//===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Methods common to all machine instructions. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/MachineInstr.h" #include "llvm/ADT/FoldingSet.h" #include "llvm/ADT/Hashing.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Assembly/Writer.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineMemOperand.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/PseudoSourceValue.h" #include "llvm/DebugInfo.h" #include "llvm/IR/Constants.h" #include "llvm/IR/Function.h" #include "llvm/IR/InlineAsm.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Metadata.h" #include "llvm/IR/Module.h" #include "llvm/IR/Type.h" #include "llvm/IR/Value.h" #include "llvm/MC/MCInstrDesc.h" #include "llvm/MC/MCSymbol.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/LeakDetector.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetRegisterInfo.h" using namespace llvm; //===----------------------------------------------------------------------===// // MachineOperand Implementation //===----------------------------------------------------------------------===// void MachineOperand::setReg(unsigned Reg) { if (getReg() == Reg) return; // No change. // Otherwise, we have to change the register. If this operand is embedded // into a machine function, we need to update the old and new register's // use/def lists. if (MachineInstr *MI = getParent()) if (MachineBasicBlock *MBB = MI->getParent()) if (MachineFunction *MF = MBB->getParent()) { MachineRegisterInfo &MRI = MF->getRegInfo(); MRI.removeRegOperandFromUseList(this); SmallContents.RegNo = Reg; MRI.addRegOperandToUseList(this); return; } // Otherwise, just change the register, no problem. :) SmallContents.RegNo = Reg; } void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx, const TargetRegisterInfo &TRI) { assert(TargetRegisterInfo::isVirtualRegister(Reg)); if (SubIdx && getSubReg()) SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg()); setReg(Reg); if (SubIdx) setSubReg(SubIdx); } void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) { assert(TargetRegisterInfo::isPhysicalRegister(Reg)); if (getSubReg()) { Reg = TRI.getSubReg(Reg, getSubReg()); // Note that getSubReg() may return 0 if the sub-register doesn't exist. // That won't happen in legal code. setSubReg(0); } setReg(Reg); } /// Change a def to a use, or a use to a def. void MachineOperand::setIsDef(bool Val) { assert(isReg() && "Wrong MachineOperand accessor"); assert((!Val || !isDebug()) && "Marking a debug operation as def"); if (IsDef == Val) return; // MRI may keep uses and defs in different list positions. if (MachineInstr *MI = getParent()) if (MachineBasicBlock *MBB = MI->getParent()) if (MachineFunction *MF = MBB->getParent()) { MachineRegisterInfo &MRI = MF->getRegInfo(); MRI.removeRegOperandFromUseList(this); IsDef = Val; MRI.addRegOperandToUseList(this); return; } IsDef = Val; } /// ChangeToImmediate - Replace this operand with a new immediate operand of /// the specified value. If an operand is known to be an immediate already, /// the setImm method should be used. void MachineOperand::ChangeToImmediate(int64_t ImmVal) { assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm"); // If this operand is currently a register operand, and if this is in a // function, deregister the operand from the register's use/def list. if (isReg() && isOnRegUseList()) if (MachineInstr *MI = getParent()) if (MachineBasicBlock *MBB = MI->getParent()) if (MachineFunction *MF = MBB->getParent()) MF->getRegInfo().removeRegOperandFromUseList(this); OpKind = MO_Immediate; Contents.ImmVal = ImmVal; } /// ChangeToRegister - Replace this operand with a new register operand of /// the specified value. If an operand is known to be an register already, /// the setReg method should be used. void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp, bool isKill, bool isDead, bool isUndef, bool isDebug) { MachineRegisterInfo *RegInfo = 0; if (MachineInstr *MI = getParent()) if (MachineBasicBlock *MBB = MI->getParent()) if (MachineFunction *MF = MBB->getParent()) RegInfo = &MF->getRegInfo(); // If this operand is already a register operand, remove it from the // register's use/def lists. bool WasReg = isReg(); if (RegInfo && WasReg) RegInfo->removeRegOperandFromUseList(this); // Change this to a register and set the reg#. OpKind = MO_Register; SmallContents.RegNo = Reg; SubReg = 0; IsDef = isDef; IsImp = isImp; IsKill = isKill; IsDead = isDead; IsUndef = isUndef; IsInternalRead = false; IsEarlyClobber = false; IsDebug = isDebug; // Ensure isOnRegUseList() returns false. Contents.Reg.Prev = 0; // Preserve the tie when the operand was already a register. if (!WasReg) TiedTo = 0; // If this operand is embedded in a function, add the operand to the // register's use/def list. if (RegInfo) RegInfo->addRegOperandToUseList(this); } /// isIdenticalTo - Return true if this operand is identical to the specified /// operand. Note that this should stay in sync with the hash_value overload /// below. bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const { if (getType() != Other.getType() || getTargetFlags() != Other.getTargetFlags()) return false; switch (getType()) { case MachineOperand::MO_Register: return getReg() == Other.getReg() && isDef() == Other.isDef() && getSubReg() == Other.getSubReg(); case MachineOperand::MO_Immediate: return getImm() == Other.getImm(); case MachineOperand::MO_CImmediate: return getCImm() == Other.getCImm(); case MachineOperand::MO_FPImmediate: return getFPImm() == Other.getFPImm(); case MachineOperand::MO_MachineBasicBlock: return getMBB() == Other.getMBB(); case MachineOperand::MO_FrameIndex: return getIndex() == Other.getIndex(); case MachineOperand::MO_ConstantPoolIndex: case MachineOperand::MO_TargetIndex: return getIndex() == Other.getIndex() && getOffset() == Other.getOffset(); case MachineOperand::MO_JumpTableIndex: return getIndex() == Other.getIndex(); case MachineOperand::MO_GlobalAddress: return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset(); case MachineOperand::MO_ExternalSymbol: return !strcmp(getSymbolName(), Other.getSymbolName()) && getOffset() == Other.getOffset(); case MachineOperand::MO_BlockAddress: return getBlockAddress() == Other.getBlockAddress() && getOffset() == Other.getOffset(); case MO_RegisterMask: return getRegMask() == Other.getRegMask(); case MachineOperand::MO_MCSymbol: return getMCSymbol() == Other.getMCSymbol(); case MachineOperand::MO_Metadata: return getMetadata() == Other.getMetadata(); } llvm_unreachable("Invalid machine operand type"); } // Note: this must stay exactly in sync with isIdenticalTo above. hash_code llvm::hash_value(const MachineOperand &MO) { switch (MO.getType()) { case MachineOperand::MO_Register: // Register operands don't have target flags. return hash_combine(MO.getType(), MO.getReg(), MO.getSubReg(), MO.isDef()); case MachineOperand::MO_Immediate: return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getImm()); case MachineOperand::MO_CImmediate: return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCImm()); case MachineOperand::MO_FPImmediate: return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getFPImm()); case MachineOperand::MO_MachineBasicBlock: return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMBB()); case MachineOperand::MO_FrameIndex: return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex()); case MachineOperand::MO_ConstantPoolIndex: case MachineOperand::MO_TargetIndex: return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex(), MO.getOffset()); case MachineOperand::MO_JumpTableIndex: return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex()); case MachineOperand::MO_ExternalSymbol: return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getOffset(), MO.getSymbolName()); case MachineOperand::MO_GlobalAddress: return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getGlobal(), MO.getOffset()); case MachineOperand::MO_BlockAddress: return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getBlockAddress(), MO.getOffset()); case MachineOperand::MO_RegisterMask: return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getRegMask()); case MachineOperand::MO_Metadata: return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMetadata()); case MachineOperand::MO_MCSymbol: return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMCSymbol()); } llvm_unreachable("Invalid machine operand type"); } /// print - Print the specified machine operand. /// void MachineOperand::print(raw_ostream &OS, const TargetMachine *TM) const { // If the instruction is embedded into a basic block, we can find the // target info for the instruction. if (!TM) if (const MachineInstr *MI = getParent()) if (const MachineBasicBlock *MBB = MI->getParent()) if (const MachineFunction *MF = MBB->getParent()) TM = &MF->getTarget(); const TargetRegisterInfo *TRI = TM ? TM->getRegisterInfo() : 0; switch (getType()) { case MachineOperand::MO_Register: OS << PrintReg(getReg(), TRI, getSubReg()); if (isDef() || isKill() || isDead() || isImplicit() || isUndef() || isInternalRead() || isEarlyClobber() || isTied()) { OS << '<'; bool NeedComma = false; if (isDef()) { if (NeedComma) OS << ','; if (isEarlyClobber()) OS << "earlyclobber,"; if (isImplicit()) OS << "imp-"; OS << "def"; NeedComma = true; // only makes sense when getSubReg() is set. // Don't clutter the output otherwise. if (isUndef() && getSubReg()) OS << ",read-undef"; } else if (isImplicit()) { OS << "imp-use"; NeedComma = true; } if (isKill()) { if (NeedComma) OS << ','; OS << "kill"; NeedComma = true; } if (isDead()) { if (NeedComma) OS << ','; OS << "dead"; NeedComma = true; } if (isUndef() && isUse()) { if (NeedComma) OS << ','; OS << "undef"; NeedComma = true; } if (isInternalRead()) { if (NeedComma) OS << ','; OS << "internal"; NeedComma = true; } if (isTied()) { if (NeedComma) OS << ','; OS << "tied"; if (TiedTo != 15) OS << unsigned(TiedTo - 1); NeedComma = true; } OS << '>'; } break; case MachineOperand::MO_Immediate: OS << getImm(); break; case MachineOperand::MO_CImmediate: getCImm()->getValue().print(OS, false); break; case MachineOperand::MO_FPImmediate: if (getFPImm()->getType()->isFloatTy()) OS << getFPImm()->getValueAPF().convertToFloat(); else OS << getFPImm()->getValueAPF().convertToDouble(); break; case MachineOperand::MO_MachineBasicBlock: OS << "getNumber() << ">"; break; case MachineOperand::MO_FrameIndex: OS << "'; break; case MachineOperand::MO_ConstantPoolIndex: OS << "'; break; case MachineOperand::MO_TargetIndex: OS << "'; break; case MachineOperand::MO_JumpTableIndex: OS << "'; break; case MachineOperand::MO_GlobalAddress: OS << "'; break; case MachineOperand::MO_ExternalSymbol: OS << "'; break; case MachineOperand::MO_BlockAddress: OS << '<'; WriteAsOperand(OS, getBlockAddress(), /*PrintType=*/false); if (getOffset()) OS << "+" << getOffset(); OS << '>'; break; case MachineOperand::MO_RegisterMask: OS << ""; break; case MachineOperand::MO_Metadata: OS << '<'; WriteAsOperand(OS, getMetadata(), /*PrintType=*/false); OS << '>'; break; case MachineOperand::MO_MCSymbol: OS << "'; break; } if (unsigned TF = getTargetFlags()) OS << "[TF=" << TF << ']'; } //===----------------------------------------------------------------------===// // MachineMemOperand Implementation //===----------------------------------------------------------------------===// /// getAddrSpace - Return the LLVM IR address space number that this pointer /// points into. unsigned MachinePointerInfo::getAddrSpace() const { if (V == 0) return 0; return cast(V->getType())->getAddressSpace(); } /// getConstantPool - Return a MachinePointerInfo record that refers to the /// constant pool. MachinePointerInfo MachinePointerInfo::getConstantPool() { return MachinePointerInfo(PseudoSourceValue::getConstantPool()); } /// getFixedStack - Return a MachinePointerInfo record that refers to the /// the specified FrameIndex. MachinePointerInfo MachinePointerInfo::getFixedStack(int FI, int64_t offset) { return MachinePointerInfo(PseudoSourceValue::getFixedStack(FI), offset); } MachinePointerInfo MachinePointerInfo::getJumpTable() { return MachinePointerInfo(PseudoSourceValue::getJumpTable()); } MachinePointerInfo MachinePointerInfo::getGOT() { return MachinePointerInfo(PseudoSourceValue::getGOT()); } MachinePointerInfo MachinePointerInfo::getStack(int64_t Offset) { return MachinePointerInfo(PseudoSourceValue::getStack(), Offset); } MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, unsigned f, uint64_t s, unsigned int a, const MDNode *TBAAInfo, const MDNode *Ranges) : PtrInfo(ptrinfo), Size(s), Flags((f & ((1 << MOMaxBits) - 1)) | ((Log2_32(a) + 1) << MOMaxBits)), TBAAInfo(TBAAInfo), Ranges(Ranges) { assert((PtrInfo.V == 0 || isa(PtrInfo.V->getType())) && "invalid pointer value"); assert(getBaseAlignment() == a && "Alignment is not a power of 2!"); assert((isLoad() || isStore()) && "Not a load/store!"); } /// Profile - Gather unique data for the object. /// void MachineMemOperand::Profile(FoldingSetNodeID &ID) const { ID.AddInteger(getOffset()); ID.AddInteger(Size); ID.AddPointer(getValue()); ID.AddInteger(Flags); } void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) { // The Value and Offset may differ due to CSE. But the flags and size // should be the same. assert(MMO->getFlags() == getFlags() && "Flags mismatch!"); assert(MMO->getSize() == getSize() && "Size mismatch!"); if (MMO->getBaseAlignment() >= getBaseAlignment()) { // Update the alignment value. Flags = (Flags & ((1 << MOMaxBits) - 1)) | ((Log2_32(MMO->getBaseAlignment()) + 1) << MOMaxBits); // Also update the base and offset, because the new alignment may // not be applicable with the old ones. PtrInfo = MMO->PtrInfo; } } /// getAlignment - Return the minimum known alignment in bytes of the /// actual memory reference. uint64_t MachineMemOperand::getAlignment() const { return MinAlign(getBaseAlignment(), getOffset()); } raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineMemOperand &MMO) { assert((MMO.isLoad() || MMO.isStore()) && "SV has to be a load, store or both."); if (MMO.isVolatile()) OS << "Volatile "; if (MMO.isLoad()) OS << "LD"; if (MMO.isStore()) OS << "ST"; OS << MMO.getSize(); // Print the address information. OS << "["; if (!MMO.getValue()) OS << ""; else WriteAsOperand(OS, MMO.getValue(), /*PrintType=*/false); // If the alignment of the memory reference itself differs from the alignment // of the base pointer, print the base alignment explicitly, next to the base // pointer. if (MMO.getBaseAlignment() != MMO.getAlignment()) OS << "(align=" << MMO.getBaseAlignment() << ")"; if (MMO.getOffset() != 0) OS << "+" << MMO.getOffset(); OS << "]"; // Print the alignment of the reference. if (MMO.getBaseAlignment() != MMO.getAlignment() || MMO.getBaseAlignment() != MMO.getSize()) OS << "(align=" << MMO.getAlignment() << ")"; // Print TBAA info. if (const MDNode *TBAAInfo = MMO.getTBAAInfo()) { OS << "(tbaa="; if (TBAAInfo->getNumOperands() > 0) WriteAsOperand(OS, TBAAInfo->getOperand(0), /*PrintType=*/false); else OS << ""; OS << ")"; } // Print nontemporal info. if (MMO.isNonTemporal()) OS << "(nontemporal)"; return OS; } //===----------------------------------------------------------------------===// // MachineInstr Implementation //===----------------------------------------------------------------------===// void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) { if (MCID->ImplicitDefs) for (const uint16_t *ImpDefs = MCID->getImplicitDefs(); *ImpDefs; ++ImpDefs) addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true)); if (MCID->ImplicitUses) for (const uint16_t *ImpUses = MCID->getImplicitUses(); *ImpUses; ++ImpUses) addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true)); } /// MachineInstr ctor - This constructor creates a MachineInstr and adds the /// implicit operands. It reserves space for the number of operands specified by /// the MCInstrDesc. MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid, const DebugLoc dl, bool NoImp) : MCID(&tid), Flags(0), AsmPrinterFlags(0), NumMemRefs(0), MemRefs(0), Parent(0), debugLoc(dl) { unsigned NumImplicitOps = 0; if (!NoImp) NumImplicitOps = MCID->getNumImplicitDefs() + MCID->getNumImplicitUses(); Operands.reserve(NumImplicitOps + MCID->getNumOperands()); if (!NoImp) addImplicitDefUseOperands(MF); // Make sure that we get added to a machine basicblock LeakDetector::addGarbageObject(this); } /// MachineInstr ctor - Copies MachineInstr arg exactly /// MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) : MCID(&MI.getDesc()), Flags(0), AsmPrinterFlags(0), NumMemRefs(MI.NumMemRefs), MemRefs(MI.MemRefs), Parent(0), debugLoc(MI.getDebugLoc()) { Operands.reserve(MI.getNumOperands()); // Add operands for (unsigned i = 0; i != MI.getNumOperands(); ++i) addOperand(MF, MI.getOperand(i)); // Copy all the sensible flags. setFlags(MI.Flags); // Set parent to null. Parent = 0; LeakDetector::addGarbageObject(this); } MachineInstr::~MachineInstr() { LeakDetector::removeGarbageObject(this); #ifndef NDEBUG for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { assert(Operands[i].ParentMI == this && "ParentMI mismatch!"); assert((!Operands[i].isReg() || !Operands[i].isOnRegUseList()) && "Reg operand def/use list corrupted"); } #endif } /// getRegInfo - If this instruction is embedded into a MachineFunction, /// return the MachineRegisterInfo object for the current function, otherwise /// return null. MachineRegisterInfo *MachineInstr::getRegInfo() { if (MachineBasicBlock *MBB = getParent()) return &MBB->getParent()->getRegInfo(); return 0; } /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in /// this instruction from their respective use lists. This requires that the /// operands already be on their use lists. void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) { for (unsigned i = 0, e = getNumOperands(); i != e; ++i) if (Operands[i].isReg()) MRI.removeRegOperandFromUseList(&Operands[i]); } /// AddRegOperandsToUseLists - Add all of the register operands in /// this instruction from their respective use lists. This requires that the /// operands not be on their use lists yet. void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) { for (unsigned i = 0, e = getNumOperands(); i != e; ++i) if (Operands[i].isReg()) MRI.addRegOperandToUseList(&Operands[i]); } void MachineInstr::addOperand(const MachineOperand &Op) { MachineBasicBlock *MBB = getParent(); assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs"); MachineFunction *MF = MBB->getParent(); assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs"); addOperand(*MF, Op); } /// addOperand - Add the specified operand to the instruction. If it is an /// implicit operand, it is added to the end of the operand list. If it is /// an explicit operand it is added at the end of the explicit operand list /// (before the first implicit operand). void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) { assert(MCID && "Cannot add operands before providing an instr descriptor"); bool isImpReg = Op.isReg() && Op.isImplicit(); MachineRegisterInfo *RegInfo = getRegInfo(); // If the Operands backing store is reallocated, all register operands must // be removed and re-added to RegInfo. It is storing pointers to operands. bool Reallocate = RegInfo && !Operands.empty() && getNumOperands() == Operands.capacity(); // Find the insert location for the new operand. Implicit registers go at // the end, everything goes before the implicit regs. unsigned OpNo = getNumOperands(); // Remove all the implicit operands from RegInfo if they need to be shifted. // FIXME: Allow mixed explicit and implicit operands on inline asm. // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as // implicit-defs, but they must not be moved around. See the FIXME in // InstrEmitter.cpp. if (!isImpReg && !isInlineAsm()) { while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) { --OpNo; assert(!Operands[OpNo].isTied() && "Cannot move tied operands"); if (RegInfo) RegInfo->removeRegOperandFromUseList(&Operands[OpNo]); } } // OpNo now points as the desired insertion point. Unless this is a variadic // instruction, only implicit regs are allowed beyond MCID->getNumOperands(). // RegMask operands go between the explicit and implicit operands. assert((isImpReg || Op.isRegMask() || MCID->isVariadic() || OpNo < MCID->getNumOperands()) && "Trying to add an operand to a machine instr that is already done!"); // All operands from OpNo have been removed from RegInfo. If the Operands // backing store needs to be reallocated, we also need to remove any other // register operands. if (Reallocate) for (unsigned i = 0; i != OpNo; ++i) if (Operands[i].isReg()) RegInfo->removeRegOperandFromUseList(&Operands[i]); // Insert the new operand at OpNo. Operands.insert(Operands.begin() + OpNo, Op); Operands[OpNo].ParentMI = this; // The Operands backing store has now been reallocated, so we can re-add the // operands before OpNo. if (Reallocate) for (unsigned i = 0; i != OpNo; ++i) if (Operands[i].isReg()) RegInfo->addRegOperandToUseList(&Operands[i]); // When adding a register operand, tell RegInfo about it. if (Operands[OpNo].isReg()) { // Ensure isOnRegUseList() returns false, regardless of Op's status. Operands[OpNo].Contents.Reg.Prev = 0; // Ignore existing ties. This is not a property that can be copied. Operands[OpNo].TiedTo = 0; // Add the new operand to RegInfo. if (RegInfo) RegInfo->addRegOperandToUseList(&Operands[OpNo]); // The MCID operand information isn't accurate until we start adding // explicit operands. The implicit operands are added first, then the // explicits are inserted before them. if (!isImpReg) { // Tie uses to defs as indicated in MCInstrDesc. if (Operands[OpNo].isUse()) { int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO); if (DefIdx != -1) tieOperands(DefIdx, OpNo); } // If the register operand is flagged as early, mark the operand as such. if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1) Operands[OpNo].setIsEarlyClobber(true); } } // Re-add all the implicit ops. if (RegInfo) { for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i) { assert(Operands[i].isReg() && "Should only be an implicit reg!"); RegInfo->addRegOperandToUseList(&Operands[i]); } } } /// RemoveOperand - Erase an operand from an instruction, leaving it with one /// fewer operand than it started with. /// void MachineInstr::RemoveOperand(unsigned OpNo) { assert(OpNo < getNumOperands() && "Invalid operand number"); untieRegOperand(OpNo); MachineRegisterInfo *RegInfo = getRegInfo(); // If we have reginfo to update, remove all operands that will be shifted // down from their reg lists, move everything down, then re-add them. if (RegInfo) { for (unsigned i = OpNo, e = getNumOperands(); i != e; ++i) { if (Operands[i].isReg()) RegInfo->removeRegOperandFromUseList(&Operands[i]); } } #ifndef NDEBUG // Moving tied operands would break the ties. for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i) if (Operands[i].isReg()) assert(!Operands[i].isTied() && "Cannot move tied operands"); #endif Operands.erase(Operands.begin()+OpNo); if (RegInfo) { for (unsigned i = OpNo, e = getNumOperands(); i != e; ++i) { if (Operands[i].isReg()) RegInfo->addRegOperandToUseList(&Operands[i]); } } } /// addMemOperand - Add a MachineMemOperand to the machine instruction. /// This function should be used only occasionally. The setMemRefs function /// is the primary method for setting up a MachineInstr's MemRefs list. void MachineInstr::addMemOperand(MachineFunction &MF, MachineMemOperand *MO) { mmo_iterator OldMemRefs = MemRefs; uint16_t OldNumMemRefs = NumMemRefs; uint16_t NewNum = NumMemRefs + 1; mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum); std::copy(OldMemRefs, OldMemRefs + OldNumMemRefs, NewMemRefs); NewMemRefs[NewNum - 1] = MO; MemRefs = NewMemRefs; NumMemRefs = NewNum; } bool MachineInstr::hasPropertyInBundle(unsigned Mask, QueryType Type) const { const MachineBasicBlock *MBB = getParent(); MachineBasicBlock::const_instr_iterator MII = *this; ++MII; while (MII != MBB->end() && MII->isInsideBundle()) { if (MII->getDesc().getFlags() & Mask) { if (Type == AnyInBundle) return true; } else { if (Type == AllInBundle) return false; } ++MII; } return Type == AllInBundle; } bool MachineInstr::isIdenticalTo(const MachineInstr *Other, MICheckType Check) const { // If opcodes or number of operands are not the same then the two // instructions are obviously not identical. if (Other->getOpcode() != getOpcode() || Other->getNumOperands() != getNumOperands()) return false; if (isBundle()) { // Both instructions are bundles, compare MIs inside the bundle. MachineBasicBlock::const_instr_iterator I1 = *this; MachineBasicBlock::const_instr_iterator E1 = getParent()->instr_end(); MachineBasicBlock::const_instr_iterator I2 = *Other; MachineBasicBlock::const_instr_iterator E2= Other->getParent()->instr_end(); while (++I1 != E1 && I1->isInsideBundle()) { ++I2; if (I2 == E2 || !I2->isInsideBundle() || !I1->isIdenticalTo(I2, Check)) return false; } } // Check operands to make sure they match. for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { const MachineOperand &MO = getOperand(i); const MachineOperand &OMO = Other->getOperand(i); if (!MO.isReg()) { if (!MO.isIdenticalTo(OMO)) return false; continue; } // Clients may or may not want to ignore defs when testing for equality. // For example, machine CSE pass only cares about finding common // subexpressions, so it's safe to ignore virtual register defs. if (MO.isDef()) { if (Check == IgnoreDefs) continue; else if (Check == IgnoreVRegDefs) { if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) || TargetRegisterInfo::isPhysicalRegister(OMO.getReg())) if (MO.getReg() != OMO.getReg()) return false; } else { if (!MO.isIdenticalTo(OMO)) return false; if (Check == CheckKillDead && MO.isDead() != OMO.isDead()) return false; } } else { if (!MO.isIdenticalTo(OMO)) return false; if (Check == CheckKillDead && MO.isKill() != OMO.isKill()) return false; } } // If DebugLoc does not match then two dbg.values are not identical. if (isDebugValue()) if (!getDebugLoc().isUnknown() && !Other->getDebugLoc().isUnknown() && getDebugLoc() != Other->getDebugLoc()) return false; return true; } MachineInstr *MachineInstr::removeFromParent() { assert(getParent() && "Not embedded in a basic block!"); return getParent()->remove(this); } MachineInstr *MachineInstr::removeFromBundle() { assert(getParent() && "Not embedded in a basic block!"); return getParent()->remove_instr(this); } void MachineInstr::eraseFromParent() { assert(getParent() && "Not embedded in a basic block!"); getParent()->erase(this); } void MachineInstr::eraseFromBundle() { assert(getParent() && "Not embedded in a basic block!"); getParent()->erase_instr(this); } /// getNumExplicitOperands - Returns the number of non-implicit operands. /// unsigned MachineInstr::getNumExplicitOperands() const { unsigned NumOperands = MCID->getNumOperands(); if (!MCID->isVariadic()) return NumOperands; for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) { const MachineOperand &MO = getOperand(i); if (!MO.isReg() || !MO.isImplicit()) NumOperands++; } return NumOperands; } void MachineInstr::bundleWithPred() { assert(!isBundledWithPred() && "MI is already bundled with its predecessor"); setFlag(BundledPred); MachineBasicBlock::instr_iterator Pred = this; --Pred; assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags"); Pred->setFlag(BundledSucc); } void MachineInstr::bundleWithSucc() { assert(!isBundledWithSucc() && "MI is already bundled with its successor"); setFlag(BundledSucc); MachineBasicBlock::instr_iterator Succ = this; ++Succ; assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags"); Succ->setFlag(BundledPred); } void MachineInstr::unbundleFromPred() { assert(isBundledWithPred() && "MI isn't bundled with its predecessor"); clearFlag(BundledPred); MachineBasicBlock::instr_iterator Pred = this; --Pred; assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags"); Pred->clearFlag(BundledSucc); } void MachineInstr::unbundleFromSucc() { assert(isBundledWithSucc() && "MI isn't bundled with its successor"); clearFlag(BundledSucc); MachineBasicBlock::instr_iterator Succ = this; --Succ; assert(Succ->isBundledWithPred() && "Inconsistent bundle flags"); Succ->clearFlag(BundledPred); } bool MachineInstr::isStackAligningInlineAsm() const { if (isInlineAsm()) { unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); if (ExtraInfo & InlineAsm::Extra_IsAlignStack) return true; } return false; } InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const { assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!"); unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0); } int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx, unsigned *GroupNo) const { assert(isInlineAsm() && "Expected an inline asm instruction"); assert(OpIdx < getNumOperands() && "OpIdx out of range"); // Ignore queries about the initial operands. if (OpIdx < InlineAsm::MIOp_FirstOperand) return -1; unsigned Group = 0; unsigned NumOps; for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; i += NumOps) { const MachineOperand &FlagMO = getOperand(i); // If we reach the implicit register operands, stop looking. if (!FlagMO.isImm()) return -1; NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); if (i + NumOps > OpIdx) { if (GroupNo) *GroupNo = Group; return i; } ++Group; } return -1; } const TargetRegisterClass* MachineInstr::getRegClassConstraint(unsigned OpIdx, const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { assert(getParent() && "Can't have an MBB reference here!"); assert(getParent()->getParent() && "Can't have an MF reference here!"); const MachineFunction &MF = *getParent()->getParent(); // Most opcodes have fixed constraints in their MCInstrDesc. if (!isInlineAsm()) return TII->getRegClass(getDesc(), OpIdx, TRI, MF); if (!getOperand(OpIdx).isReg()) return NULL; // For tied uses on inline asm, get the constraint from the def. unsigned DefIdx; if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx)) OpIdx = DefIdx; // Inline asm stores register class constraints in the flag word. int FlagIdx = findInlineAsmFlagIdx(OpIdx); if (FlagIdx < 0) return NULL; unsigned Flag = getOperand(FlagIdx).getImm(); unsigned RCID; if (InlineAsm::hasRegClassConstraint(Flag, RCID)) return TRI->getRegClass(RCID); // Assume that all registers in a memory operand are pointers. if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem) return TRI->getPointerRegClass(MF); return NULL; } /// getBundleSize - Return the number of instructions inside the MI bundle. unsigned MachineInstr::getBundleSize() const { assert(isBundle() && "Expecting a bundle"); const MachineBasicBlock *MBB = getParent(); MachineBasicBlock::const_instr_iterator I = *this, E = MBB->instr_end(); unsigned Size = 0; while ((++I != E) && I->isInsideBundle()) { ++Size; } assert(Size > 1 && "Malformed bundle"); return Size; } /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of /// the specific register or -1 if it is not found. It further tightens /// the search criteria to a use that kills the register if isKill is true. int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill, const TargetRegisterInfo *TRI) const { for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { const MachineOperand &MO = getOperand(i); if (!MO.isReg() || !MO.isUse()) continue; unsigned MOReg = MO.getReg(); if (!MOReg) continue; if (MOReg == Reg || (TRI && TargetRegisterInfo::isPhysicalRegister(MOReg) && TargetRegisterInfo::isPhysicalRegister(Reg) && TRI->isSubRegister(MOReg, Reg))) if (!isKill || MO.isKill()) return i; } return -1; } /// readsWritesVirtualRegister - Return a pair of bools (reads, writes) /// indicating if this instruction reads or writes Reg. This also considers /// partial defines. std::pair MachineInstr::readsWritesVirtualRegister(unsigned Reg, SmallVectorImpl *Ops) const { bool PartDef = false; // Partial redefine. bool FullDef = false; // Full define. bool Use = false; for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { const MachineOperand &MO = getOperand(i); if (!MO.isReg() || MO.getReg() != Reg) continue; if (Ops) Ops->push_back(i); if (MO.isUse()) Use |= !MO.isUndef(); else if (MO.getSubReg() && !MO.isUndef()) // A partial doesn't count as reading the register. PartDef = true; else FullDef = true; } // A partial redefine uses Reg unless there is also a full define. return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef); } /// findRegisterDefOperandIdx() - Returns the operand index that is a def of /// the specified register or -1 if it is not found. If isDead is true, defs /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it /// also checks if there is a def of a super-register. int MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap, const TargetRegisterInfo *TRI) const { bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg); for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { const MachineOperand &MO = getOperand(i); // Accept regmask operands when Overlap is set. // Ignore them when looking for a specific def operand (Overlap == false). if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg)) return i; if (!MO.isReg() || !MO.isDef()) continue; unsigned MOReg = MO.getReg(); bool Found = (MOReg == Reg); if (!Found && TRI && isPhys && TargetRegisterInfo::isPhysicalRegister(MOReg)) { if (Overlap) Found = TRI->regsOverlap(MOReg, Reg); else Found = TRI->isSubRegister(MOReg, Reg); } if (Found && (!isDead || MO.isDead())) return i; } return -1; } /// findFirstPredOperandIdx() - Find the index of the first operand in the /// operand list that is used to represent the predicate. It returns -1 if /// none is found. int MachineInstr::findFirstPredOperandIdx() const { // Don't call MCID.findFirstPredOperandIdx() because this variant // is sometimes called on an instruction that's not yet complete, and // so the number of operands is less than the MCID indicates. In // particular, the PTX target does this. const MCInstrDesc &MCID = getDesc(); if (MCID.isPredicable()) { for (unsigned i = 0, e = getNumOperands(); i != e; ++i) if (MCID.OpInfo[i].isPredicate()) return i; } return -1; } // MachineOperand::TiedTo is 4 bits wide. const unsigned TiedMax = 15; /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other. /// /// Use and def operands can be tied together, indicated by a non-zero TiedTo /// field. TiedTo can have these values: /// /// 0: Operand is not tied to anything. /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1). /// TiedMax: Tied to an operand >= TiedMax-1. /// /// The tied def must be one of the first TiedMax operands on a normal /// instruction. INLINEASM instructions allow more tied defs. /// void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) { MachineOperand &DefMO = getOperand(DefIdx); MachineOperand &UseMO = getOperand(UseIdx); assert(DefMO.isDef() && "DefIdx must be a def operand"); assert(UseMO.isUse() && "UseIdx must be a use operand"); assert(!DefMO.isTied() && "Def is already tied to another use"); assert(!UseMO.isTied() && "Use is already tied to another def"); if (DefIdx < TiedMax) UseMO.TiedTo = DefIdx + 1; else { // Inline asm can use the group descriptors to find tied operands, but on // normal instruction, the tied def must be within the first TiedMax // operands. assert(isInlineAsm() && "DefIdx out of range"); UseMO.TiedTo = TiedMax; } // UseIdx can be out of range, we'll search for it in findTiedOperandIdx(). DefMO.TiedTo = std::min(UseIdx + 1, TiedMax); } /// Given the index of a tied register operand, find the operand it is tied to. /// Defs are tied to uses and vice versa. Returns the index of the tied operand /// which must exist. unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const { const MachineOperand &MO = getOperand(OpIdx); assert(MO.isTied() && "Operand isn't tied"); // Normally TiedTo is in range. if (MO.TiedTo < TiedMax) return MO.TiedTo - 1; // Uses on normal instructions can be out of range. if (!isInlineAsm()) { // Normal tied defs must be in the 0..TiedMax-1 range. if (MO.isUse()) return TiedMax - 1; // MO is a def. Search for the tied use. for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) { const MachineOperand &UseMO = getOperand(i); if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1) return i; } llvm_unreachable("Can't find tied use"); } // Now deal with inline asm by parsing the operand group descriptor flags. // Find the beginning of each operand group. SmallVector GroupIdx; unsigned OpIdxGroup = ~0u; unsigned NumOps; for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; i += NumOps) { const MachineOperand &FlagMO = getOperand(i); assert(FlagMO.isImm() && "Invalid tied operand on inline asm"); unsigned CurGroup = GroupIdx.size(); GroupIdx.push_back(i); NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); // OpIdx belongs to this operand group. if (OpIdx > i && OpIdx < i + NumOps) OpIdxGroup = CurGroup; unsigned TiedGroup; if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup)) continue; // Operands in this group are tied to operands in TiedGroup which must be // earlier. Find the number of operands between the two groups. unsigned Delta = i - GroupIdx[TiedGroup]; // OpIdx is a use tied to TiedGroup. if (OpIdxGroup == CurGroup) return OpIdx - Delta; // OpIdx is a def tied to this use group. if (OpIdxGroup == TiedGroup) return OpIdx + Delta; } llvm_unreachable("Invalid tied operand on inline asm"); } /// clearKillInfo - Clears kill flags on all operands. /// void MachineInstr::clearKillInfo() { for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { MachineOperand &MO = getOperand(i); if (MO.isReg() && MO.isUse()) MO.setIsKill(false); } } void MachineInstr::substituteRegister(unsigned FromReg, unsigned ToReg, unsigned SubIdx, const TargetRegisterInfo &RegInfo) { if (TargetRegisterInfo::isPhysicalRegister(ToReg)) { if (SubIdx) ToReg = RegInfo.getSubReg(ToReg, SubIdx); for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { MachineOperand &MO = getOperand(i); if (!MO.isReg() || MO.getReg() != FromReg) continue; MO.substPhysReg(ToReg, RegInfo); } } else { for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { MachineOperand &MO = getOperand(i); if (!MO.isReg() || MO.getReg() != FromReg) continue; MO.substVirtReg(ToReg, SubIdx, RegInfo); } } } /// isSafeToMove - Return true if it is safe to move this instruction. If /// SawStore is set to true, it means that there is a store (or call) between /// the instruction's location and its intended destination. bool MachineInstr::isSafeToMove(const TargetInstrInfo *TII, AliasAnalysis *AA, bool &SawStore) const { // Ignore stuff that we obviously can't move. // // Treat volatile loads as stores. This is not strictly necessary for // volatiles, but it is required for atomic loads. It is not allowed to move // a load across an atomic load with Ordering > Monotonic. if (mayStore() || isCall() || (mayLoad() && hasOrderedMemoryRef())) { SawStore = true; return false; } if (isLabel() || isDebugValue() || isTerminator() || hasUnmodeledSideEffects()) return false; // See if this instruction does a load. If so, we have to guarantee that the // loaded value doesn't change between the load and the its intended // destination. The check for isInvariantLoad gives the targe the chance to // classify the load as always returning a constant, e.g. a constant pool // load. if (mayLoad() && !isInvariantLoad(AA)) // Otherwise, this is a real load. If there is a store between the load and // end of block, we can't move it. return !SawStore; return true; } /// isSafeToReMat - Return true if it's safe to rematerialize the specified /// instruction which defined the specified register instead of copying it. bool MachineInstr::isSafeToReMat(const TargetInstrInfo *TII, AliasAnalysis *AA, unsigned DstReg) const { bool SawStore = false; if (!TII->isTriviallyReMaterializable(this, AA) || !isSafeToMove(TII, AA, SawStore)) return false; for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { const MachineOperand &MO = getOperand(i); if (!MO.isReg()) continue; // FIXME: For now, do not remat any instruction with register operands. // Later on, we can loosen the restriction is the register operands have // not been modified between the def and use. Note, this is different from // MachineSink because the code is no longer in two-address form (at least // partially). if (MO.isUse()) return false; else if (!MO.isDead() && MO.getReg() != DstReg) return false; } return true; } /// hasOrderedMemoryRef - Return true if this instruction may have an ordered /// or volatile memory reference, or if the information describing the memory /// reference is not available. Return false if it is known to have no ordered /// memory references. bool MachineInstr::hasOrderedMemoryRef() const { // An instruction known never to access memory won't have a volatile access. if (!mayStore() && !mayLoad() && !isCall() && !hasUnmodeledSideEffects()) return false; // Otherwise, if the instruction has no memory reference information, // conservatively assume it wasn't preserved. if (memoperands_empty()) return true; // Check the memory reference information for ordered references. for (mmo_iterator I = memoperands_begin(), E = memoperands_end(); I != E; ++I) if (!(*I)->isUnordered()) return true; return false; } /// isInvariantLoad - Return true if this instruction is loading from a /// location whose value is invariant across the function. For example, /// loading a value from the constant pool or from the argument area /// of a function if it does not change. This should only return true of /// *all* loads the instruction does are invariant (if it does multiple loads). bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const { // If the instruction doesn't load at all, it isn't an invariant load. if (!mayLoad()) return false; // If the instruction has lost its memoperands, conservatively assume that // it may not be an invariant load. if (memoperands_empty()) return false; const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo(); for (mmo_iterator I = memoperands_begin(), E = memoperands_end(); I != E; ++I) { if ((*I)->isVolatile()) return false; if ((*I)->isStore()) return false; if ((*I)->isInvariant()) return true; if (const Value *V = (*I)->getValue()) { // A load from a constant PseudoSourceValue is invariant. if (const PseudoSourceValue *PSV = dyn_cast(V)) if (PSV->isConstant(MFI)) continue; // If we have an AliasAnalysis, ask it whether the memory is constant. if (AA && AA->pointsToConstantMemory( AliasAnalysis::Location(V, (*I)->getSize(), (*I)->getTBAAInfo()))) continue; } // Otherwise assume conservatively. return false; } // Everything checks out. return true; } /// isConstantValuePHI - If the specified instruction is a PHI that always /// merges together the same virtual register, return the register, otherwise /// return 0. unsigned MachineInstr::isConstantValuePHI() const { if (!isPHI()) return 0; assert(getNumOperands() >= 3 && "It's illegal to have a PHI without source operands"); unsigned Reg = getOperand(1).getReg(); for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) if (getOperand(i).getReg() != Reg) return 0; return Reg; } bool MachineInstr::hasUnmodeledSideEffects() const { if (hasProperty(MCID::UnmodeledSideEffects)) return true; if (isInlineAsm()) { unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); if (ExtraInfo & InlineAsm::Extra_HasSideEffects) return true; } return false; } /// allDefsAreDead - Return true if all the defs of this instruction are dead. /// bool MachineInstr::allDefsAreDead() const { for (unsigned i = 0, e = getNumOperands(); i < e; ++i) { const MachineOperand &MO = getOperand(i); if (!MO.isReg() || MO.isUse()) continue; if (!MO.isDead()) return false; } return true; } /// copyImplicitOps - Copy implicit register operands from specified /// instruction to this instruction. void MachineInstr::copyImplicitOps(MachineFunction &MF, const MachineInstr *MI) { for (unsigned i = MI->getDesc().getNumOperands(), e = MI->getNumOperands(); i != e; ++i) { const MachineOperand &MO = MI->getOperand(i); if (MO.isReg() && MO.isImplicit()) addOperand(MF, MO); } } void MachineInstr::dump() const { #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) dbgs() << " " << *this; #endif } static void printDebugLoc(DebugLoc DL, const MachineFunction *MF, raw_ostream &CommentOS) { const LLVMContext &Ctx = MF->getFunction()->getContext(); if (!DL.isUnknown()) { // Print source line info. DIScope Scope(DL.getScope(Ctx)); // Omit the directory, because it's likely to be long and uninteresting. if (Scope.Verify()) CommentOS << Scope.getFilename(); else CommentOS << ""; CommentOS << ':' << DL.getLine(); if (DL.getCol() != 0) CommentOS << ':' << DL.getCol(); DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(DL.getInlinedAt(Ctx)); if (!InlinedAtDL.isUnknown()) { CommentOS << " @[ "; printDebugLoc(InlinedAtDL, MF, CommentOS); CommentOS << " ]"; } } } void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM) const { // We can be a bit tidier if we know the TargetMachine and/or MachineFunction. const MachineFunction *MF = 0; const MachineRegisterInfo *MRI = 0; if (const MachineBasicBlock *MBB = getParent()) { MF = MBB->getParent(); if (!TM && MF) TM = &MF->getTarget(); if (MF) MRI = &MF->getRegInfo(); } // Save a list of virtual registers. SmallVector VirtRegs; // Print explicitly defined operands on the left of an assignment syntax. unsigned StartOp = 0, e = getNumOperands(); for (; StartOp < e && getOperand(StartOp).isReg() && getOperand(StartOp).isDef() && !getOperand(StartOp).isImplicit(); ++StartOp) { if (StartOp != 0) OS << ", "; getOperand(StartOp).print(OS, TM); unsigned Reg = getOperand(StartOp).getReg(); if (TargetRegisterInfo::isVirtualRegister(Reg)) VirtRegs.push_back(Reg); } if (StartOp != 0) OS << " = "; // Print the opcode name. if (TM && TM->getInstrInfo()) OS << TM->getInstrInfo()->getName(getOpcode()); else OS << "UNKNOWN"; // Print the rest of the operands. bool OmittedAnyCallClobbers = false; bool FirstOp = true; unsigned AsmDescOp = ~0u; unsigned AsmOpCount = 0; if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) { // Print asm string. OS << " "; getOperand(InlineAsm::MIOp_AsmString).print(OS, TM); // Print HasSideEffects, IsAlignStack unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); if (ExtraInfo & InlineAsm::Extra_HasSideEffects) OS << " [sideeffect]"; if (ExtraInfo & InlineAsm::Extra_IsAlignStack) OS << " [alignstack]"; if (getInlineAsmDialect() == InlineAsm::AD_ATT) OS << " [attdialect]"; if (getInlineAsmDialect() == InlineAsm::AD_Intel) OS << " [inteldialect]"; StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand; FirstOp = false; } for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { const MachineOperand &MO = getOperand(i); if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) VirtRegs.push_back(MO.getReg()); // Omit call-clobbered registers which aren't used anywhere. This makes // call instructions much less noisy on targets where calls clobber lots // of registers. Don't rely on MO.isDead() because we may be called before // LiveVariables is run, or we may be looking at a non-allocatable reg. if (MF && isCall() && MO.isReg() && MO.isImplicit() && MO.isDef()) { unsigned Reg = MO.getReg(); if (TargetRegisterInfo::isPhysicalRegister(Reg)) { const MachineRegisterInfo &MRI = MF->getRegInfo(); if (MRI.use_empty(Reg) && !MRI.isLiveOut(Reg)) { bool HasAliasLive = false; for (MCRegAliasIterator AI(Reg, TM->getRegisterInfo(), true); AI.isValid(); ++AI) { unsigned AliasReg = *AI; if (!MRI.use_empty(AliasReg) || MRI.isLiveOut(AliasReg)) { HasAliasLive = true; break; } } if (!HasAliasLive) { OmittedAnyCallClobbers = true; continue; } } } } if (FirstOp) FirstOp = false; else OS << ","; OS << " "; if (i < getDesc().NumOperands) { const MCOperandInfo &MCOI = getDesc().OpInfo[i]; if (MCOI.isPredicate()) OS << "pred:"; if (MCOI.isOptionalDef()) OS << "opt:"; } if (isDebugValue() && MO.isMetadata()) { // Pretty print DBG_VALUE instructions. const MDNode *MD = MO.getMetadata(); if (const MDString *MDS = dyn_cast(MD->getOperand(2))) OS << "!\"" << MDS->getString() << '\"'; else MO.print(OS, TM); } else if (TM && (isInsertSubreg() || isRegSequence()) && MO.isImm()) { OS << TM->getRegisterInfo()->getSubRegIndexName(MO.getImm()); } else if (i == AsmDescOp && MO.isImm()) { // Pretty print the inline asm operand descriptor. OS << '$' << AsmOpCount++; unsigned Flag = MO.getImm(); switch (InlineAsm::getKind(Flag)) { case InlineAsm::Kind_RegUse: OS << ":[reguse"; break; case InlineAsm::Kind_RegDef: OS << ":[regdef"; break; case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break; case InlineAsm::Kind_Clobber: OS << ":[clobber"; break; case InlineAsm::Kind_Imm: OS << ":[imm"; break; case InlineAsm::Kind_Mem: OS << ":[mem"; break; default: OS << ":[??" << InlineAsm::getKind(Flag); break; } unsigned RCID = 0; if (InlineAsm::hasRegClassConstraint(Flag, RCID)) { if (TM) OS << ':' << TM->getRegisterInfo()->getRegClass(RCID)->getName(); else OS << ":RC" << RCID; } unsigned TiedTo = 0; if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo)) OS << " tiedto:$" << TiedTo; OS << ']'; // Compute the index of the next operand descriptor. AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag); } else MO.print(OS, TM); } // Briefly indicate whether any call clobbers were omitted. if (OmittedAnyCallClobbers) { if (!FirstOp) OS << ","; OS << " ..."; } bool HaveSemi = false; if (Flags) { if (!HaveSemi) OS << ";"; HaveSemi = true; OS << " flags: "; if (Flags & FrameSetup) OS << "FrameSetup"; } if (!memoperands_empty()) { if (!HaveSemi) OS << ";"; HaveSemi = true; OS << " mem:"; for (mmo_iterator i = memoperands_begin(), e = memoperands_end(); i != e; ++i) { OS << **i; if (llvm::next(i) != e) OS << " "; } } // Print the regclass of any virtual registers encountered. if (MRI && !VirtRegs.empty()) { if (!HaveSemi) OS << ";"; HaveSemi = true; for (unsigned i = 0; i != VirtRegs.size(); ++i) { const TargetRegisterClass *RC = MRI->getRegClass(VirtRegs[i]); OS << " " << RC->getName() << ':' << PrintReg(VirtRegs[i]); for (unsigned j = i+1; j != VirtRegs.size();) { if (MRI->getRegClass(VirtRegs[j]) != RC) { ++j; continue; } if (VirtRegs[i] != VirtRegs[j]) OS << "," << PrintReg(VirtRegs[j]); VirtRegs.erase(VirtRegs.begin()+j); } } } // Print debug location information. if (isDebugValue() && getOperand(e - 1).isMetadata()) { if (!HaveSemi) OS << ";"; HaveSemi = true; DIVariable DV(getOperand(e - 1).getMetadata()); OS << " line no:" << DV.getLineNumber(); if (MDNode *InlinedAt = DV.getInlinedAt()) { DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(InlinedAt); if (!InlinedAtDL.isUnknown()) { OS << " inlined @[ "; printDebugLoc(InlinedAtDL, MF, OS); OS << " ]"; } } } else if (!debugLoc.isUnknown() && MF) { if (!HaveSemi) OS << ";"; HaveSemi = true; OS << " dbg:"; printDebugLoc(debugLoc, MF, OS); } OS << '\n'; } bool MachineInstr::addRegisterKilled(unsigned IncomingReg, const TargetRegisterInfo *RegInfo, bool AddIfNotFound) { bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); bool hasAliases = isPhysReg && MCRegAliasIterator(IncomingReg, RegInfo, false).isValid(); bool Found = false; SmallVector DeadOps; for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { MachineOperand &MO = getOperand(i); if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue; unsigned Reg = MO.getReg(); if (!Reg) continue; if (Reg == IncomingReg) { if (!Found) { if (MO.isKill()) // The register is already marked kill. return true; if (isPhysReg && isRegTiedToDefOperand(i)) // Two-address uses of physregs must not be marked kill. return true; MO.setIsKill(); Found = true; } } else if (hasAliases && MO.isKill() && TargetRegisterInfo::isPhysicalRegister(Reg)) { // A super-register kill already exists. if (RegInfo->isSuperRegister(IncomingReg, Reg)) return true; if (RegInfo->isSubRegister(IncomingReg, Reg)) DeadOps.push_back(i); } } // Trim unneeded kill operands. while (!DeadOps.empty()) { unsigned OpIdx = DeadOps.back(); if (getOperand(OpIdx).isImplicit()) RemoveOperand(OpIdx); else getOperand(OpIdx).setIsKill(false); DeadOps.pop_back(); } // If not found, this means an alias of one of the operands is killed. Add a // new implicit operand if required. if (!Found && AddIfNotFound) { addOperand(MachineOperand::CreateReg(IncomingReg, false /*IsDef*/, true /*IsImp*/, true /*IsKill*/)); return true; } return Found; } void MachineInstr::clearRegisterKills(unsigned Reg, const TargetRegisterInfo *RegInfo) { if (!TargetRegisterInfo::isPhysicalRegister(Reg)) RegInfo = 0; for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { MachineOperand &MO = getOperand(i); if (!MO.isReg() || !MO.isUse() || !MO.isKill()) continue; unsigned OpReg = MO.getReg(); if (OpReg == Reg || (RegInfo && RegInfo->isSuperRegister(Reg, OpReg))) MO.setIsKill(false); } } bool MachineInstr::addRegisterDead(unsigned IncomingReg, const TargetRegisterInfo *RegInfo, bool AddIfNotFound) { bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); bool hasAliases = isPhysReg && MCRegAliasIterator(IncomingReg, RegInfo, false).isValid(); bool Found = false; SmallVector DeadOps; for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { MachineOperand &MO = getOperand(i); if (!MO.isReg() || !MO.isDef()) continue; unsigned Reg = MO.getReg(); if (!Reg) continue; if (Reg == IncomingReg) { MO.setIsDead(); Found = true; } else if (hasAliases && MO.isDead() && TargetRegisterInfo::isPhysicalRegister(Reg)) { // There exists a super-register that's marked dead. if (RegInfo->isSuperRegister(IncomingReg, Reg)) return true; if (RegInfo->isSubRegister(IncomingReg, Reg)) DeadOps.push_back(i); } } // Trim unneeded dead operands. while (!DeadOps.empty()) { unsigned OpIdx = DeadOps.back(); if (getOperand(OpIdx).isImplicit()) RemoveOperand(OpIdx); else getOperand(OpIdx).setIsDead(false); DeadOps.pop_back(); } // If not found, this means an alias of one of the operands is dead. Add a // new implicit operand if required. if (Found || !AddIfNotFound) return Found; addOperand(MachineOperand::CreateReg(IncomingReg, true /*IsDef*/, true /*IsImp*/, false /*IsKill*/, true /*IsDead*/)); return true; } void MachineInstr::addRegisterDefined(unsigned IncomingReg, const TargetRegisterInfo *RegInfo) { if (TargetRegisterInfo::isPhysicalRegister(IncomingReg)) { MachineOperand *MO = findRegisterDefOperand(IncomingReg, false, RegInfo); if (MO) return; } else { for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { const MachineOperand &MO = getOperand(i); if (MO.isReg() && MO.getReg() == IncomingReg && MO.isDef() && MO.getSubReg() == 0) return; } } addOperand(MachineOperand::CreateReg(IncomingReg, true /*IsDef*/, true /*IsImp*/)); } void MachineInstr::setPhysRegsDeadExcept(ArrayRef UsedRegs, const TargetRegisterInfo &TRI) { bool HasRegMask = false; for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { MachineOperand &MO = getOperand(i); if (MO.isRegMask()) { HasRegMask = true; continue; } if (!MO.isReg() || !MO.isDef()) continue; unsigned Reg = MO.getReg(); if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue; bool Dead = true; for (ArrayRef::iterator I = UsedRegs.begin(), E = UsedRegs.end(); I != E; ++I) if (TRI.regsOverlap(*I, Reg)) { Dead = false; break; } // If there are no uses, including partial uses, the def is dead. if (Dead) MO.setIsDead(); } // This is a call with a register mask operand. // Mask clobbers are always dead, so add defs for the non-dead defines. if (HasRegMask) for (ArrayRef::iterator I = UsedRegs.begin(), E = UsedRegs.end(); I != E; ++I) addRegisterDefined(*I, &TRI); } unsigned MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { // Build up a buffer of hash code components. SmallVector HashComponents; HashComponents.reserve(MI->getNumOperands() + 1); HashComponents.push_back(MI->getOpcode()); for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { const MachineOperand &MO = MI->getOperand(i); if (MO.isReg() && MO.isDef() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) continue; // Skip virtual register defs. HashComponents.push_back(hash_value(MO)); } return hash_combine_range(HashComponents.begin(), HashComponents.end()); } void MachineInstr::emitError(StringRef Msg) const { // Find the source location cookie. unsigned LocCookie = 0; const MDNode *LocMD = 0; for (unsigned i = getNumOperands(); i != 0; --i) { if (getOperand(i-1).isMetadata() && (LocMD = getOperand(i-1).getMetadata()) && LocMD->getNumOperands() != 0) { if (const ConstantInt *CI = dyn_cast(LocMD->getOperand(0))) { LocCookie = CI->getZExtValue(); break; } } } if (const MachineBasicBlock *MBB = getParent()) if (const MachineFunction *MF = MBB->getParent()) return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg); report_fatal_error(Msg); }