//===-- Constants.cpp - Implement Constant nodes --------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Constant* classes...
//
//===----------------------------------------------------------------------===//

#include "llvm/Constants.h"
#include "ConstantFolding.h"
#include "llvm/DerivedTypes.h"
#include "llvm/GlobalValue.h"
#include "llvm/Instructions.h"
#include "llvm/SymbolTable.h"
#include "llvm/Module.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/MathExtras.h"
#include <algorithm>
#include <iostream>
using namespace llvm;

ConstantBool *ConstantBool::True  = new ConstantBool(true);
ConstantBool *ConstantBool::False = new ConstantBool(false);


//===----------------------------------------------------------------------===//
//                              Constant Class
//===----------------------------------------------------------------------===//

void Constant::destroyConstantImpl() {
  // When a Constant is destroyed, there may be lingering
  // references to the constant by other constants in the constant pool.  These
  // constants are implicitly dependent on the module that is being deleted,
  // but they don't know that.  Because we only find out when the CPV is
  // deleted, we must now notify all of our users (that should only be
  // Constants) that they are, in fact, invalid now and should be deleted.
  //
  while (!use_empty()) {
    Value *V = use_back();
#ifndef NDEBUG      // Only in -g mode...
    if (!isa<Constant>(V))
      std::cerr << "While deleting: " << *this
                << "\n\nUse still stuck around after Def is destroyed: "
                << *V << "\n\n";
#endif
    assert(isa<Constant>(V) && "References remain to Constant being destroyed");
    Constant *CV = cast<Constant>(V);
    CV->destroyConstant();

    // The constant should remove itself from our use list...
    assert((use_empty() || use_back() != V) && "Constant not removed!");
  }

  // Value has no outstanding references it is safe to delete it now...
  delete this;
}

// Static constructor to create a '0' constant of arbitrary type...
Constant *Constant::getNullValue(const Type *Ty) {
  switch (Ty->getTypeID()) {
  case Type::BoolTyID: {
    static Constant *NullBool = ConstantBool::get(false);
    return NullBool;
  }
  case Type::SByteTyID: {
    static Constant *NullSByte = ConstantSInt::get(Type::SByteTy, 0);
    return NullSByte;
  }
  case Type::UByteTyID: {
    static Constant *NullUByte = ConstantUInt::get(Type::UByteTy, 0);
    return NullUByte;
  }
  case Type::ShortTyID: {
    static Constant *NullShort = ConstantSInt::get(Type::ShortTy, 0);
    return NullShort;
  }
  case Type::UShortTyID: {
    static Constant *NullUShort = ConstantUInt::get(Type::UShortTy, 0);
    return NullUShort;
  }
  case Type::IntTyID: {
    static Constant *NullInt = ConstantSInt::get(Type::IntTy, 0);
    return NullInt;
  }
  case Type::UIntTyID: {
    static Constant *NullUInt = ConstantUInt::get(Type::UIntTy, 0);
    return NullUInt;
  }
  case Type::LongTyID: {
    static Constant *NullLong = ConstantSInt::get(Type::LongTy, 0);
    return NullLong;
  }
  case Type::ULongTyID: {
    static Constant *NullULong = ConstantUInt::get(Type::ULongTy, 0);
    return NullULong;
  }

  case Type::FloatTyID: {
    static Constant *NullFloat = ConstantFP::get(Type::FloatTy, 0);
    return NullFloat;
  }
  case Type::DoubleTyID: {
    static Constant *NullDouble = ConstantFP::get(Type::DoubleTy, 0);
    return NullDouble;
  }

  case Type::PointerTyID:
    return ConstantPointerNull::get(cast<PointerType>(Ty));

  case Type::StructTyID:
  case Type::ArrayTyID:
  case Type::PackedTyID:
    return ConstantAggregateZero::get(Ty);
  default:
    // Function, Label, or Opaque type?
    assert(!"Cannot create a null constant of that type!");
    return 0;
  }
}

// Static constructor to create the maximum constant of an integral type...
ConstantIntegral *ConstantIntegral::getMaxValue(const Type *Ty) {
  switch (Ty->getTypeID()) {
  case Type::BoolTyID:   return ConstantBool::True;
  case Type::SByteTyID:
  case Type::ShortTyID:
  case Type::IntTyID:
  case Type::LongTyID: {
    // Calculate 011111111111111...
    unsigned TypeBits = Ty->getPrimitiveSize()*8;
    int64_t Val = INT64_MAX;             // All ones
    Val >>= 64-TypeBits;                 // Shift out unwanted 1 bits...
    return ConstantSInt::get(Ty, Val);
  }

  case Type::UByteTyID:
  case Type::UShortTyID:
  case Type::UIntTyID:
  case Type::ULongTyID:  return getAllOnesValue(Ty);

  default: return 0;
  }
}

// Static constructor to create the minimum constant for an integral type...
ConstantIntegral *ConstantIntegral::getMinValue(const Type *Ty) {
  switch (Ty->getTypeID()) {
  case Type::BoolTyID:   return ConstantBool::False;
  case Type::SByteTyID:
  case Type::ShortTyID:
  case Type::IntTyID:
  case Type::LongTyID: {
     // Calculate 1111111111000000000000
     unsigned TypeBits = Ty->getPrimitiveSize()*8;
     int64_t Val = -1;                    // All ones
     Val <<= TypeBits-1;                  // Shift over to the right spot
     return ConstantSInt::get(Ty, Val);
  }

  case Type::UByteTyID:
  case Type::UShortTyID:
  case Type::UIntTyID:
  case Type::ULongTyID:  return ConstantUInt::get(Ty, 0);

  default: return 0;
  }
}

// Static constructor to create an integral constant with all bits set
ConstantIntegral *ConstantIntegral::getAllOnesValue(const Type *Ty) {
  switch (Ty->getTypeID()) {
  case Type::BoolTyID:   return ConstantBool::True;
  case Type::SByteTyID:
  case Type::ShortTyID:
  case Type::IntTyID:
  case Type::LongTyID:   return ConstantSInt::get(Ty, -1);

  case Type::UByteTyID:
  case Type::UShortTyID:
  case Type::UIntTyID:
  case Type::ULongTyID: {
    // Calculate ~0 of the right type...
    unsigned TypeBits = Ty->getPrimitiveSize()*8;
    uint64_t Val = ~0ULL;                // All ones
    Val >>= 64-TypeBits;                 // Shift out unwanted 1 bits...
    return ConstantUInt::get(Ty, Val);
  }
  default: return 0;
  }
}

bool ConstantUInt::isAllOnesValue() const {
  unsigned TypeBits = getType()->getPrimitiveSize()*8;
  uint64_t Val = ~0ULL;                // All ones
  Val >>= 64-TypeBits;                 // Shift out inappropriate bits
  return getValue() == Val;
}


//===----------------------------------------------------------------------===//
//                            ConstantXXX Classes
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
//                             Normal Constructors

ConstantIntegral::ConstantIntegral(const Type *Ty, ValueTy VT, uint64_t V)
  : Constant(Ty, VT, 0, 0) {
    Val.Unsigned = V;
}

ConstantBool::ConstantBool(bool V) 
  : ConstantIntegral(Type::BoolTy, ConstantBoolVal, V) {
}

ConstantInt::ConstantInt(const Type *Ty, ValueTy VT, uint64_t V)
  : ConstantIntegral(Ty, VT, V) {
}

ConstantSInt::ConstantSInt(const Type *Ty, int64_t V)
  : ConstantInt(Ty, ConstantSIntVal, V) {
  assert(Ty->isInteger() && Ty->isSigned() &&
         "Illegal type for signed integer constant!");
  assert(isValueValidForType(Ty, V) && "Value too large for type!");
}

ConstantUInt::ConstantUInt(const Type *Ty, uint64_t V)
  : ConstantInt(Ty, ConstantUIntVal, V) {
  assert(Ty->isInteger() && Ty->isUnsigned() &&
         "Illegal type for unsigned integer constant!");
  assert(isValueValidForType(Ty, V) && "Value too large for type!");
}

ConstantFP::ConstantFP(const Type *Ty, double V)
  : Constant(Ty, ConstantFPVal, 0, 0) {
  assert(isValueValidForType(Ty, V) && "Value too large for type!");
  Val = V;
}

ConstantArray::ConstantArray(const ArrayType *T,
                             const std::vector<Constant*> &V)
  : Constant(T, ConstantArrayVal, new Use[V.size()], V.size()) {
  assert(V.size() == T->getNumElements() &&
         "Invalid initializer vector for constant array");
  Use *OL = OperandList;
  for (std::vector<Constant*>::const_iterator I = V.begin(), E = V.end();
       I != E; ++I, ++OL) {
    Constant *C = *I;
    assert((C->getType() == T->getElementType() ||
            (T->isAbstract() &&
             C->getType()->getTypeID() == T->getElementType()->getTypeID())) &&
           "Initializer for array element doesn't match array element type!");
    OL->init(C, this);
  }
}

ConstantArray::~ConstantArray() {
  delete [] OperandList;
}

ConstantStruct::ConstantStruct(const StructType *T,
                               const std::vector<Constant*> &V)
  : Constant(T, ConstantStructVal, new Use[V.size()], V.size()) {
  assert(V.size() == T->getNumElements() &&
         "Invalid initializer vector for constant structure");
  Use *OL = OperandList;
  for (std::vector<Constant*>::const_iterator I = V.begin(), E = V.end();
       I != E; ++I, ++OL) {
    Constant *C = *I;
    assert((C->getType() == T->getElementType(I-V.begin()) ||
            ((T->getElementType(I-V.begin())->isAbstract() ||
              C->getType()->isAbstract()) &&
             T->getElementType(I-V.begin())->getTypeID() == 
                   C->getType()->getTypeID())) &&
           "Initializer for struct element doesn't match struct element type!");
    OL->init(C, this);
  }
}

ConstantStruct::~ConstantStruct() {
  delete [] OperandList;
}


ConstantPacked::ConstantPacked(const PackedType *T,
                               const std::vector<Constant*> &V)
  : Constant(T, ConstantPackedVal, new Use[V.size()], V.size()) {
  Use *OL = OperandList;
    for (std::vector<Constant*>::const_iterator I = V.begin(), E = V.end();
         I != E; ++I, ++OL) {
      Constant *C = *I;
      assert((C->getType() == T->getElementType() ||
            (T->isAbstract() &&
             C->getType()->getTypeID() == T->getElementType()->getTypeID())) &&
           "Initializer for packed element doesn't match packed element type!");
    OL->init(C, this);
  }
}

ConstantPacked::~ConstantPacked() {
  delete [] OperandList;
}

/// UnaryConstantExpr - This class is private to Constants.cpp, and is used
/// behind the scenes to implement unary constant exprs.
class UnaryConstantExpr : public ConstantExpr {
  Use Op;
public:
  UnaryConstantExpr(unsigned Opcode, Constant *C, const Type *Ty)
    : ConstantExpr(Ty, Opcode, &Op, 1), Op(C, this) {}
};

static bool isSetCC(unsigned Opcode) {
  return Opcode == Instruction::SetEQ || Opcode == Instruction::SetNE ||
         Opcode == Instruction::SetLT || Opcode == Instruction::SetGT ||
         Opcode == Instruction::SetLE || Opcode == Instruction::SetGE;
}

/// BinaryConstantExpr - This class is private to Constants.cpp, and is used
/// behind the scenes to implement binary constant exprs.
class BinaryConstantExpr : public ConstantExpr {
  Use Ops[2];
public:
  BinaryConstantExpr(unsigned Opcode, Constant *C1, Constant *C2)
    : ConstantExpr(isSetCC(Opcode) ? Type::BoolTy : C1->getType(),
                   Opcode, Ops, 2) {
    Ops[0].init(C1, this);
    Ops[1].init(C2, this);
  }
};

/// SelectConstantExpr - This class is private to Constants.cpp, and is used
/// behind the scenes to implement select constant exprs.
class SelectConstantExpr : public ConstantExpr {
  Use Ops[3];
public:
  SelectConstantExpr(Constant *C1, Constant *C2, Constant *C3)
    : ConstantExpr(C2->getType(), Instruction::Select, Ops, 3) {
    Ops[0].init(C1, this);
    Ops[1].init(C2, this);
    Ops[2].init(C3, this);
  }
};

/// ExtractElementConstantExpr - This class is private to
/// Constants.cpp, and is used behind the scenes to implement
/// extractelement constant exprs.
class ExtractElementConstantExpr : public ConstantExpr {
  Use Ops[2];
public:
  ExtractElementConstantExpr(Constant *C1, Constant *C2)
    : ConstantExpr(cast<PackedType>(C1->getType())->getElementType(), 
                   Instruction::ExtractElement, Ops, 2) {
    Ops[0].init(C1, this);
    Ops[1].init(C2, this);
  }
};

/// InsertElementConstantExpr - This class is private to
/// Constants.cpp, and is used behind the scenes to implement
/// insertelement constant exprs.
class InsertElementConstantExpr : public ConstantExpr {
  Use Ops[3];
public:
  InsertElementConstantExpr(Constant *C1, Constant *C2, Constant *C3)
    : ConstantExpr(C1->getType(), Instruction::InsertElement, 
                   Ops, 3) {
    Ops[0].init(C1, this);
    Ops[1].init(C2, this);
    Ops[2].init(C3, this);
  }
};

/// GetElementPtrConstantExpr - This class is private to Constants.cpp, and is
/// used behind the scenes to implement getelementpr constant exprs.
struct GetElementPtrConstantExpr : public ConstantExpr {
  GetElementPtrConstantExpr(Constant *C, const std::vector<Constant*> &IdxList,
                            const Type *DestTy)
    : ConstantExpr(DestTy, Instruction::GetElementPtr,
                   new Use[IdxList.size()+1], IdxList.size()+1) {
    OperandList[0].init(C, this);
    for (unsigned i = 0, E = IdxList.size(); i != E; ++i)
      OperandList[i+1].init(IdxList[i], this);
  }
  ~GetElementPtrConstantExpr() {
    delete [] OperandList;
  }
};

/// ConstantExpr::get* - Return some common constants without having to
/// specify the full Instruction::OPCODE identifier.
///
Constant *ConstantExpr::getNeg(Constant *C) {
  if (!C->getType()->isFloatingPoint())
    return get(Instruction::Sub, getNullValue(C->getType()), C);
  else
    return get(Instruction::Sub, ConstantFP::get(C->getType(), -0.0), C);
}
Constant *ConstantExpr::getNot(Constant *C) {
  assert(isa<ConstantIntegral>(C) && "Cannot NOT a nonintegral type!");
  return get(Instruction::Xor, C,
             ConstantIntegral::getAllOnesValue(C->getType()));
}
Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2) {
  return get(Instruction::Add, C1, C2);
}
Constant *ConstantExpr::getSub(Constant *C1, Constant *C2) {
  return get(Instruction::Sub, C1, C2);
}
Constant *ConstantExpr::getMul(Constant *C1, Constant *C2) {
  return get(Instruction::Mul, C1, C2);
}
Constant *ConstantExpr::getDiv(Constant *C1, Constant *C2) {
  return get(Instruction::Div, C1, C2);
}
Constant *ConstantExpr::getRem(Constant *C1, Constant *C2) {
  return get(Instruction::Rem, C1, C2);
}
Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) {
  return get(Instruction::And, C1, C2);
}
Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) {
  return get(Instruction::Or, C1, C2);
}
Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) {
  return get(Instruction::Xor, C1, C2);
}
Constant *ConstantExpr::getSetEQ(Constant *C1, Constant *C2) {
  return get(Instruction::SetEQ, C1, C2);
}
Constant *ConstantExpr::getSetNE(Constant *C1, Constant *C2) {
  return get(Instruction::SetNE, C1, C2);
}
Constant *ConstantExpr::getSetLT(Constant *C1, Constant *C2) {
  return get(Instruction::SetLT, C1, C2);
}
Constant *ConstantExpr::getSetGT(Constant *C1, Constant *C2) {
  return get(Instruction::SetGT, C1, C2);
}
Constant *ConstantExpr::getSetLE(Constant *C1, Constant *C2) {
  return get(Instruction::SetLE, C1, C2);
}
Constant *ConstantExpr::getSetGE(Constant *C1, Constant *C2) {
  return get(Instruction::SetGE, C1, C2);
}
Constant *ConstantExpr::getShl(Constant *C1, Constant *C2) {
  return get(Instruction::Shl, C1, C2);
}
Constant *ConstantExpr::getShr(Constant *C1, Constant *C2) {
  return get(Instruction::Shr, C1, C2);
}

Constant *ConstantExpr::getUShr(Constant *C1, Constant *C2) {
  if (C1->getType()->isUnsigned()) return getShr(C1, C2);
  return getCast(getShr(getCast(C1,
                    C1->getType()->getUnsignedVersion()), C2), C1->getType());
}

Constant *ConstantExpr::getSShr(Constant *C1, Constant *C2) {
  if (C1->getType()->isSigned()) return getShr(C1, C2);
  return getCast(getShr(getCast(C1,
                        C1->getType()->getSignedVersion()), C2), C1->getType());
}


//===----------------------------------------------------------------------===//
//                      isValueValidForType implementations

bool ConstantSInt::isValueValidForType(const Type *Ty, int64_t Val) {
  switch (Ty->getTypeID()) {
  default:
    return false;         // These can't be represented as integers!!!
    // Signed types...
  case Type::SByteTyID:
    return (Val <= INT8_MAX && Val >= INT8_MIN);
  case Type::ShortTyID:
    return (Val <= INT16_MAX && Val >= INT16_MIN);
  case Type::IntTyID:
    return (Val <= int(INT32_MAX) && Val >= int(INT32_MIN));
  case Type::LongTyID:
    return true;          // This is the largest type...
  }
}

bool ConstantUInt::isValueValidForType(const Type *Ty, uint64_t Val) {
  switch (Ty->getTypeID()) {
  default:
    return false;         // These can't be represented as integers!!!

    // Unsigned types...
  case Type::UByteTyID:
    return (Val <= UINT8_MAX);
  case Type::UShortTyID:
    return (Val <= UINT16_MAX);
  case Type::UIntTyID:
    return (Val <= UINT32_MAX);
  case Type::ULongTyID:
    return true;          // This is the largest type...
  }
}

bool ConstantFP::isValueValidForType(const Type *Ty, double Val) {
  switch (Ty->getTypeID()) {
  default:
    return false;         // These can't be represented as floating point!

    // TODO: Figure out how to test if a double can be cast to a float!
  case Type::FloatTyID:
  case Type::DoubleTyID:
    return true;          // This is the largest type...
  }
};

//===----------------------------------------------------------------------===//
//                      Factory Function Implementation

// ConstantCreator - A class that is used to create constants by
// ValueMap*.  This class should be partially specialized if there is
// something strange that needs to be done to interface to the ctor for the
// constant.
//
namespace llvm {
  template<class ConstantClass, class TypeClass, class ValType>
  struct ConstantCreator {
    static ConstantClass *create(const TypeClass *Ty, const ValType &V) {
      return new ConstantClass(Ty, V);
    }
  };

  template<class ConstantClass, class TypeClass>
  struct ConvertConstantType {
    static void convert(ConstantClass *OldC, const TypeClass *NewTy) {
      assert(0 && "This type cannot be converted!\n");
      abort();
    }
  };
}

namespace {
  template<class ValType, class TypeClass, class ConstantClass,
           bool HasLargeKey = false  /*true for arrays and structs*/ >
  class ValueMap : public AbstractTypeUser {
  public:
    typedef std::pair<const TypeClass*, ValType> MapKey;
    typedef std::map<MapKey, ConstantClass *> MapTy;
    typedef typename MapTy::iterator MapIterator;
  private:
    /// Map - This is the main map from the element descriptor to the Constants.
    /// This is the primary way we avoid creating two of the same shape
    /// constant.
    MapTy Map;
    
    /// InverseMap - If "HasLargeKey" is true, this contains an inverse mapping
    /// from the constants to their element in Map.  This is important for
    /// removal of constants from the array, which would otherwise have to scan
    /// through the map with very large keys.
    std::map<ConstantClass*, MapIterator> InverseMap;

    typedef std::map<const TypeClass*, MapIterator> AbstractTypeMapTy;
    AbstractTypeMapTy AbstractTypeMap;

    friend void Constant::clearAllValueMaps();
  private:
    void clear(std::vector<Constant *> &Constants) {
      for(MapIterator I = Map.begin(); I != Map.end(); ++I)
        Constants.push_back(I->second);
      Map.clear();
      AbstractTypeMap.clear();
      InverseMap.clear();
    }

  public:
    MapIterator map_end() { return Map.end(); }
    
    /// InsertOrGetItem - Return an iterator for the specified element.
    /// If the element exists in the map, the returned iterator points to the
    /// entry and Exists=true.  If not, the iterator points to the newly
    /// inserted entry and returns Exists=false.  Newly inserted entries have
    /// I->second == 0, and should be filled in.
    MapIterator InsertOrGetItem(std::pair<MapKey, ConstantClass *> &InsertVal,
                                   bool &Exists) {
      std::pair<MapIterator, bool> IP = Map.insert(InsertVal);
      Exists = !IP.second;
      return IP.first;
    }
    
private:
    MapIterator FindExistingElement(ConstantClass *CP) {
      if (HasLargeKey) {
        typename std::map<ConstantClass*, MapIterator>::iterator
            IMI = InverseMap.find(CP);
        assert(IMI != InverseMap.end() && IMI->second != Map.end() &&
               IMI->second->second == CP &&
               "InverseMap corrupt!");
        return IMI->second;
      }
      
      MapIterator I =
        Map.find(MapKey((TypeClass*)CP->getRawType(), getValType(CP)));
      if (I == Map.end() || I->second != CP) {
        // FIXME: This should not use a linear scan.  If this gets to be a
        // performance problem, someone should look at this.
        for (I = Map.begin(); I != Map.end() && I->second != CP; ++I)
          /* empty */;
      }
      return I;
    }
public:
    
    /// getOrCreate - Return the specified constant from the map, creating it if
    /// necessary.
    ConstantClass *getOrCreate(const TypeClass *Ty, const ValType &V) {
      MapKey Lookup(Ty, V);
      MapIterator I = Map.lower_bound(Lookup);
      if (I != Map.end() && I->first == Lookup)
        return I->second;  // Is it in the map?

      // If no preexisting value, create one now...
      ConstantClass *Result =
        ConstantCreator<ConstantClass,TypeClass,ValType>::create(Ty, V);

      /// FIXME: why does this assert fail when loading 176.gcc?
      //assert(Result->getType() == Ty && "Type specified is not correct!");
      I = Map.insert(I, std::make_pair(MapKey(Ty, V), Result));

      if (HasLargeKey)  // Remember the reverse mapping if needed.
        InverseMap.insert(std::make_pair(Result, I));
      
      // If the type of the constant is abstract, make sure that an entry exists
      // for it in the AbstractTypeMap.
      if (Ty->isAbstract()) {
        typename AbstractTypeMapTy::iterator TI =
          AbstractTypeMap.lower_bound(Ty);

        if (TI == AbstractTypeMap.end() || TI->first != Ty) {
          // Add ourselves to the ATU list of the type.
          cast<DerivedType>(Ty)->addAbstractTypeUser(this);

          AbstractTypeMap.insert(TI, std::make_pair(Ty, I));
        }
      }
      return Result;
    }

    void remove(ConstantClass *CP) {
      MapIterator I = FindExistingElement(CP);
      assert(I != Map.end() && "Constant not found in constant table!");
      assert(I->second == CP && "Didn't find correct element?");

      if (HasLargeKey)  // Remember the reverse mapping if needed.
        InverseMap.erase(CP);
      
      // Now that we found the entry, make sure this isn't the entry that
      // the AbstractTypeMap points to.
      const TypeClass *Ty = I->first.first;
      if (Ty->isAbstract()) {
        assert(AbstractTypeMap.count(Ty) &&
               "Abstract type not in AbstractTypeMap?");
        MapIterator &ATMEntryIt = AbstractTypeMap[Ty];
        if (ATMEntryIt == I) {
          // Yes, we are removing the representative entry for this type.
          // See if there are any other entries of the same type.
          MapIterator TmpIt = ATMEntryIt;

          // First check the entry before this one...
          if (TmpIt != Map.begin()) {
            --TmpIt;
            if (TmpIt->first.first != Ty) // Not the same type, move back...
              ++TmpIt;
          }

          // If we didn't find the same type, try to move forward...
          if (TmpIt == ATMEntryIt) {
            ++TmpIt;
            if (TmpIt == Map.end() || TmpIt->first.first != Ty)
              --TmpIt;   // No entry afterwards with the same type
          }

          // If there is another entry in the map of the same abstract type,
          // update the AbstractTypeMap entry now.
          if (TmpIt != ATMEntryIt) {
            ATMEntryIt = TmpIt;
          } else {
            // Otherwise, we are removing the last instance of this type
            // from the table.  Remove from the ATM, and from user list.
            cast<DerivedType>(Ty)->removeAbstractTypeUser(this);
            AbstractTypeMap.erase(Ty);
          }
        }
      }

      Map.erase(I);
    }

    
    /// MoveConstantToNewSlot - If we are about to change C to be the element
    /// specified by I, update our internal data structures to reflect this
    /// fact.
    void MoveConstantToNewSlot(ConstantClass *C, MapIterator I) {
      // First, remove the old location of the specified constant in the map.
      MapIterator OldI = FindExistingElement(C);
      assert(OldI != Map.end() && "Constant not found in constant table!");
      assert(OldI->second == C && "Didn't find correct element?");
      
      // If this constant is the representative element for its abstract type,
      // update the AbstractTypeMap so that the representative element is I.
      if (C->getType()->isAbstract()) {
        typename AbstractTypeMapTy::iterator ATI =
            AbstractTypeMap.find(C->getType());
        assert(ATI != AbstractTypeMap.end() &&
               "Abstract type not in AbstractTypeMap?");
        if (ATI->second == OldI)
          ATI->second = I;
      }
      
      // Remove the old entry from the map.
      Map.erase(OldI);
      
      // Update the inverse map so that we know that this constant is now
      // located at descriptor I.
      if (HasLargeKey) {
        assert(I->second == C && "Bad inversemap entry!");
        InverseMap[C] = I;
      }
    }
    
    void refineAbstractType(const DerivedType *OldTy, const Type *NewTy) {
      typename AbstractTypeMapTy::iterator I =
        AbstractTypeMap.find(cast<TypeClass>(OldTy));

      assert(I != AbstractTypeMap.end() &&
             "Abstract type not in AbstractTypeMap?");

      // Convert a constant at a time until the last one is gone.  The last one
      // leaving will remove() itself, causing the AbstractTypeMapEntry to be
      // eliminated eventually.
      do {
        ConvertConstantType<ConstantClass,
                            TypeClass>::convert(I->second->second,
                                                cast<TypeClass>(NewTy));

        I = AbstractTypeMap.find(cast<TypeClass>(OldTy));
      } while (I != AbstractTypeMap.end());
    }

    // If the type became concrete without being refined to any other existing
    // type, we just remove ourselves from the ATU list.
    void typeBecameConcrete(const DerivedType *AbsTy) {
      AbsTy->removeAbstractTypeUser(this);
    }

    void dump() const {
      std::cerr << "Constant.cpp: ValueMap\n";
    }
  };
}

//---- ConstantUInt::get() and ConstantSInt::get() implementations...
//
static ValueMap< int64_t, Type, ConstantSInt> SIntConstants;
static ValueMap<uint64_t, Type, ConstantUInt> UIntConstants;

ConstantSInt *ConstantSInt::get(const Type *Ty, int64_t V) {
  return SIntConstants.getOrCreate(Ty, V);
}

ConstantUInt *ConstantUInt::get(const Type *Ty, uint64_t V) {
  return UIntConstants.getOrCreate(Ty, V);
}

ConstantInt *ConstantInt::get(const Type *Ty, unsigned char V) {
  assert(V <= 127 && "Can only be used with very small positive constants!");
  if (Ty->isSigned()) return ConstantSInt::get(Ty, V);
  return ConstantUInt::get(Ty, V);
}

//---- ConstantFP::get() implementation...
//
namespace llvm {
  template<>
  struct ConstantCreator<ConstantFP, Type, uint64_t> {
    static ConstantFP *create(const Type *Ty, uint64_t V) {
      assert(Ty == Type::DoubleTy);
      return new ConstantFP(Ty, BitsToDouble(V));
    }
  };
  template<>
  struct ConstantCreator<ConstantFP, Type, uint32_t> {
    static ConstantFP *create(const Type *Ty, uint32_t V) {
      assert(Ty == Type::FloatTy);
      return new ConstantFP(Ty, BitsToFloat(V));
    }
  };
}

static ValueMap<uint64_t, Type, ConstantFP> DoubleConstants;
static ValueMap<uint32_t, Type, ConstantFP> FloatConstants;

bool ConstantFP::isNullValue() const {
  return DoubleToBits(Val) == 0;
}

bool ConstantFP::isExactlyValue(double V) const {
  return DoubleToBits(V) == DoubleToBits(Val);
}


ConstantFP *ConstantFP::get(const Type *Ty, double V) {
  if (Ty == Type::FloatTy) {
    // Force the value through memory to normalize it.
    return FloatConstants.getOrCreate(Ty, FloatToBits(V));
  } else {
    assert(Ty == Type::DoubleTy);
    return DoubleConstants.getOrCreate(Ty, DoubleToBits(V));
  }
}

//---- ConstantAggregateZero::get() implementation...
//
namespace llvm {
  // ConstantAggregateZero does not take extra "value" argument...
  template<class ValType>
  struct ConstantCreator<ConstantAggregateZero, Type, ValType> {
    static ConstantAggregateZero *create(const Type *Ty, const ValType &V){
      return new ConstantAggregateZero(Ty);
    }
  };

  template<>
  struct ConvertConstantType<ConstantAggregateZero, Type> {
    static void convert(ConstantAggregateZero *OldC, const Type *NewTy) {
      // Make everyone now use a constant of the new type...
      Constant *New = ConstantAggregateZero::get(NewTy);
      assert(New != OldC && "Didn't replace constant??");
      OldC->uncheckedReplaceAllUsesWith(New);
      OldC->destroyConstant();     // This constant is now dead, destroy it.
    }
  };
}

static ValueMap<char, Type, ConstantAggregateZero> AggZeroConstants;

static char getValType(ConstantAggregateZero *CPZ) { return 0; }

Constant *ConstantAggregateZero::get(const Type *Ty) {
  return AggZeroConstants.getOrCreate(Ty, 0);
}

// destroyConstant - Remove the constant from the constant table...
//
void ConstantAggregateZero::destroyConstant() {
  AggZeroConstants.remove(this);
  destroyConstantImpl();
}

//---- ConstantArray::get() implementation...
//
namespace llvm {
  template<>
  struct ConvertConstantType<ConstantArray, ArrayType> {
    static void convert(ConstantArray *OldC, const ArrayType *NewTy) {
      // Make everyone now use a constant of the new type...
      std::vector<Constant*> C;
      for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i)
        C.push_back(cast<Constant>(OldC->getOperand(i)));
      Constant *New = ConstantArray::get(NewTy, C);
      assert(New != OldC && "Didn't replace constant??");
      OldC->uncheckedReplaceAllUsesWith(New);
      OldC->destroyConstant();    // This constant is now dead, destroy it.
    }
  };
}

static std::vector<Constant*> getValType(ConstantArray *CA) {
  std::vector<Constant*> Elements;
  Elements.reserve(CA->getNumOperands());
  for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
    Elements.push_back(cast<Constant>(CA->getOperand(i)));
  return Elements;
}

typedef ValueMap<std::vector<Constant*>, ArrayType, 
                 ConstantArray, true /*largekey*/> ArrayConstantsTy;
static ArrayConstantsTy ArrayConstants;

Constant *ConstantArray::get(const ArrayType *Ty,
                             const std::vector<Constant*> &V) {
  // If this is an all-zero array, return a ConstantAggregateZero object
  if (!V.empty()) {
    Constant *C = V[0];
    if (!C->isNullValue())
      return ArrayConstants.getOrCreate(Ty, V);
    for (unsigned i = 1, e = V.size(); i != e; ++i)
      if (V[i] != C)
        return ArrayConstants.getOrCreate(Ty, V);
  }
  return ConstantAggregateZero::get(Ty);
}

// destroyConstant - Remove the constant from the constant table...
//
void ConstantArray::destroyConstant() {
  ArrayConstants.remove(this);
  destroyConstantImpl();
}

// ConstantArray::get(const string&) - Return an array that is initialized to
// contain the specified string.  A null terminator is added to the specified
// string so that it may be used in a natural way...
//
Constant *ConstantArray::get(const std::string &Str) {
  std::vector<Constant*> ElementVals;

  for (unsigned i = 0; i < Str.length(); ++i)
    ElementVals.push_back(ConstantSInt::get(Type::SByteTy, Str[i]));

  // Add a null terminator to the string...
  ElementVals.push_back(ConstantSInt::get(Type::SByteTy, 0));

  ArrayType *ATy = ArrayType::get(Type::SByteTy, Str.length()+1);
  return ConstantArray::get(ATy, ElementVals);
}

/// isString - This method returns true if the array is an array of sbyte or
/// ubyte, and if the elements of the array are all ConstantInt's.
bool ConstantArray::isString() const {
  // Check the element type for sbyte or ubyte...
  if (getType()->getElementType() != Type::UByteTy &&
      getType()->getElementType() != Type::SByteTy)
    return false;
  // Check the elements to make sure they are all integers, not constant
  // expressions.
  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
    if (!isa<ConstantInt>(getOperand(i)))
      return false;
  return true;
}

// getAsString - If the sub-element type of this array is either sbyte or ubyte,
// then this method converts the array to an std::string and returns it.
// Otherwise, it asserts out.
//
std::string ConstantArray::getAsString() const {
  assert(isString() && "Not a string!");
  std::string Result;
  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
    Result += (char)cast<ConstantInt>(getOperand(i))->getRawValue();
  return Result;
}


//---- ConstantStruct::get() implementation...
//

namespace llvm {
  template<>
  struct ConvertConstantType<ConstantStruct, StructType> {
    static void convert(ConstantStruct *OldC, const StructType *NewTy) {
      // Make everyone now use a constant of the new type...
      std::vector<Constant*> C;
      for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i)
        C.push_back(cast<Constant>(OldC->getOperand(i)));
      Constant *New = ConstantStruct::get(NewTy, C);
      assert(New != OldC && "Didn't replace constant??");

      OldC->uncheckedReplaceAllUsesWith(New);
      OldC->destroyConstant();    // This constant is now dead, destroy it.
    }
  };
}

typedef ValueMap<std::vector<Constant*>, StructType,
                 ConstantStruct, true /*largekey*/> StructConstantsTy;
static StructConstantsTy StructConstants;

static std::vector<Constant*> getValType(ConstantStruct *CS) {
  std::vector<Constant*> Elements;
  Elements.reserve(CS->getNumOperands());
  for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i)
    Elements.push_back(cast<Constant>(CS->getOperand(i)));
  return Elements;
}

Constant *ConstantStruct::get(const StructType *Ty,
                              const std::vector<Constant*> &V) {
  // Create a ConstantAggregateZero value if all elements are zeros...
  for (unsigned i = 0, e = V.size(); i != e; ++i)
    if (!V[i]->isNullValue())
      return StructConstants.getOrCreate(Ty, V);

  return ConstantAggregateZero::get(Ty);
}

Constant *ConstantStruct::get(const std::vector<Constant*> &V) {
  std::vector<const Type*> StructEls;
  StructEls.reserve(V.size());
  for (unsigned i = 0, e = V.size(); i != e; ++i)
    StructEls.push_back(V[i]->getType());
  return get(StructType::get(StructEls), V);
}

// destroyConstant - Remove the constant from the constant table...
//
void ConstantStruct::destroyConstant() {
  StructConstants.remove(this);
  destroyConstantImpl();
}

//---- ConstantPacked::get() implementation...
//
namespace llvm {
  template<>
  struct ConvertConstantType<ConstantPacked, PackedType> {
    static void convert(ConstantPacked *OldC, const PackedType *NewTy) {
      // Make everyone now use a constant of the new type...
      std::vector<Constant*> C;
      for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i)
        C.push_back(cast<Constant>(OldC->getOperand(i)));
      Constant *New = ConstantPacked::get(NewTy, C);
      assert(New != OldC && "Didn't replace constant??");
      OldC->uncheckedReplaceAllUsesWith(New);
      OldC->destroyConstant();    // This constant is now dead, destroy it.
    }
  };
}

static std::vector<Constant*> getValType(ConstantPacked *CP) {
  std::vector<Constant*> Elements;
  Elements.reserve(CP->getNumOperands());
  for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
    Elements.push_back(CP->getOperand(i));
  return Elements;
}

static ValueMap<std::vector<Constant*>, PackedType,
                ConstantPacked> PackedConstants;

Constant *ConstantPacked::get(const PackedType *Ty,
                              const std::vector<Constant*> &V) {
  // If this is an all-zero packed, return a ConstantAggregateZero object
  if (!V.empty()) {
    Constant *C = V[0];
    if (!C->isNullValue())
      return PackedConstants.getOrCreate(Ty, V);
    for (unsigned i = 1, e = V.size(); i != e; ++i)
      if (V[i] != C)
        return PackedConstants.getOrCreate(Ty, V);
  }
  return ConstantAggregateZero::get(Ty);
}

Constant *ConstantPacked::get(const std::vector<Constant*> &V) {
  assert(!V.empty() && "Cannot infer type if V is empty");
  return get(PackedType::get(V.front()->getType(),V.size()), V);
}

// destroyConstant - Remove the constant from the constant table...
//
void ConstantPacked::destroyConstant() {
  PackedConstants.remove(this);
  destroyConstantImpl();
}

//---- ConstantPointerNull::get() implementation...
//

namespace llvm {
  // ConstantPointerNull does not take extra "value" argument...
  template<class ValType>
  struct ConstantCreator<ConstantPointerNull, PointerType, ValType> {
    static ConstantPointerNull *create(const PointerType *Ty, const ValType &V){
      return new ConstantPointerNull(Ty);
    }
  };

  template<>
  struct ConvertConstantType<ConstantPointerNull, PointerType> {
    static void convert(ConstantPointerNull *OldC, const PointerType *NewTy) {
      // Make everyone now use a constant of the new type...
      Constant *New = ConstantPointerNull::get(NewTy);
      assert(New != OldC && "Didn't replace constant??");
      OldC->uncheckedReplaceAllUsesWith(New);
      OldC->destroyConstant();     // This constant is now dead, destroy it.
    }
  };
}

static ValueMap<char, PointerType, ConstantPointerNull> NullPtrConstants;

static char getValType(ConstantPointerNull *) {
  return 0;
}


ConstantPointerNull *ConstantPointerNull::get(const PointerType *Ty) {
  return NullPtrConstants.getOrCreate(Ty, 0);
}

// destroyConstant - Remove the constant from the constant table...
//
void ConstantPointerNull::destroyConstant() {
  NullPtrConstants.remove(this);
  destroyConstantImpl();
}


//---- UndefValue::get() implementation...
//

namespace llvm {
  // UndefValue does not take extra "value" argument...
  template<class ValType>
  struct ConstantCreator<UndefValue, Type, ValType> {
    static UndefValue *create(const Type *Ty, const ValType &V) {
      return new UndefValue(Ty);
    }
  };

  template<>
  struct ConvertConstantType<UndefValue, Type> {
    static void convert(UndefValue *OldC, const Type *NewTy) {
      // Make everyone now use a constant of the new type.
      Constant *New = UndefValue::get(NewTy);
      assert(New != OldC && "Didn't replace constant??");
      OldC->uncheckedReplaceAllUsesWith(New);
      OldC->destroyConstant();     // This constant is now dead, destroy it.
    }
  };
}

static ValueMap<char, Type, UndefValue> UndefValueConstants;

static char getValType(UndefValue *) {
  return 0;
}


UndefValue *UndefValue::get(const Type *Ty) {
  return UndefValueConstants.getOrCreate(Ty, 0);
}

// destroyConstant - Remove the constant from the constant table.
//
void UndefValue::destroyConstant() {
  UndefValueConstants.remove(this);
  destroyConstantImpl();
}




//---- ConstantExpr::get() implementations...
//
typedef std::pair<unsigned, std::vector<Constant*> > ExprMapKeyType;

namespace llvm {
  template<>
  struct ConstantCreator<ConstantExpr, Type, ExprMapKeyType> {
    static ConstantExpr *create(const Type *Ty, const ExprMapKeyType &V) {
      if (V.first == Instruction::Cast)
        return new UnaryConstantExpr(Instruction::Cast, V.second[0], Ty);
      if ((V.first >= Instruction::BinaryOpsBegin &&
           V.first < Instruction::BinaryOpsEnd) ||
          V.first == Instruction::Shl || V.first == Instruction::Shr)
        return new BinaryConstantExpr(V.first, V.second[0], V.second[1]);
      if (V.first == Instruction::Select)
        return new SelectConstantExpr(V.second[0], V.second[1], V.second[2]);
      if (V.first == Instruction::ExtractElement)
        return new ExtractElementConstantExpr(V.second[0], V.second[1]);
      if (V.first == Instruction::InsertElement)
        return new InsertElementConstantExpr(V.second[0], V.second[1],
                                             V.second[2]);

      assert(V.first == Instruction::GetElementPtr && "Invalid ConstantExpr!");

      std::vector<Constant*> IdxList(V.second.begin()+1, V.second.end());
      return new GetElementPtrConstantExpr(V.second[0], IdxList, Ty);
    }
  };

  template<>
  struct ConvertConstantType<ConstantExpr, Type> {
    static void convert(ConstantExpr *OldC, const Type *NewTy) {
      Constant *New;
      switch (OldC->getOpcode()) {
      case Instruction::Cast:
        New = ConstantExpr::getCast(OldC->getOperand(0), NewTy);
        break;
      case Instruction::Select:
        New = ConstantExpr::getSelectTy(NewTy, OldC->getOperand(0),
                                        OldC->getOperand(1),
                                        OldC->getOperand(2));
        break;
      case Instruction::Shl:
      case Instruction::Shr:
        New = ConstantExpr::getShiftTy(NewTy, OldC->getOpcode(),
                                     OldC->getOperand(0), OldC->getOperand(1));
        break;
      default:
        assert(OldC->getOpcode() >= Instruction::BinaryOpsBegin &&
               OldC->getOpcode() < Instruction::BinaryOpsEnd);
        New = ConstantExpr::getTy(NewTy, OldC->getOpcode(), OldC->getOperand(0),
                                  OldC->getOperand(1));
        break;
      case Instruction::GetElementPtr:
        // Make everyone now use a constant of the new type...
        std::vector<Value*> Idx(OldC->op_begin()+1, OldC->op_end());
        New = ConstantExpr::getGetElementPtrTy(NewTy, OldC->getOperand(0), Idx);
        break;
      }

      assert(New != OldC && "Didn't replace constant??");
      OldC->uncheckedReplaceAllUsesWith(New);
      OldC->destroyConstant();    // This constant is now dead, destroy it.
    }
  };
} // end namespace llvm


static ExprMapKeyType getValType(ConstantExpr *CE) {
  std::vector<Constant*> Operands;
  Operands.reserve(CE->getNumOperands());
  for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i)
    Operands.push_back(cast<Constant>(CE->getOperand(i)));
  return ExprMapKeyType(CE->getOpcode(), Operands);
}

static ValueMap<ExprMapKeyType, Type, ConstantExpr> ExprConstants;

Constant *ConstantExpr::getCast(Constant *C, const Type *Ty) {
  assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");

  if (Constant *FC = ConstantFoldCastInstruction(C, Ty))
    return FC;          // Fold a few common cases...

  // Look up the constant in the table first to ensure uniqueness
  std::vector<Constant*> argVec(1, C);
  ExprMapKeyType Key = std::make_pair(Instruction::Cast, argVec);
  return ExprConstants.getOrCreate(Ty, Key);
}

Constant *ConstantExpr::getSignExtend(Constant *C, const Type *Ty) {
  assert(C->getType()->isIntegral() && Ty->isIntegral() &&
         C->getType()->getPrimitiveSize() <= Ty->getPrimitiveSize() &&
         "This is an illegal sign extension!");
  if (C->getType() != Type::BoolTy) {
    C = ConstantExpr::getCast(C, C->getType()->getSignedVersion());
    return ConstantExpr::getCast(C, Ty);
  } else {
    if (C == ConstantBool::True)
      return ConstantIntegral::getAllOnesValue(Ty);
    else
      return ConstantIntegral::getNullValue(Ty);
  }
}

Constant *ConstantExpr::getZeroExtend(Constant *C, const Type *Ty) {
  assert(C->getType()->isIntegral() && Ty->isIntegral() &&
         C->getType()->getPrimitiveSize() <= Ty->getPrimitiveSize() &&
         "This is an illegal zero extension!");
  if (C->getType() != Type::BoolTy)
    C = ConstantExpr::getCast(C, C->getType()->getUnsignedVersion());
  return ConstantExpr::getCast(C, Ty);
}

Constant *ConstantExpr::getSizeOf(const Type *Ty) {
  // sizeof is implemented as: (ulong) gep (Ty*)null, 1
  return getCast(
    getGetElementPtr(getNullValue(PointerType::get(Ty)),
                 std::vector<Constant*>(1, ConstantInt::get(Type::UIntTy, 1))),
    Type::ULongTy);
}

Constant *ConstantExpr::getPtrPtrFromArrayPtr(Constant *C) {
  // pointer from array is implemented as: getelementptr arr ptr, 0, 0
  static std::vector<Constant*> Indices(2, ConstantUInt::get(Type::UIntTy, 0));

  return ConstantExpr::getGetElementPtr(C, Indices);
}

Constant *ConstantExpr::getTy(const Type *ReqTy, unsigned Opcode,
                              Constant *C1, Constant *C2) {
  if (Opcode == Instruction::Shl || Opcode == Instruction::Shr)
    return getShiftTy(ReqTy, Opcode, C1, C2);
  // Check the operands for consistency first
  assert((Opcode >= Instruction::BinaryOpsBegin &&
          Opcode < Instruction::BinaryOpsEnd) &&
         "Invalid opcode in binary constant expression");
  assert(C1->getType() == C2->getType() &&
         "Operand types in binary constant expression should match");

  if (ReqTy == C1->getType() || (Instruction::isRelational(Opcode) &&
                                 ReqTy == Type::BoolTy))
    if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2))
      return FC;          // Fold a few common cases...

  std::vector<Constant*> argVec(1, C1); argVec.push_back(C2);
  ExprMapKeyType Key = std::make_pair(Opcode, argVec);
  return ExprConstants.getOrCreate(ReqTy, Key);
}

Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2) {
#ifndef NDEBUG
  switch (Opcode) {
  case Instruction::Add: case Instruction::Sub:
  case Instruction::Mul: case Instruction::Div:
  case Instruction::Rem:
    assert(C1->getType() == C2->getType() && "Op types should be identical!");
    assert((C1->getType()->isInteger() || C1->getType()->isFloatingPoint() ||
            isa<PackedType>(C1->getType())) &&
           "Tried to create an arithmetic operation on a non-arithmetic type!");
    break;
  case Instruction::And:
  case Instruction::Or:
  case Instruction::Xor:
    assert(C1->getType() == C2->getType() && "Op types should be identical!");
    assert((C1->getType()->isIntegral() || isa<PackedType>(C1->getType())) &&
           "Tried to create a logical operation on a non-integral type!");
    break;
  case Instruction::SetLT: case Instruction::SetGT: case Instruction::SetLE:
  case Instruction::SetGE: case Instruction::SetEQ: case Instruction::SetNE:
    assert(C1->getType() == C2->getType() && "Op types should be identical!");
    break;
  case Instruction::Shl:
  case Instruction::Shr:
    assert(C2->getType() == Type::UByteTy && "Shift should be by ubyte!");
    assert((C1->getType()->isInteger() || isa<PackedType>(C1->getType())) &&
           "Tried to create a shift operation on a non-integer type!");
    break;
  default:
    break;
  }
#endif

  if (Instruction::isRelational(Opcode))
    return getTy(Type::BoolTy, Opcode, C1, C2);
  else
    return getTy(C1->getType(), Opcode, C1, C2);
}

Constant *ConstantExpr::getSelectTy(const Type *ReqTy, Constant *C,
                                    Constant *V1, Constant *V2) {
  assert(C->getType() == Type::BoolTy && "Select condition must be bool!");
  assert(V1->getType() == V2->getType() && "Select value types must match!");
  assert(V1->getType()->isFirstClassType() && "Cannot select aggregate type!");

  if (ReqTy == V1->getType())
    if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2))
      return SC;        // Fold common cases

  std::vector<Constant*> argVec(3, C);
  argVec[1] = V1;
  argVec[2] = V2;
  ExprMapKeyType Key = std::make_pair(Instruction::Select, argVec);
  return ExprConstants.getOrCreate(ReqTy, Key);
}

/// getShiftTy - Return a shift left or shift right constant expr
Constant *ConstantExpr::getShiftTy(const Type *ReqTy, unsigned Opcode,
                                   Constant *C1, Constant *C2) {
  // Check the operands for consistency first
  assert((Opcode == Instruction::Shl ||
          Opcode == Instruction::Shr) &&
         "Invalid opcode in binary constant expression");
  assert(C1->getType()->isIntegral() && C2->getType() == Type::UByteTy &&
         "Invalid operand types for Shift constant expr!");

  if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2))
    return FC;          // Fold a few common cases...

  // Look up the constant in the table first to ensure uniqueness
  std::vector<Constant*> argVec(1, C1); argVec.push_back(C2);
  ExprMapKeyType Key = std::make_pair(Opcode, argVec);
  return ExprConstants.getOrCreate(ReqTy, Key);
}


Constant *ConstantExpr::getGetElementPtrTy(const Type *ReqTy, Constant *C,
                                           const std::vector<Value*> &IdxList) {
  assert(GetElementPtrInst::getIndexedType(C->getType(), IdxList, true) &&
         "GEP indices invalid!");

  if (Constant *FC = ConstantFoldGetElementPtr(C, IdxList))
    return FC;          // Fold a few common cases...

  assert(isa<PointerType>(C->getType()) &&
         "Non-pointer type for constant GetElementPtr expression");
  // Look up the constant in the table first to ensure uniqueness
  std::vector<Constant*> ArgVec;
  ArgVec.reserve(IdxList.size()+1);
  ArgVec.push_back(C);
  for (unsigned i = 0, e = IdxList.size(); i != e; ++i)
    ArgVec.push_back(cast<Constant>(IdxList[i]));
  const ExprMapKeyType &Key = std::make_pair(Instruction::GetElementPtr,ArgVec);
  return ExprConstants.getOrCreate(ReqTy, Key);
}

Constant *ConstantExpr::getGetElementPtr(Constant *C,
                                         const std::vector<Constant*> &IdxList){
  // Get the result type of the getelementptr!
  std::vector<Value*> VIdxList(IdxList.begin(), IdxList.end());

  const Type *Ty = GetElementPtrInst::getIndexedType(C->getType(), VIdxList,
                                                     true);
  assert(Ty && "GEP indices invalid!");
  return getGetElementPtrTy(PointerType::get(Ty), C, VIdxList);
}

Constant *ConstantExpr::getGetElementPtr(Constant *C,
                                         const std::vector<Value*> &IdxList) {
  // Get the result type of the getelementptr!
  const Type *Ty = GetElementPtrInst::getIndexedType(C->getType(), IdxList,
                                                     true);
  assert(Ty && "GEP indices invalid!");
  return getGetElementPtrTy(PointerType::get(Ty), C, IdxList);
}

Constant *ConstantExpr::getExtractElementTy(const Type *ReqTy, Constant *Val,
                                            Constant *Idx) {
  if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx))
    return FC;          // Fold a few common cases...
  // Look up the constant in the table first to ensure uniqueness
  std::vector<Constant*> ArgVec(1, Val);
  ArgVec.push_back(Idx);
  const ExprMapKeyType &Key = std::make_pair(Instruction::ExtractElement,ArgVec);
  return ExprConstants.getOrCreate(ReqTy, Key);
}

Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx) {
  assert(isa<PackedType>(Val->getType()) &&
         "Tried to create extractelement operation on non-packed type!");
  assert(Idx->getType() == Type::UIntTy &&
         "Extractelement index must be uint type!");
  return getExtractElementTy(cast<PackedType>(Val->getType())->getElementType(),
                             Val, Idx);
}

Constant *ConstantExpr::getInsertElementTy(const Type *ReqTy, Constant *Val,
                                           Constant *Elt, Constant *Idx) {
  if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx))
    return FC;          // Fold a few common cases...
  // Look up the constant in the table first to ensure uniqueness
  std::vector<Constant*> ArgVec(1, Val);
  ArgVec.push_back(Elt);
  ArgVec.push_back(Idx);
  const ExprMapKeyType &Key = std::make_pair(Instruction::InsertElement,ArgVec);
  return ExprConstants.getOrCreate(ReqTy, Key);
}

Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt, 
                                         Constant *Idx) {
  assert(isa<PackedType>(Val->getType()) &&
         "Tried to create insertelement operation on non-packed type!");
  assert(Elt->getType() == cast<PackedType>(Val->getType())->getElementType()
         && "Insertelement types must match!");
  assert(Idx->getType() == Type::UIntTy &&
         "Insertelement index must be uint type!");
  return getInsertElementTy(cast<PackedType>(Val->getType())->getElementType(),
                            Val, Elt, Idx);
}

// destroyConstant - Remove the constant from the constant table...
//
void ConstantExpr::destroyConstant() {
  ExprConstants.remove(this);
  destroyConstantImpl();
}

const char *ConstantExpr::getOpcodeName() const {
  return Instruction::getOpcodeName(getOpcode());
}

//===----------------------------------------------------------------------===//
//                replaceUsesOfWithOnConstant implementations

void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To,
                                                Use *U) {
  assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
  Constant *ToC = cast<Constant>(To);

  unsigned OperandToUpdate = U-OperandList;
  assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!");

  std::pair<ArrayConstantsTy::MapKey, ConstantArray*> Lookup;
  Lookup.first.first = getType();
  Lookup.second = this;

  std::vector<Constant*> &Values = Lookup.first.second;
  Values.reserve(getNumOperands());  // Build replacement array.

  // Fill values with the modified operands of the constant array.  Also, 
  // compute whether this turns into an all-zeros array.
  bool isAllZeros = false;
  if (!ToC->isNullValue()) {
    for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O)
      Values.push_back(cast<Constant>(O->get()));
  } else {
    isAllZeros = true;
    for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
      Constant *Val = cast<Constant>(O->get());
      Values.push_back(Val);
      if (isAllZeros) isAllZeros = Val->isNullValue();
    }
  }
  Values[OperandToUpdate] = ToC;
  
  Constant *Replacement = 0;
  if (isAllZeros) {
    Replacement = ConstantAggregateZero::get(getType());
  } else {
    // Check to see if we have this array type already.
    bool Exists;
    ArrayConstantsTy::MapIterator I =
      ArrayConstants.InsertOrGetItem(Lookup, Exists);
    
    if (Exists) {
      Replacement = I->second;
    } else {
      // Okay, the new shape doesn't exist in the system yet.  Instead of
      // creating a new constant array, inserting it, replaceallusesof'ing the
      // old with the new, then deleting the old... just update the current one
      // in place!
      ArrayConstants.MoveConstantToNewSlot(this, I);
      
      // Update to the new value.
      setOperand(OperandToUpdate, ToC);
      return;
    }
  }
 
  // Otherwise, I do need to replace this with an existing value.
  assert(Replacement != this && "I didn't contain From!");
  
  // Everyone using this now uses the replacement.
  uncheckedReplaceAllUsesWith(Replacement);
  
  // Delete the old constant!
  destroyConstant();
}

void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To,
                                                 Use *U) {
  assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
  Constant *ToC = cast<Constant>(To);

  unsigned OperandToUpdate = U-OperandList;
  assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!");

  std::pair<StructConstantsTy::MapKey, ConstantStruct*> Lookup;
  Lookup.first.first = getType();
  Lookup.second = this;
  std::vector<Constant*> &Values = Lookup.first.second;
  Values.reserve(getNumOperands());  // Build replacement struct.
  
  
  // Fill values with the modified operands of the constant struct.  Also, 
  // compute whether this turns into an all-zeros struct.
  bool isAllZeros = false;
  if (!ToC->isNullValue()) {
    for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O)
      Values.push_back(cast<Constant>(O->get()));
  } else {
    isAllZeros = true;
    for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
      Constant *Val = cast<Constant>(O->get());
      Values.push_back(Val);
      if (isAllZeros) isAllZeros = Val->isNullValue();
    }
  }
  Values[OperandToUpdate] = ToC;
  
  Constant *Replacement = 0;
  if (isAllZeros) {
    Replacement = ConstantAggregateZero::get(getType());
  } else {
    // Check to see if we have this array type already.
    bool Exists;
    StructConstantsTy::MapIterator I =
      StructConstants.InsertOrGetItem(Lookup, Exists);
    
    if (Exists) {
      Replacement = I->second;
    } else {
      // Okay, the new shape doesn't exist in the system yet.  Instead of
      // creating a new constant struct, inserting it, replaceallusesof'ing the
      // old with the new, then deleting the old... just update the current one
      // in place!
      StructConstants.MoveConstantToNewSlot(this, I);
      
      // Update to the new value.
      setOperand(OperandToUpdate, ToC);
      return;
    }
  }
  
  assert(Replacement != this && "I didn't contain From!");
  
  // Everyone using this now uses the replacement.
  uncheckedReplaceAllUsesWith(Replacement);
  
  // Delete the old constant!
  destroyConstant();
}

void ConstantPacked::replaceUsesOfWithOnConstant(Value *From, Value *To,
                                                 Use *U) {
  assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
  
  std::vector<Constant*> Values;
  Values.reserve(getNumOperands());  // Build replacement array...
  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
    Constant *Val = getOperand(i);
    if (Val == From) Val = cast<Constant>(To);
    Values.push_back(Val);
  }
  
  Constant *Replacement = ConstantPacked::get(getType(), Values);
  assert(Replacement != this && "I didn't contain From!");
  
  // Everyone using this now uses the replacement.
  uncheckedReplaceAllUsesWith(Replacement);
  
  // Delete the old constant!
  destroyConstant();
}

void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV,
                                               Use *U) {
  assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!");
  Constant *To = cast<Constant>(ToV);
  
  Constant *Replacement = 0;
  if (getOpcode() == Instruction::GetElementPtr) {
    std::vector<Constant*> Indices;
    Constant *Pointer = getOperand(0);
    Indices.reserve(getNumOperands()-1);
    if (Pointer == From) Pointer = To;
    
    for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
      Constant *Val = getOperand(i);
      if (Val == From) Val = To;
      Indices.push_back(Val);
    }
    Replacement = ConstantExpr::getGetElementPtr(Pointer, Indices);
  } else if (getOpcode() == Instruction::Cast) {
    assert(getOperand(0) == From && "Cast only has one use!");
    Replacement = ConstantExpr::getCast(To, getType());
  } else if (getOpcode() == Instruction::Select) {
    Constant *C1 = getOperand(0);
    Constant *C2 = getOperand(1);
    Constant *C3 = getOperand(2);
    if (C1 == From) C1 = To;
    if (C2 == From) C2 = To;
    if (C3 == From) C3 = To;
    Replacement = ConstantExpr::getSelect(C1, C2, C3);
  } else if (getOpcode() == Instruction::ExtractElement) {
    Constant *C1 = getOperand(0);
    Constant *C2 = getOperand(1);
    if (C1 == From) C1 = To;
    if (C2 == From) C2 = To;
    Replacement = ConstantExpr::getExtractElement(C1, C2);
  } else if (getNumOperands() == 2) {
    Constant *C1 = getOperand(0);
    Constant *C2 = getOperand(1);
    if (C1 == From) C1 = To;
    if (C2 == From) C2 = To;
    Replacement = ConstantExpr::get(getOpcode(), C1, C2);
  } else {
    assert(0 && "Unknown ConstantExpr type!");
    return;
  }
  
  assert(Replacement != this && "I didn't contain From!");
  
  // Everyone using this now uses the replacement.
  uncheckedReplaceAllUsesWith(Replacement);
  
  // Delete the old constant!
  destroyConstant();
}



/// clearAllValueMaps - This method frees all internal memory used by the
/// constant subsystem, which can be used in environments where this memory
/// is otherwise reported as a leak.
void Constant::clearAllValueMaps() {
  std::vector<Constant *> Constants;

  DoubleConstants.clear(Constants);
  FloatConstants.clear(Constants);
  SIntConstants.clear(Constants);
  UIntConstants.clear(Constants);
  AggZeroConstants.clear(Constants);
  ArrayConstants.clear(Constants);
  StructConstants.clear(Constants);
  PackedConstants.clear(Constants);
  NullPtrConstants.clear(Constants);
  UndefValueConstants.clear(Constants);
  ExprConstants.clear(Constants);

  for (std::vector<Constant *>::iterator I = Constants.begin(),
       E = Constants.end(); I != E; ++I)
    (*I)->dropAllReferences();
  for (std::vector<Constant *>::iterator I = Constants.begin(),
       E = Constants.end(); I != E; ++I)
    (*I)->destroyConstantImpl();
  Constants.clear();
}