFunctionInto(NewFunc, TFI.Func, ArgMap); // Okay, now we have a function that is identical to the old one, except that // it has extra arguments for the pools coming in. Now we have to get the // data structure graph for the function we are replacing, and figure out how // our graph nodes map to the graph nodes in the dest function. // FunctionDSGraph &DSGraph = DS->getClosedDSGraph(TFI.Func); // NodeMapping - Multimap from callers graph to called graph. // map NodeMapping; CalculateNodeMapping(TFI, CallerIPGraph, DSGraph, NodeMapping); // Print out the node mapping... cerr << "\nNode mapping for call of " << TFI.Func->getName() << "\n"; for (map::iterator I = NodeMapping.begin(); I != NodeMapping.end(); ++I) { cerr << "Map: "; I->first->print(cerr); cerr << "To: "; I->second.print(cerr); cerr << "\n"; } // Fill in the PoolDescriptor information for the transformed function so that // it can determine which value holds the pool descriptor for each data // structure node that it accesses. // map PoolDescriptors; cerr << "FIXME: PoolDescriptors not built!\n"; #if 0 // First add the incoming arguments to the scalar map... for (unsigned i = 0, e = TFI.ArgInfo.size(); i != e; ++i) if (TFI.ArgInfo[i].ArgNo == -1) { } else { Value *Arg = TFI.Func->getArgumentList()[TFI.ArgInfo[i].ArgNo]; // Find out what nodes the argument points to in the called functions data // structure graph... // PointerValSet &ArgNodes = DSGraph.getValueMap()[Arg]; // Add mappings for all of the arguments of this function... for (unsigned ArgVal = 0, AVE = ArgNodes.size(); ArgVal != AVE; ++ArgVal){ assert(ArgNodes[ArgVal].Index == 0 && "Arg that points into an object not handled yet!"); DSNode *ArgNode = ArgNodes[ArgVal].Node; Scalars.push_back(ScalarInfo(Arg, ArgNode, PoolDescriptors[ArgNode])); } ArgOffset++; } // Now that we know everything we need about the function, transform the body // now! // transformFunctionBody(TFI.Func, DSGraph, PoolDescriptors); cerr << "Function after transformation:\n"; TFI.Func->dump(); #endif } // CreatePools - Insert instructions into the function we are processing to // create all of the memory pool objects themselves. This also inserts // destruction code. Add an alloca for each pool that is allocated to the // PoolDescriptors vector. // void PoolAllocate::CreatePools(Function *F, const vector &Allocs, map &PoolDescriptors) { // FIXME: This should use an IP version of the UnifyAllExits pass! vector ReturnNodes; for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I) if (isa((*I)->getTerminator())) ReturnNodes.push_back(*I); // Create the code that goes in the entry and exit nodes for the method... vector EntryNodeInsts; for (unsigned i = 0, e = Allocs.size(); i != e; ++i) { // Add an allocation and a free for each pool... AllocaInst *PoolAlloc = new AllocaInst(PoolTy, 0, "pool"); EntryNodeInsts.push_back(PoolAlloc); PoolDescriptors[Allocs[i]] = PoolAlloc; // Keep track of pool allocas AllocationInst *AI = Allocs[i]->getAllocation(); // Initialize the pool. We need to know how big each allocation is. For // our purposes here, we assume we are allocating a scalar, or array of // constant size. // unsigned ElSize = TargetData.getTypeSize(AI->getAllocatedType()); ElSize *= cast(AI->getArraySize())->getValue(); vector Args; Args.push_back(PoolAlloc); // Pool to initialize Args.push_back(ConstantUInt::get(Type::UIntTy, ElSize)); EntryNodeInsts.push_back(new CallInst(PoolInit, Args)); // Destroy the pool... Args.pop_back(); for (unsigned EN = 0, ENE = ReturnNodes.size(); EN != ENE; ++EN) { Instruction *Destroy = new CallInst(PoolDestroy, Args); // Insert it before the return instruction... BasicBlock *RetNode = ReturnNodes[EN]; RetNode->getInstList().insert(RetNode->end()-1, Destroy); } } // Insert the entry node code into the entry block... F->getEntryNode()->getInstList().insert(F->getEntryNode()->begin()+1, EntryNodeInsts.begin(), EntryNodeInsts.end()); } // addPoolPrototypes - Add prototypes for the pool methods to the specified // module and update the Pool* instance variables to point to them. // void PoolAllocate::addPoolPrototypes(Module *M) { // Get PoolInit function... vector Args; Args.push_back(PoolTy); // Pool to initialize Args.push_back(Type::UIntTy); // Num bytes per element FunctionType *PoolInitTy = FunctionType::get(Type::VoidTy, Args, false); PoolInit = M->getOrInsertFunction("poolinit", PoolInitTy); // Get pooldestroy function... Args.pop_back(); // Only takes a pool... FunctionType *PoolDestroyTy = FunctionType::get(Type::VoidTy, Args, false); PoolDestroy = M->getOrInsertFunction("pooldestroy", PoolDestroyTy); const Type *PtrVoid = PointerType::get(Type::SByteTy); // Get the poolalloc function... FunctionType *PoolAllocTy = FunctionType::get(PtrVoid, Args, false); PoolAlloc = M->getOrInsertFunction("poolalloc", PoolAllocTy); // Get the poolfree function... Args.push_back(PtrVoid); FunctionType *PoolFreeTy = FunctionType::get(Type::VoidTy, Args, false); PoolFree = M->getOrInsertFunction("poolfree", PoolFreeTy); // Add the %PoolTy type to the symbol table of the module... M->addTypeName("PoolTy", PoolTy->getElementType()); } bool PoolAllocate::run(Module *M) { addPoolPrototypes(M); CurModule = M; DS = &getAnalysis(); bool Changed = false; // We cannot use an iterator here because it will get invalidated when we add // functions to the module later... for (unsigned i = 0; i != M->size(); ++i) if (!M->getFunctionList()[i]->isExternal()) { Changed |= processFunction(M->getFunctionList()[i]); if (Changed) { cerr << "Only processing one function\n"; break; } } CurModule = 0; DS = 0; return false; } // createPoolAllocatePass - Global function to access the functionality of this // pass... // Pass *createPoolAllocatePass() { return new PoolAllocate(); }