//===- DAGISelEmitter.cpp - Generate an instruction selector --------------===// // // The LLVM Compiler Infrastructure // // This file was developed by Chris Lattner and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This tablegen backend emits a DAG instruction selector. // //===----------------------------------------------------------------------===// #include "DAGISelEmitter.h" #include "Record.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Support/Debug.h" #include #include using namespace llvm; //===----------------------------------------------------------------------===// // Helpers for working with extended types. /// FilterVTs - Filter a list of VT's according to a predicate. /// template static std::vector FilterVTs(const std::vector &InVTs, T Filter) { std::vector Result; for (unsigned i = 0, e = InVTs.size(); i != e; ++i) if (Filter(InVTs[i])) Result.push_back(InVTs[i]); return Result; } /// isExtIntegerVT - Return true if the specified extended value type is /// integer, or isInt. static bool isExtIntegerVT(unsigned char VT) { return VT == MVT::isInt || (VT < MVT::LAST_VALUETYPE && MVT::isInteger((MVT::ValueType)VT)); } /// isExtFloatingPointVT - Return true if the specified extended value type is /// floating point, or isFP. static bool isExtFloatingPointVT(unsigned char VT) { return VT == MVT::isFP || (VT < MVT::LAST_VALUETYPE && MVT::isFloatingPoint((MVT::ValueType)VT)); } //===----------------------------------------------------------------------===// // SDTypeConstraint implementation // SDTypeConstraint::SDTypeConstraint(Record *R) { OperandNo = R->getValueAsInt("OperandNum"); if (R->isSubClassOf("SDTCisVT")) { ConstraintType = SDTCisVT; x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT")); } else if (R->isSubClassOf("SDTCisPtrTy")) { ConstraintType = SDTCisPtrTy; } else if (R->isSubClassOf("SDTCisInt")) { ConstraintType = SDTCisInt; } else if (R->isSubClassOf("SDTCisFP")) { ConstraintType = SDTCisFP; } else if (R->isSubClassOf("SDTCisSameAs")) { ConstraintType = SDTCisSameAs; x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum"); } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) { ConstraintType = SDTCisVTSmallerThanOp; x.SDTCisVTSmallerThanOp_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum"); } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) { ConstraintType = SDTCisOpSmallerThanOp; x.SDTCisOpSmallerThanOp_Info.BigOperandNum = R->getValueAsInt("BigOperandNum"); } else { std::cerr << "Unrecognized SDTypeConstraint '" << R->getName() << "'!\n"; exit(1); } } /// getOperandNum - Return the node corresponding to operand #OpNo in tree /// N, which has NumResults results. TreePatternNode *SDTypeConstraint::getOperandNum(unsigned OpNo, TreePatternNode *N, unsigned NumResults) const { assert(NumResults <= 1 && "We only work with nodes with zero or one result so far!"); if (OpNo < NumResults) return N; // FIXME: need value # else return N->getChild(OpNo-NumResults); } /// ApplyTypeConstraint - Given a node in a pattern, apply this type /// constraint to the nodes operands. This returns true if it makes a /// change, false otherwise. If a type contradiction is found, throw an /// exception. bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N, const SDNodeInfo &NodeInfo, TreePattern &TP) const { unsigned NumResults = NodeInfo.getNumResults(); assert(NumResults <= 1 && "We only work with nodes with zero or one result so far!"); // Check that the number of operands is sane. if (NodeInfo.getNumOperands() >= 0) { if (N->getNumChildren() != (unsigned)NodeInfo.getNumOperands()) TP.error(N->getOperator()->getName() + " node requires exactly " + itostr(NodeInfo.getNumOperands()) + " operands!"); } const CodeGenTarget &CGT = TP.getDAGISelEmitter().getTargetInfo(); TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NumResults); switch (ConstraintType) { default: assert(0 && "Unknown constraint type!"); case SDTCisVT: // Operand must be a particular type. return NodeToApply->UpdateNodeType(x.SDTCisVT_Info.VT, TP); case SDTCisPtrTy: { // Operand must be same as target pointer type. return NodeToApply->UpdateNodeType(CGT.getPointerType(), TP); } case SDTCisInt: { // If there is only one integer type supported, this must be it. std::vector IntVTs = FilterVTs(CGT.getLegalValueTypes(), MVT::isInteger); // If we found exactly one supported integer type, apply it. if (IntVTs.size() == 1) return NodeToApply->UpdateNodeType(IntVTs[0], TP); return NodeToApply->UpdateNodeType(MVT::isInt, TP); } case SDTCisFP: { // If there is only one FP type supported, this must be it. std::vector FPVTs = FilterVTs(CGT.getLegalValueTypes(), MVT::isFloatingPoint); // If we found exactly one supported FP type, apply it. if (FPVTs.size() == 1) return NodeToApply->UpdateNodeType(FPVTs[0], TP); return NodeToApply->UpdateNodeType(MVT::isFP, TP); } case SDTCisSameAs: { TreePatternNode *OtherNode = getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NumResults); return NodeToApply->UpdateNodeType(OtherNode->getExtType(), TP) | OtherNode->UpdateNodeType(NodeToApply->getExtType(), TP); } case SDTCisVTSmallerThanOp: { // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must // have an integer type that is smaller than the VT. if (!NodeToApply->isLeaf() || !dynamic_cast(NodeToApply->getLeafValue()) || !static_cast(NodeToApply->getLeafValue())->getDef() ->isSubClassOf("ValueType")) TP.error(N->getOperator()->getName() + " expects a VT operand!"); MVT::ValueType VT = getValueType(static_cast(NodeToApply->getLeafValue())->getDef()); if (!MVT::isInteger(VT)) TP.error(N->getOperator()->getName() + " VT operand must be integer!"); TreePatternNode *OtherNode = getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N,NumResults); // It must be integer. bool MadeChange = false; MadeChange |= OtherNode->UpdateNodeType(MVT::isInt, TP); if (OtherNode->hasTypeSet() && OtherNode->getType() <= VT) OtherNode->UpdateNodeType(MVT::Other, TP); // Throw an error. return false; } case SDTCisOpSmallerThanOp: { TreePatternNode *BigOperand = getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NumResults); // Both operands must be integer or FP, but we don't care which. bool MadeChange = false; if (isExtIntegerVT(NodeToApply->getExtType())) MadeChange |= BigOperand->UpdateNodeType(MVT::isInt, TP); else if (isExtFloatingPointVT(NodeToApply->getExtType())) MadeChange |= BigOperand->UpdateNodeType(MVT::isFP, TP); if (isExtIntegerVT(BigOperand->getExtType())) MadeChange |= NodeToApply->UpdateNodeType(MVT::isInt, TP); else if (isExtFloatingPointVT(BigOperand->getExtType())) MadeChange |= NodeToApply->UpdateNodeType(MVT::isFP, TP); std::vector VTs = CGT.getLegalValueTypes(); if (isExtIntegerVT(NodeToApply->getExtType())) { VTs = FilterVTs(VTs, MVT::isInteger); } else if (isExtFloatingPointVT(NodeToApply->getExtType())) { VTs = FilterVTs(VTs, MVT::isFloatingPoint); } else { VTs.clear(); } switch (VTs.size()) { default: // Too many VT's to pick from. case 0: break; // No info yet. case 1: // Only one VT of this flavor. Cannot ever satisify the constraints. return NodeToApply->UpdateNodeType(MVT::Other, TP); // throw case 2: // If we have exactly two possible types, the little operand must be the // small one, the big operand should be the big one. Common with // float/double for example. assert(VTs[0] < VTs[1] && "Should be sorted!"); MadeChange |= NodeToApply->UpdateNodeType(VTs[0], TP); MadeChange |= BigOperand->UpdateNodeType(VTs[1], TP); break; } return MadeChange; } } return false; } //===----------------------------------------------------------------------===// // SDNodeInfo implementation // SDNodeInfo::SDNodeInfo(Record *R) : Def(R) { EnumName = R->getValueAsString("Opcode"); SDClassName = R->getValueAsString("SDClass"); Record *TypeProfile = R->getValueAsDef("TypeProfile"); NumResults = TypeProfile->getValueAsInt("NumResults"); NumOperands = TypeProfile->getValueAsInt("NumOperands"); // Parse the properties. Properties = 0; std::vector PropList = R->getValueAsListOfDefs("Properties"); for (unsigned i = 0, e = PropList.size(); i != e; ++i) { if (PropList[i]->getName() == "SDNPCommutative") { Properties |= 1 << SDNPCommutative; } else if (PropList[i]->getName() == "SDNPAssociative") { Properties |= 1 << SDNPAssociative; } else if (PropList[i]->getName() == "SDNPHasChain") { Properties |= 1 << SDNPHasChain; } else { std::cerr << "Unknown SD Node property '" << PropList[i]->getName() << "' on node '" << R->getName() << "'!\n"; exit(1); } } // Parse the type constraints. std::vector ConstraintList = TypeProfile->getValueAsListOfDefs("Constraints"); TypeConstraints.assign(ConstraintList.begin(), ConstraintList.end()); } //===----------------------------------------------------------------------===// // TreePatternNode implementation // TreePatternNode::~TreePatternNode() { #if 0 // FIXME: implement refcounted tree nodes! for (unsigned i = 0, e = getNumChildren(); i != e; ++i) delete getChild(i); #endif } /// UpdateNodeType - Set the node type of N to VT if VT contains /// information. If N already contains a conflicting type, then throw an /// exception. This returns true if any information was updated. /// bool TreePatternNode::UpdateNodeType(unsigned char VT, TreePattern &TP) { if (VT == MVT::isUnknown || getExtType() == VT) return false; if (getExtType() == MVT::isUnknown) { setType(VT); return true; } // If we are told this is to be an int or FP type, and it already is, ignore // the advice. if ((VT == MVT::isInt && isExtIntegerVT(getExtType())) || (VT == MVT::isFP && isExtFloatingPointVT(getExtType()))) return false; // If we know this is an int or fp type, and we are told it is a specific one, // take the advice. if ((getExtType() == MVT::isInt && isExtIntegerVT(VT)) || (getExtType() == MVT::isFP && isExtFloatingPointVT(VT))) { setType(VT); return true; } if (isLeaf()) { dump(); TP.error("Type inference contradiction found in node!"); } else { TP.error("Type inference contradiction found in node " + getOperator()->getName() + "!"); } return true; // unreachable } void TreePatternNode::print(std::ostream &OS) const { if (isLeaf()) { OS << *getLeafValue(); } else { OS << "(" << getOperator()->getName(); } switch (getExtType()) { case MVT::Other: OS << ":Other"; break; case MVT::isInt: OS << ":isInt"; break; case MVT::isFP : OS << ":isFP"; break; case MVT::isUnknown: ; /*OS << ":?";*/ break; default: OS << ":" << getType(); break; } if (!isLeaf()) { if (getNumChildren() != 0) { OS << " "; getChild(0)->print(OS); for (unsigned i = 1, e = getNumChildren(); i != e; ++i) { OS << ", "; getChild(i)->print(OS); } } OS << ")"; } if (!PredicateFn.empty()) OS << "<>"; if (TransformFn) OS << "<getName() << ">>"; if (!getName().empty()) OS << ":$" << getName(); } void TreePatternNode::dump() const { print(std::cerr); } /// isIsomorphicTo - Return true if this node is recursively isomorphic to /// the specified node. For this comparison, all of the state of the node /// is considered, except for the assigned name. Nodes with differing names /// that are otherwise identical are considered isomorphic. bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N) const { if (N == this) return true; if (N->isLeaf() != isLeaf() || getExtType() != N->getExtType() || getPredicateFn() != N->getPredicateFn() || getTransformFn() != N->getTransformFn()) return false; if (isLeaf()) { if (DefInit *DI = dynamic_cast(getLeafValue())) if (DefInit *NDI = dynamic_cast(N->getLeafValue())) return DI->getDef() == NDI->getDef(); return getLeafValue() == N->getLeafValue(); } if (N->getOperator() != getOperator() || N->getNumChildren() != getNumChildren()) return false; for (unsigned i = 0, e = getNumChildren(); i != e; ++i) if (!getChild(i)->isIsomorphicTo(N->getChild(i))) return false; return true; } /// clone - Make a copy of this tree and all of its children. /// TreePatternNode *TreePatternNode::clone() const { TreePatternNode *New; if (isLeaf()) { New = new TreePatternNode(getLeafValue()); } else { std::vector CChildren; CChildren.reserve(Children.size()); for (unsigned i = 0, e = getNumChildren(); i != e; ++i) CChildren.push_back(getChild(i)->clone()); New = new TreePatternNode(getOperator(), CChildren); } New->setName(getName()); New->setType(getExtType()); New->setPredicateFn(getPredicateFn()); New->setTransformFn(getTransformFn()); return New; } /// SubstituteFormalArguments - Replace the formal arguments in this tree /// with actual values specified by ArgMap. void TreePatternNode:: SubstituteFormalArguments(std::map &ArgMap) { if (isLeaf()) return; for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { TreePatternNode *Child = getChild(i); if (Child->isLeaf()) { Init *Val = Child->getLeafValue(); if (dynamic_cast(Val) && static_cast(Val)->getDef()->getName() == "node") { // We found a use of a formal argument, replace it with its value. Child = ArgMap[Child->getName()]; assert(Child && "Couldn't find formal argument!"); setChild(i, Child); } } else { getChild(i)->SubstituteFormalArguments(ArgMap); } } } /// InlinePatternFragments - If this pattern refers to any pattern /// fragments, inline them into place, giving us a pattern without any /// PatFrag references. TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) { if (isLeaf()) return this; // nothing to do. Record *Op = getOperator(); if (!Op->isSubClassOf("PatFrag")) { // Just recursively inline children nodes. for (unsigned i = 0, e = getNumChildren(); i != e; ++i) setChild(i, getChild(i)->InlinePatternFragments(TP)); return this; } // Otherwise, we found a reference to a fragment. First, look up its // TreePattern record. TreePattern *Frag = TP.getDAGISelEmitter().getPatternFragment(Op); // Verify that we are passing the right number of operands. if (Frag->getNumArgs() != Children.size()) TP.error("'" + Op->getName() + "' fragment requires " + utostr(Frag->getNumArgs()) + " operands!"); TreePatternNode *FragTree = Frag->getOnlyTree()->clone(); // Resolve formal arguments to their actual value. if (Frag->getNumArgs()) { // Compute the map of formal to actual arguments. std::map ArgMap; for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP); FragTree->SubstituteFormalArguments(ArgMap); } FragTree->setName(getName()); FragTree->UpdateNodeType(getExtType(), TP); // Get a new copy of this fragment to stitch into here. //delete this; // FIXME: implement refcounting! return FragTree; } /// getIntrinsicType - Check to see if the specified record has an intrinsic /// type which should be applied to it. This infer the type of register /// references from the register file information, for example. /// static unsigned char getIntrinsicType(Record *R, bool NotRegisters, TreePattern &TP) { // Check to see if this is a register or a register class... if (R->isSubClassOf("RegisterClass")) { if (NotRegisters) return MVT::isUnknown; const CodeGenRegisterClass &RC = TP.getDAGISelEmitter().getTargetInfo().getRegisterClass(R); return RC.getValueTypeNum(0); } else if (R->isSubClassOf("PatFrag")) { // Pattern fragment types will be resolved when they are inlined. return MVT::isUnknown; } else if (R->isSubClassOf("Register")) { // If the register appears in exactly one regclass, and the regclass has one // value type, use it as the known type. const CodeGenTarget &T = TP.getDAGISelEmitter().getTargetInfo(); if (const CodeGenRegisterClass *RC = T.getRegisterClassForRegister(R)) if (RC->getNumValueTypes() == 1) return RC->getValueTypeNum(0); return MVT::isUnknown; } else if (R->isSubClassOf("ValueType") || R->isSubClassOf("CondCode")) { // Using a VTSDNode or CondCodeSDNode. return MVT::Other; } else if (R->isSubClassOf("ComplexPattern")) { return TP.getDAGISelEmitter().getComplexPattern(R).getValueType(); } else if (R->getName() == "node") { // Placeholder. return MVT::isUnknown; } TP.error("Unknown node flavor used in pattern: " + R->getName()); return MVT::Other; } /// ApplyTypeConstraints - Apply all of the type constraints relevent to /// this node and its children in the tree. This returns true if it makes a /// change, false otherwise. If a type contradiction is found, throw an /// exception. bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) { if (isLeaf()) { if (DefInit *DI = dynamic_cast(getLeafValue())) { // If it's a regclass or something else known, include the type. return UpdateNodeType(getIntrinsicType(DI->getDef(), NotRegisters, TP), TP); } else if (IntInit *II = dynamic_cast(getLeafValue())) { // Int inits are always integers. :) bool MadeChange = UpdateNodeType(MVT::isInt, TP); if (hasTypeSet()) { unsigned Size = MVT::getSizeInBits(getType()); // Make sure that the value is representable for this type. if (Size < 32) { int Val = (II->getValue() << (32-Size)) >> (32-Size); if (Val != II->getValue()) TP.error("Sign-extended integer value '" + itostr(II->getValue()) + "' is out of range for type 'MVT::" + getEnumName(getType()) + "'!"); } } return MadeChange; } return false; } // special handling for set, which isn't really an SDNode. if (getOperator()->getName() == "set") { assert (getNumChildren() == 2 && "Only handle 2 operand set's for now!"); bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters); MadeChange |= getChild(1)->ApplyTypeConstraints(TP, NotRegisters); // Types of operands must match. MadeChange |= getChild(0)->UpdateNodeType(getChild(1)->getExtType(), TP); MadeChange |= getChild(1)->UpdateNodeType(getChild(0)->getExtType(), TP); MadeChange |= UpdateNodeType(MVT::isVoid, TP); return MadeChange; } else if (getOperator()->isSubClassOf("SDNode")) { const SDNodeInfo &NI = TP.getDAGISelEmitter().getSDNodeInfo(getOperator()); bool MadeChange = NI.ApplyTypeConstraints(this, TP); for (unsigned i = 0, e = getNumChildren(); i != e; ++i) MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); // Branch, etc. do not produce results and top-level forms in instr pattern // must have void types. if (NI.getNumResults() == 0) MadeChange |= UpdateNodeType(MVT::isVoid, TP); return MadeChange; } else if (getOperator()->isSubClassOf("Instruction")) { const DAGInstruction &Inst = TP.getDAGISelEmitter().getInstruction(getOperator()); bool MadeChange = false; unsigned NumResults = Inst.getNumResults(); assert(NumResults <= 1 && "Only supports zero or one result instrs!"); // Apply the result type to the node if (NumResults == 0) { MadeChange = UpdateNodeType(MVT::isVoid, TP); } else { Record *ResultNode = Inst.getResult(0); assert(ResultNode->isSubClassOf("RegisterClass") && "Operands should be register classes!"); const CodeGenRegisterClass &RC = TP.getDAGISelEmitter().getTargetInfo().getRegisterClass(ResultNode); // Get the first ValueType in the RegClass, it's as good as any. MadeChange = UpdateNodeType(RC.getValueTypeNum(0), TP); } if (getNumChildren() != Inst.getNumOperands()) TP.error("Instruction '" + getOperator()->getName() + " expects " + utostr(Inst.getNumOperands()) + " operands, not " + utostr(getNumChildren()) + " operands!"); for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { Record *OperandNode = Inst.getOperand(i); MVT::ValueType VT; if (OperandNode->isSubClassOf("RegisterClass")) { const CodeGenRegisterClass &RC = TP.getDAGISelEmitter().getTargetInfo().getRegisterClass(OperandNode); VT = RC.getValueTypeNum(0); } else if (OperandNode->isSubClassOf("Operand")) { VT = getValueType(OperandNode->getValueAsDef("Type")); } else { assert(0 && "Unknown operand type!"); abort(); } MadeChange |= getChild(i)->UpdateNodeType(VT, TP); MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); } return MadeChange; } else { assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!"); // Node transforms always take one operand, and take and return the same // type. if (getNumChildren() != 1) TP.error("Node transform '" + getOperator()->getName() + "' requires one operand!"); bool MadeChange = UpdateNodeType(getChild(0)->getExtType(), TP); MadeChange |= getChild(0)->UpdateNodeType(getExtType(), TP); return MadeChange; } } /// canPatternMatch - If it is impossible for this pattern to match on this /// target, fill in Reason and return false. Otherwise, return true. This is /// used as a santity check for .td files (to prevent people from writing stuff /// that can never possibly work), and to prevent the pattern permuter from /// generating stuff that is useless. bool TreePatternNode::canPatternMatch(std::string &Reason, DAGISelEmitter &ISE){ if (isLeaf()) return true; for (unsigned i = 0, e = getNumChildren(); i != e; ++i) if (!getChild(i)->canPatternMatch(Reason, ISE)) return false; // If this node is a commutative operator, check that the LHS isn't an // immediate. const SDNodeInfo &NodeInfo = ISE.getSDNodeInfo(getOperator()); if (NodeInfo.hasProperty(SDNodeInfo::SDNPCommutative)) { // Scan all of the operands of the node and make sure that only the last one // is a constant node. for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) if (!getChild(i)->isLeaf() && getChild(i)->getOperator()->getName() == "imm") { Reason = "Immediate value must be on the RHS of commutative operators!"; return false; } } return true; } //===----------------------------------------------------------------------===// // TreePattern implementation // TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput, DAGISelEmitter &ise) : TheRecord(TheRec), ISE(ise) { isInputPattern = isInput; for (unsigned i = 0, e = RawPat->getSize(); i != e; ++i) Trees.push_back(ParseTreePattern((DagInit*)RawPat->getElement(i))); } TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput, DAGISelEmitter &ise) : TheRecord(TheRec), ISE(ise) { isInputPattern = isInput; Trees.push_back(ParseTreePattern(Pat)); } TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput, DAGISelEmitter &ise) : TheRecord(TheRec), ISE(ise) { isInputPattern = isInput; Trees.push_back(Pat); } void TreePattern::error(const std::string &Msg) const { dump(); throw "In " + TheRecord->getName() + ": " + Msg; } TreePatternNode *TreePattern::ParseTreePattern(DagInit *Dag) { Record *Operator = Dag->getNodeType(); if (Operator->isSubClassOf("ValueType")) { // If the operator is a ValueType, then this must be "type cast" of a leaf // node. if (Dag->getNumArgs() != 1) error("Type cast only takes one operand!"); Init *Arg = Dag->getArg(0); TreePatternNode *New; if (DefInit *DI = dynamic_cast(Arg)) { Record *R = DI->getDef(); if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) { Dag->setArg(0, new DagInit(R, std::vector >())); return ParseTreePattern(Dag); } New = new TreePatternNode(DI); } else if (DagInit *DI = dynamic_cast(Arg)) { New = ParseTreePattern(DI); } else if (IntInit *II = dynamic_cast(Arg)) { New = new TreePatternNode(II); if (!Dag->getArgName(0).empty()) error("Constant int argument should not have a name!"); } else { Arg->dump(); error("Unknown leaf value for tree pattern!"); return 0; } // Apply the type cast. New->UpdateNodeType(getValueType(Operator), *this); New->setName(Dag->getArgName(0)); return New; } // Verify that this is something that makes sense for an operator. if (!Operator->isSubClassOf("PatFrag") && !Operator->isSubClassOf("SDNode") && !Operator->isSubClassOf("Instruction") && !Operator->isSubClassOf("SDNodeXForm") && Operator->getName() != "set") error("Unrecognized node '" + Operator->getName() + "'!"); // Check to see if this is something that is illegal in an input pattern. if (isInputPattern && (Operator->isSubClassOf("Instruction") || Operator->isSubClassOf("SDNodeXForm"))) error("Cannot use '" + Operator->getName() + "' in an input pattern!"); std::vector Children; for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) { Init *Arg = Dag->getArg(i); if (DagInit *DI = dynamic_cast(Arg)) { Children.push_back(ParseTreePattern(DI)); if (Children.back()->getName().empty()) Children.back()->setName(Dag->getArgName(i)); } else if (DefInit *DefI = dynamic_cast(Arg)) { Record *R = DefI->getDef(); // Direct reference to a leaf DagNode or PatFrag? Turn it into a // TreePatternNode if its own. if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) { Dag->setArg(i, new DagInit(R, std::vector >())); --i; // Revisit this node... } else { TreePatternNode *Node = new TreePatternNode(DefI); Node->setName(Dag->getArgName(i)); Children.push_back(Node); // Input argument? if (R->getName() == "node") { if (Dag->getArgName(i).empty()) error("'node' argument requires a name to match with operand list"); Args.push_back(Dag->getArgName(i)); } } } else if (IntInit *II = dynamic_cast(Arg)) { TreePatternNode *Node = new TreePatternNode(II); if (!Dag->getArgName(i).empty()) error("Constant int argument should not have a name!"); Children.push_back(Node); } else { std::cerr << '"'; Arg->dump(); std::cerr << "\": "; error("Unknown leaf value for tree pattern!"); } } return new TreePatternNode(Operator, Children); } /// InferAllTypes - Infer/propagate as many types throughout the expression /// patterns as possible. Return true if all types are infered, false /// otherwise. Throw an exception if a type contradiction is found. bool TreePattern::InferAllTypes() { bool MadeChange = true; while (MadeChange) { MadeChange = false; for (unsigned i = 0, e = Trees.size(); i != e; ++i) MadeChange |= Trees[i]->ApplyTypeConstraints(*this, false); } bool HasUnresolvedTypes = false; for (unsigned i = 0, e = Trees.size(); i != e; ++i) HasUnresolvedTypes |= Trees[i]->ContainsUnresolvedType(); return !HasUnresolvedTypes; } void TreePattern::print(std::ostream &OS) const { OS << getRecord()->getName(); if (!Args.empty()) { OS << "(" << Args[0]; for (unsigned i = 1, e = Args.size(); i != e; ++i) OS << ", " << Args[i]; OS << ")"; } OS << ": "; if (Trees.size() > 1) OS << "[\n"; for (unsigned i = 0, e = Trees.size(); i != e; ++i) { OS << "\t"; Trees[i]->print(OS); OS << "\n"; } if (Trees.size() > 1) OS << "]\n"; } void TreePattern::dump() const { print(std::cerr); } //===----------------------------------------------------------------------===// // DAGISelEmitter implementation // // Parse all of the SDNode definitions for the target, populating SDNodes. void DAGISelEmitter::ParseNodeInfo() { std::vector Nodes = Records.getAllDerivedDefinitions("SDNode"); while (!Nodes.empty()) { SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back())); Nodes.pop_back(); } } /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms /// map, and emit them to the file as functions. void DAGISelEmitter::ParseNodeTransforms(std::ostream &OS) { OS << "\n// Node transformations.\n"; std::vector Xforms = Records.getAllDerivedDefinitions("SDNodeXForm"); while (!Xforms.empty()) { Record *XFormNode = Xforms.back(); Record *SDNode = XFormNode->getValueAsDef("Opcode"); std::string Code = XFormNode->getValueAsCode("XFormFunction"); SDNodeXForms.insert(std::make_pair(XFormNode, std::make_pair(SDNode, Code))); if (!Code.empty()) { std::string ClassName = getSDNodeInfo(SDNode).getSDClassName(); const char *C2 = ClassName == "SDNode" ? "N" : "inN"; OS << "inline SDOperand Transform_" << XFormNode->getName() << "(SDNode *" << C2 << ") {\n"; if (ClassName != "SDNode") OS << " " << ClassName << " *N = cast<" << ClassName << ">(inN);\n"; OS << Code << "\n}\n"; } Xforms.pop_back(); } } void DAGISelEmitter::ParseComplexPatterns() { std::vector AMs = Records.getAllDerivedDefinitions("ComplexPattern"); while (!AMs.empty()) { ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back())); AMs.pop_back(); } } /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td /// file, building up the PatternFragments map. After we've collected them all, /// inline fragments together as necessary, so that there are no references left /// inside a pattern fragment to a pattern fragment. /// /// This also emits all of the predicate functions to the output file. /// void DAGISelEmitter::ParsePatternFragments(std::ostream &OS) { std::vector Fragments = Records.getAllDerivedDefinitions("PatFrag"); // First step, parse all of the fragments and emit predicate functions. OS << "\n// Predicate functions.\n"; for (unsigned i = 0, e = Fragments.size(); i != e; ++i) { DagInit *Tree = Fragments[i]->getValueAsDag("Fragment"); TreePattern *P = new TreePattern(Fragments[i], Tree, true, *this); PatternFragments[Fragments[i]] = P; // Validate the argument list, converting it to map, to discard duplicates. std::vector &Args = P->getArgList(); std::set OperandsMap(Args.begin(), Args.end()); if (OperandsMap.count("")) P->error("Cannot have unnamed 'node' values in pattern fragment!"); // Parse the operands list. DagInit *OpsList = Fragments[i]->getValueAsDag("Operands"); if (OpsList->getNodeType()->getName() != "ops") P->error("Operands list should start with '(ops ... '!"); // Copy over the arguments. Args.clear(); for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) { if (!dynamic_cast(OpsList->getArg(j)) || static_cast(OpsList->getArg(j))-> getDef()->getName() != "node") P->error("Operands list should all be 'node' values."); if (OpsList->getArgName(j).empty()) P->error("Operands list should have names for each operand!"); if (!OperandsMap.count(OpsList->getArgName(j))) P->error("'" + OpsList->getArgName(j) + "' does not occur in pattern or was multiply specified!"); OperandsMap.erase(OpsList->getArgName(j)); Args.push_back(OpsList->getArgName(j)); } if (!OperandsMap.empty()) P->error("Operands list does not contain an entry for operand '" + *OperandsMap.begin() + "'!"); // If there is a code init for this fragment, emit the predicate code and // keep track of the fact that this fragment uses it. std::string Code = Fragments[i]->getValueAsCode("Predicate"); if (!Code.empty()) { assert(!P->getOnlyTree()->isLeaf() && "Can't be a leaf!"); std::string ClassName = getSDNodeInfo(P->getOnlyTree()->getOperator()).getSDClassName(); const char *C2 = ClassName == "SDNode" ? "N" : "inN"; OS << "inline bool Predicate_" << Fragments[i]->getName() << "(SDNode *" << C2 << ") {\n"; if (ClassName != "SDNode") OS << " " << ClassName << " *N = cast<" << ClassName << ">(inN);\n"; OS << Code << "\n}\n"; P->getOnlyTree()->setPredicateFn("Predicate_"+Fragments[i]->getName()); } // If there is a node transformation corresponding to this, keep track of // it. Record *Transform = Fragments[i]->getValueAsDef("OperandTransform"); if (!getSDNodeTransform(Transform).second.empty()) // not noop xform? P->getOnlyTree()->setTransformFn(Transform); } OS << "\n\n"; // Now that we've parsed all of the tree fragments, do a closure on them so // that there are not references to PatFrags left inside of them. for (std::map::iterator I = PatternFragments.begin(), E = PatternFragments.end(); I != E; ++I) { TreePattern *ThePat = I->second; ThePat->InlinePatternFragments(); // Infer as many types as possible. Don't worry about it if we don't infer // all of them, some may depend on the inputs of the pattern. try { ThePat->InferAllTypes(); } catch (...) { // If this pattern fragment is not supported by this target (no types can // satisfy its constraints), just ignore it. If the bogus pattern is // actually used by instructions, the type consistency error will be // reported there. } // If debugging, print out the pattern fragment result. DEBUG(ThePat->dump()); } } /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an /// instruction input. Return true if this is a real use. static bool HandleUse(TreePattern *I, TreePatternNode *Pat, std::map &InstInputs) { // No name -> not interesting. if (Pat->getName().empty()) { if (Pat->isLeaf()) { DefInit *DI = dynamic_cast(Pat->getLeafValue()); if (DI && DI->getDef()->isSubClassOf("RegisterClass")) I->error("Input " + DI->getDef()->getName() + " must be named!"); } return false; } Record *Rec; if (Pat->isLeaf()) { DefInit *DI = dynamic_cast(Pat->getLeafValue()); if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!"); Rec = DI->getDef(); } else { assert(Pat->getNumChildren() == 0 && "can't be a use with children!"); Rec = Pat->getOperator(); } TreePatternNode *&Slot = InstInputs[Pat->getName()]; if (!Slot) { Slot = Pat; } else { Record *SlotRec; if (Slot->isLeaf()) { SlotRec = dynamic_cast(Slot->getLeafValue())->getDef(); } else { assert(Slot->getNumChildren() == 0 && "can't be a use with children!"); SlotRec = Slot->getOperator(); } // Ensure that the inputs agree if we've already seen this input. if (Rec != SlotRec) I->error("All $" + Pat->getName() + " inputs must agree with each other"); if (Slot->getExtType() != Pat->getExtType()) I->error("All $" + Pat->getName() + " inputs must agree with each other"); } return true; } /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is /// part of "I", the instruction), computing the set of inputs and outputs of /// the pattern. Report errors if we see anything naughty. void DAGISelEmitter:: FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat, std::map &InstInputs, std::map &InstResults) { if (Pat->isLeaf()) { bool isUse = HandleUse(I, Pat, InstInputs); if (!isUse && Pat->getTransformFn()) I->error("Cannot specify a transform function for a non-input value!"); return; } else if (Pat->getOperator()->getName() != "set") { // If this is not a set, verify that the children nodes are not void typed, // and recurse. for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { if (Pat->getChild(i)->getExtType() == MVT::isVoid) I->error("Cannot have void nodes inside of patterns!"); FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults); } // If this is a non-leaf node with no children, treat it basically as if // it were a leaf. This handles nodes like (imm). bool isUse = false; if (Pat->getNumChildren() == 0) isUse = HandleUse(I, Pat, InstInputs); if (!isUse && Pat->getTransformFn()) I->error("Cannot specify a transform function for a non-input value!"); return; } // Otherwise, this is a set, validate and collect instruction results. if (Pat->getNumChildren() == 0) I->error("set requires operands!"); else if (Pat->getNumChildren() & 1) I->error("set requires an even number of operands"); if (Pat->getTransformFn()) I->error("Cannot specify a transform function on a set node!"); // Check the set destinations. unsigned NumValues = Pat->getNumChildren()/2; for (unsigned i = 0; i != NumValues; ++i) { TreePatternNode *Dest = Pat->getChild(i); if (!Dest->isLeaf()) I->error("set destination should be a virtual register!"); DefInit *Val = dynamic_cast(Dest->getLeafValue()); if (!Val) I->error("set destination should be a virtual register!"); if (!Val->getDef()->isSubClassOf("RegisterClass")) I->error("set destination should be a virtual register!"); if (Dest->getName().empty()) I->error("set destination must have a name!"); if (InstResults.count(Dest->getName())) I->error("cannot set '" + Dest->getName() +"' multiple times"); InstResults[Dest->getName()] = Val->getDef(); // Verify and collect info from the computation. FindPatternInputsAndOutputs(I, Pat->getChild(i+NumValues), InstInputs, InstResults); } } /// NodeHasChain - return true if TreePatternNode has the property /// 'hasChain', meaning it reads a ctrl-flow chain operand and writes /// a chain result. static bool NodeHasChain(TreePatternNode *N, DAGISelEmitter &ISE) { if (N->isLeaf()) return false; Record *Operator = N->getOperator(); if (!Operator->isSubClassOf("SDNode")) return false; const SDNodeInfo &NodeInfo = ISE.getSDNodeInfo(Operator); return NodeInfo.hasProperty(SDNodeInfo::SDNPHasChain); } static bool PatternHasCtrlDep(TreePatternNode *N, DAGISelEmitter &ISE) { if (NodeHasChain(N, ISE)) return true; else { for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { TreePatternNode *Child = N->getChild(i); if (PatternHasCtrlDep(Child, ISE)) return true; } } return false; } /// ParseInstructions - Parse all of the instructions, inlining and resolving /// any fragments involved. This populates the Instructions list with fully /// resolved instructions. void DAGISelEmitter::ParseInstructions() { std::vector Instrs = Records.getAllDerivedDefinitions("Instruction"); for (unsigned i = 0, e = Instrs.size(); i != e; ++i) { ListInit *LI = 0; if (dynamic_cast(Instrs[i]->getValueInit("Pattern"))) LI = Instrs[i]->getValueAsListInit("Pattern"); // If there is no pattern, only collect minimal information about the // instruction for its operand list. We have to assume that there is one // result, as we have no detailed info. if (!LI || LI->getSize() == 0) { std::vector Results; std::vector Operands; CodeGenInstruction &InstInfo =Target.getInstruction(Instrs[i]->getName()); // Doesn't even define a result? if (InstInfo.OperandList.size() == 0) continue; // FIXME: temporary hack... if (InstInfo.isReturn || InstInfo.isBranch || InstInfo.isCall || InstInfo.isStore) { // These produce no results for (unsigned j = 0, e = InstInfo.OperandList.size(); j != e; ++j) Operands.push_back(InstInfo.OperandList[j].Rec); } else { // Assume the first operand is the result. Results.push_back(InstInfo.OperandList[0].Rec); // The rest are inputs. for (unsigned j = 1, e = InstInfo.OperandList.size(); j != e; ++j) Operands.push_back(InstInfo.OperandList[j].Rec); } // Create and insert the instruction. Instructions.insert(std::make_pair(Instrs[i], DAGInstruction(0, Results, Operands))); continue; // no pattern. } // Parse the instruction. TreePattern *I = new TreePattern(Instrs[i], LI, true, *this); // Inline pattern fragments into it. I->InlinePatternFragments(); // Infer as many types as possible. If we cannot infer all of them, we can // never do anything with this instruction pattern: report it to the user. if (!I->InferAllTypes()) I->error("Could not infer all types in pattern!"); // InstInputs - Keep track of all of the inputs of the instruction, along // with the record they are declared as. std::map InstInputs; // InstResults - Keep track of all the virtual registers that are 'set' // in the instruction, including what reg class they are. std::map InstResults; // Verify that the top-level forms in the instruction are of void type, and // fill in the InstResults map. for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) { TreePatternNode *Pat = I->getTree(j); if (Pat->getExtType() != MVT::isVoid) I->error("Top-level forms in instruction pattern should have" " void types"); // Find inputs and outputs, and verify the structure of the uses/defs. FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults); } // Now that we have inputs and outputs of the pattern, inspect the operands // list for the instruction. This determines the order that operands are // added to the machine instruction the node corresponds to. unsigned NumResults = InstResults.size(); // Parse the operands list from the (ops) list, validating it. std::vector &Args = I->getArgList(); assert(Args.empty() && "Args list should still be empty here!"); CodeGenInstruction &CGI = Target.getInstruction(Instrs[i]->getName()); // Check that all of the results occur first in the list. std::vector Results; for (unsigned i = 0; i != NumResults; ++i) { if (i == CGI.OperandList.size()) I->error("'" + InstResults.begin()->first + "' set but does not appear in operand list!"); const std::string &OpName = CGI.OperandList[i].Name; // Check that it exists in InstResults. Record *R = InstResults[OpName]; if (R == 0) I->error("Operand $" + OpName + " should be a set destination: all " "outputs must occur before inputs in operand list!"); if (CGI.OperandList[i].Rec != R) I->error("Operand $" + OpName + " class mismatch!"); // Remember the return type. Results.push_back(CGI.OperandList[i].Rec); // Okay, this one checks out. InstResults.erase(OpName); } // Loop over the inputs next. Make a copy of InstInputs so we can destroy // the copy while we're checking the inputs. std::map InstInputsCheck(InstInputs); std::vector ResultNodeOperands; std::vector Operands; for (unsigned i = NumResults, e = CGI.OperandList.size(); i != e; ++i) { const std::string &OpName = CGI.OperandList[i].Name; if (OpName.empty()) I->error("Operand #" + utostr(i) + " in operands list has no name!"); if (!InstInputsCheck.count(OpName)) I->error("Operand $" + OpName + " does not appear in the instruction pattern"); TreePatternNode *InVal = InstInputsCheck[OpName]; InstInputsCheck.erase(OpName); // It occurred, remove from map. if (InVal->isLeaf() && dynamic_cast(InVal->getLeafValue())) { Record *InRec = static_cast(InVal->getLeafValue())->getDef(); if (CGI.OperandList[i].Rec != InRec && !InRec->isSubClassOf("ComplexPattern")) I->error("Operand $" + OpName + "'s register class disagrees between the operand and pattern"); } Operands.push_back(CGI.OperandList[i].Rec); // Construct the result for the dest-pattern operand list. TreePatternNode *OpNode = InVal->clone(); // No predicate is useful on the result. OpNode->setPredicateFn(""); // Promote the xform function to be an explicit node if set. if (Record *Xform = OpNode->getTransformFn()) { OpNode->setTransformFn(0); std::vector Children; Children.push_back(OpNode); OpNode = new TreePatternNode(Xform, Children); } ResultNodeOperands.push_back(OpNode); } if (!InstInputsCheck.empty()) I->error("Input operand $" + InstInputsCheck.begin()->first + " occurs in pattern but not in operands list!"); TreePatternNode *ResultPattern = new TreePatternNode(I->getRecord(), ResultNodeOperands); // Create and insert the instruction. DAGInstruction TheInst(I, Results, Operands); Instructions.insert(std::make_pair(I->getRecord(), TheInst)); // Use a temporary tree pattern to infer all types and make sure that the // constructed result is correct. This depends on the instruction already // being inserted into the Instructions map. TreePattern Temp(I->getRecord(), ResultPattern, false, *this); Temp.InferAllTypes(); DAGInstruction &TheInsertedInst = Instructions.find(I->getRecord())->second; TheInsertedInst.setResultPattern(Temp.getOnlyTree()); DEBUG(I->dump()); } // If we can, convert the instructions to be patterns that are matched! for (std::map::iterator II = Instructions.begin(), E = Instructions.end(); II != E; ++II) { DAGInstruction &TheInst = II->second; TreePattern *I = TheInst.getPattern(); if (I == 0) continue; // No pattern. if (I->getNumTrees() != 1) { std::cerr << "CANNOT HANDLE: " << I->getRecord()->getName() << " yet!"; continue; } TreePatternNode *Pattern = I->getTree(0); TreePatternNode *SrcPattern; if (TheInst.getNumResults() == 0) { SrcPattern = Pattern; } else { if (Pattern->getOperator()->getName() != "set") continue; // Not a set (store or something?) if (Pattern->getNumChildren() != 2) continue; // Not a set of a single value (not handled so far) SrcPattern = Pattern->getChild(1)->clone(); } std::string Reason; if (!SrcPattern->canPatternMatch(Reason, *this)) I->error("Instruction can never match: " + Reason); TreePatternNode *DstPattern = TheInst.getResultPattern(); PatternsToMatch.push_back(std::make_pair(SrcPattern, DstPattern)); if (PatternHasCtrlDep(Pattern, *this)) { Record *Instr = II->first; CodeGenInstruction &InstInfo = Target.getInstruction(Instr->getName()); InstInfo.hasCtrlDep = true; } } } void DAGISelEmitter::ParsePatterns() { std::vector Patterns = Records.getAllDerivedDefinitions("Pattern"); for (unsigned i = 0, e = Patterns.size(); i != e; ++i) { DagInit *Tree = Patterns[i]->getValueAsDag("PatternToMatch"); TreePattern *Pattern = new TreePattern(Patterns[i], Tree, true, *this); // Inline pattern fragments into it. Pattern->InlinePatternFragments(); // Infer as many types as possible. If we cannot infer all of them, we can // never do anything with this pattern: report it to the user. if (!Pattern->InferAllTypes()) Pattern->error("Could not infer all types in pattern!"); // Validate that the input pattern is correct. { std::map InstInputs; std::map InstResults; FindPatternInputsAndOutputs(Pattern, Pattern->getOnlyTree(), InstInputs, InstResults); } ListInit *LI = Patterns[i]->getValueAsListInit("ResultInstrs"); if (LI->getSize() == 0) continue; // no pattern. // Parse the instruction. TreePattern *Result = new TreePattern(Patterns[i], LI, false, *this); // Inline pattern fragments into it. Result->InlinePatternFragments(); // Infer as many types as possible. If we cannot infer all of them, we can // never do anything with this pattern: report it to the user. if (!Result->InferAllTypes()) Result->error("Could not infer all types in pattern result!"); if (Result->getNumTrees() != 1) Result->error("Cannot handle instructions producing instructions " "with temporaries yet!"); std::string Reason; if (!Pattern->getOnlyTree()->canPatternMatch(Reason, *this)) Pattern->error("Pattern can never match: " + Reason); PatternsToMatch.push_back(std::make_pair(Pattern->getOnlyTree(), Result->getOnlyTree())); } } /// CombineChildVariants - Given a bunch of permutations of each child of the /// 'operator' node, put them together in all possible ways. static void CombineChildVariants(TreePatternNode *Orig, const std::vector > &ChildVariants, std::vector &OutVariants, DAGISelEmitter &ISE) { // Make sure that each operand has at least one variant to choose from. for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) if (ChildVariants[i].empty()) return; // The end result is an all-pairs construction of the resultant pattern. std::vector Idxs; Idxs.resize(ChildVariants.size()); bool NotDone = true; while (NotDone) { // Create the variant and add it to the output list. std::vector NewChildren; for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) NewChildren.push_back(ChildVariants[i][Idxs[i]]); TreePatternNode *R = new TreePatternNode(Orig->getOperator(), NewChildren); // Copy over properties. R->setName(Orig->getName()); R->setPredicateFn(Orig->getPredicateFn()); R->setTransformFn(Orig->getTransformFn()); R->setType(Orig->getExtType()); // If this pattern cannot every match, do not include it as a variant. std::string ErrString; if (!R->canPatternMatch(ErrString, ISE)) { delete R; } else { bool AlreadyExists = false; // Scan to see if this pattern has already been emitted. We can get // duplication due to things like commuting: // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a) // which are the same pattern. Ignore the dups. for (unsigned i = 0, e = OutVariants.size(); i != e; ++i) if (R->isIsomorphicTo(OutVariants[i])) { AlreadyExists = true; break; } if (AlreadyExists) delete R; else OutVariants.push_back(R); } // Increment indices to the next permutation. NotDone = false; // Look for something we can increment without causing a wrap-around. for (unsigned IdxsIdx = 0; IdxsIdx != Idxs.size(); ++IdxsIdx) { if (++Idxs[IdxsIdx] < ChildVariants[IdxsIdx].size()) { NotDone = true; // Found something to increment. break; } Idxs[IdxsIdx] = 0; } } } /// CombineChildVariants - A helper function for binary operators. /// static void CombineChildVariants(TreePatternNode *Orig, const std::vector &LHS, const std::vector &RHS, std::vector &OutVariants, DAGISelEmitter &ISE) { std::vector > ChildVariants; ChildVariants.push_back(LHS); ChildVariants.push_back(RHS); CombineChildVariants(Orig, ChildVariants, OutVariants, ISE); } static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N, std::vector &Children) { assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!"); Record *Operator = N->getOperator(); // Only permit raw nodes. if (!N->getName().empty() || !N->getPredicateFn().empty() || N->getTransformFn()) { Children.push_back(N); return; } if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator) Children.push_back(N->getChild(0)); else GatherChildrenOfAssociativeOpcode(N->getChild(0), Children); if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator) Children.push_back(N->getChild(1)); else GatherChildrenOfAssociativeOpcode(N->getChild(1), Children); } /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of /// the (potentially recursive) pattern by using algebraic laws. /// static void GenerateVariantsOf(TreePatternNode *N, std::vector &OutVariants, DAGISelEmitter &ISE) { // We cannot permute leaves. if (N->isLeaf()) { OutVariants.push_back(N); return; } // Look up interesting info about the node. const SDNodeInfo &NodeInfo = ISE.getSDNodeInfo(N->getOperator()); // If this node is associative, reassociate. if (NodeInfo.hasProperty(SDNodeInfo::SDNPAssociative)) { // Reassociate by pulling together all of the linked operators std::vector MaximalChildren; GatherChildrenOfAssociativeOpcode(N, MaximalChildren); // Only handle child sizes of 3. Otherwise we'll end up trying too many // permutations. if (MaximalChildren.size() == 3) { // Find the variants of all of our maximal children. std::vector AVariants, BVariants, CVariants; GenerateVariantsOf(MaximalChildren[0], AVariants, ISE); GenerateVariantsOf(MaximalChildren[1], BVariants, ISE); GenerateVariantsOf(MaximalChildren[2], CVariants, ISE); // There are only two ways we can permute the tree: // (A op B) op C and A op (B op C) // Within these forms, we can also permute A/B/C. // Generate legal pair permutations of A/B/C. std::vector ABVariants; std::vector BAVariants; std::vector ACVariants; std::vector CAVariants; std::vector BCVariants; std::vector CBVariants; CombineChildVariants(N, AVariants, BVariants, ABVariants, ISE); CombineChildVariants(N, BVariants, AVariants, BAVariants, ISE); CombineChildVariants(N, AVariants, CVariants, ACVariants, ISE); CombineChildVariants(N, CVariants, AVariants, CAVariants, ISE); CombineChildVariants(N, BVariants, CVariants, BCVariants, ISE); CombineChildVariants(N, CVariants, BVariants, CBVariants, ISE); // Combine those into the result: (x op x) op x CombineChildVariants(N, ABVariants, CVariants, OutVariants, ISE); CombineChildVariants(N, BAVariants, CVariants, OutVariants, ISE); CombineChildVariants(N, ACVariants, BVariants, OutVariants, ISE); CombineChildVariants(N, CAVariants, BVariants, OutVariants, ISE); CombineChildVariants(N, BCVariants, AVariants, OutVariants, ISE); CombineChildVariants(N, CBVariants, AVariants, OutVariants, ISE); // Combine those into the result: x op (x op x) CombineChildVariants(N, CVariants, ABVariants, OutVariants, ISE); CombineChildVariants(N, CVariants, BAVariants, OutVariants, ISE); CombineChildVariants(N, BVariants, ACVariants, OutVariants, ISE); CombineChildVariants(N, BVariants, CAVariants, OutVariants, ISE); CombineChildVariants(N, AVariants, BCVariants, OutVariants, ISE); CombineChildVariants(N, AVariants, CBVariants, OutVariants, ISE); return; } } // Compute permutations of all children. std::vector > ChildVariants; ChildVariants.resize(N->getNumChildren()); for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) GenerateVariantsOf(N->getChild(i), ChildVariants[i], ISE); // Build all permutations based on how the children were formed. CombineChildVariants(N, ChildVariants, OutVariants, ISE); // If this node is commutative, consider the commuted order. if (NodeInfo.hasProperty(SDNodeInfo::SDNPCommutative)) { assert(N->getNumChildren()==2 &&"Commutative but doesn't have 2 children!"); // Consider the commuted order. CombineChildVariants(N, ChildVariants[1], ChildVariants[0], OutVariants, ISE); } } // GenerateVariants - Generate variants. For example, commutative patterns can // match multiple ways. Add them to PatternsToMatch as well. void DAGISelEmitter::GenerateVariants() { DEBUG(std::cerr << "Generating instruction variants.\n"); // Loop over all of the patterns we've collected, checking to see if we can // generate variants of the instruction, through the exploitation of // identities. This permits the target to provide agressive matching without // the .td file having to contain tons of variants of instructions. // // Note that this loop adds new patterns to the PatternsToMatch list, but we // intentionally do not reconsider these. Any variants of added patterns have // already been added. // for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) { std::vector Variants; GenerateVariantsOf(PatternsToMatch[i].first, Variants, *this); assert(!Variants.empty() && "Must create at least original variant!"); Variants.erase(Variants.begin()); // Remove the original pattern. if (Variants.empty()) // No variants for this pattern. continue; DEBUG(std::cerr << "FOUND VARIANTS OF: "; PatternsToMatch[i].first->dump(); std::cerr << "\n"); for (unsigned v = 0, e = Variants.size(); v != e; ++v) { TreePatternNode *Variant = Variants[v]; DEBUG(std::cerr << " VAR#" << v << ": "; Variant->dump(); std::cerr << "\n"); // Scan to see if an instruction or explicit pattern already matches this. bool AlreadyExists = false; for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) { // Check to see if this variant already exists. if (Variant->isIsomorphicTo(PatternsToMatch[p].first)) { DEBUG(std::cerr << " *** ALREADY EXISTS, ignoring variant.\n"); AlreadyExists = true; break; } } // If we already have it, ignore the variant. if (AlreadyExists) continue; // Otherwise, add it to the list of patterns we have. PatternsToMatch.push_back(std::make_pair(Variant, PatternsToMatch[i].second)); } DEBUG(std::cerr << "\n"); } } // NodeIsComplexPattern - return true if N is a leaf node and a subclass of // ComplexPattern. static bool NodeIsComplexPattern(TreePatternNode *N) { return (N->isLeaf() && dynamic_cast(N->getLeafValue()) && static_cast(N->getLeafValue())->getDef()-> isSubClassOf("ComplexPattern")); } // NodeGetComplexPattern - return the pointer to the ComplexPattern if N // is a leaf node and a subclass of ComplexPattern, else it returns NULL. static const ComplexPattern *NodeGetComplexPattern(TreePatternNode *N, DAGISelEmitter &ISE) { if (N->isLeaf() && dynamic_cast(N->getLeafValue()) && static_cast(N->getLeafValue())->getDef()-> isSubClassOf("ComplexPattern")) { return &ISE.getComplexPattern(static_cast(N->getLeafValue()) ->getDef()); } return NULL; } /// getPatternSize - Return the 'size' of this pattern. We want to match large /// patterns before small ones. This is used to determine the size of a /// pattern. static unsigned getPatternSize(TreePatternNode *P, DAGISelEmitter &ISE) { assert(isExtIntegerVT(P->getExtType()) || isExtFloatingPointVT(P->getExtType()) || P->getExtType() == MVT::isVoid && "Not a valid pattern node to size!"); unsigned Size = 1; // The node itself. // FIXME: This is a hack to statically increase the priority of patterns // which maps a sub-dag to a complex pattern. e.g. favors LEA over ADD. // Later we can allow complexity / cost for each pattern to be (optionally) // specified. To get best possible pattern match we'll need to dynamically // calculate the complexity of all patterns a dag can potentially map to. const ComplexPattern *AM = NodeGetComplexPattern(P, ISE); if (AM) Size += AM->getNumOperands(); // Count children in the count if they are also nodes. for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) { TreePatternNode *Child = P->getChild(i); if (!Child->isLeaf() && Child->getExtType() != MVT::Other) Size += getPatternSize(Child, ISE); else if (Child->isLeaf()) { if (dynamic_cast(Child->getLeafValue())) ++Size; // Matches a ConstantSDNode. else if (NodeIsComplexPattern(Child)) Size += getPatternSize(Child, ISE); } } return Size; } /// getResultPatternCost - Compute the number of instructions for this pattern. /// This is a temporary hack. We should really include the instruction /// latencies in this calculation. static unsigned getResultPatternCost(TreePatternNode *P) { if (P->isLeaf()) return 0; unsigned Cost = P->getOperator()->isSubClassOf("Instruction"); for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) Cost += getResultPatternCost(P->getChild(i)); return Cost; } // PatternSortingPredicate - return true if we prefer to match LHS before RHS. // In particular, we want to match maximal patterns first and lowest cost within // a particular complexity first. struct PatternSortingPredicate { PatternSortingPredicate(DAGISelEmitter &ise) : ISE(ise) {}; DAGISelEmitter &ISE; bool operator()(DAGISelEmitter::PatternToMatch *LHS, DAGISelEmitter::PatternToMatch *RHS) { unsigned LHSSize = getPatternSize(LHS->first, ISE); unsigned RHSSize = getPatternSize(RHS->first, ISE); if (LHSSize > RHSSize) return true; // LHS -> bigger -> less cost if (LHSSize < RHSSize) return false; // If the patterns have equal complexity, compare generated instruction cost return getResultPatternCost(LHS->second) second); } }; /// getRegisterValueType - Look up and return the first ValueType of specified /// RegisterClass record static MVT::ValueType getRegisterValueType(Record *R, const CodeGenTarget &T) { if (const CodeGenRegisterClass *RC = T.getRegisterClassForRegister(R)) return RC->getValueTypeNum(0); return MVT::Other; } /// RemoveAllTypes - A quick recursive walk over a pattern which removes all /// type information from it. static void RemoveAllTypes(TreePatternNode *N) { N->setType(MVT::isUnknown); if (!N->isLeaf()) for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) RemoveAllTypes(N->getChild(i)); } Record *DAGISelEmitter::getSDNodeNamed(const std::string &Name) const { Record *N = Records.getDef(Name); assert(N && N->isSubClassOf("SDNode") && "Bad argument"); return N; } class PatternCodeEmitter { private: DAGISelEmitter &ISE; // LHS of the pattern being matched TreePatternNode *LHS; unsigned PatternNo; std::ostream &OS; // Node to name mapping std::map VariableMap; // Name of the inner most node which produces a chain. std::string InnerChain; // Names of all the folded nodes which produce chains. std::vector FoldedChains; bool InFlag; unsigned TmpNo; public: PatternCodeEmitter(DAGISelEmitter &ise, TreePatternNode *lhs, unsigned PatNum, std::ostream &os) : ISE(ise), LHS(lhs), PatternNo(PatNum), OS(os), InFlag(false), TmpNo(0) {}; /// EmitMatchCode - Emit a matcher for N, going to the label for PatternNo /// if the match fails. At this point, we already know that the opcode for N /// matches, and the SDNode for the result has the RootName specified name. void EmitMatchCode(TreePatternNode *N, const std::string &RootName, bool isRoot = false) { if (N->isLeaf()) { if (IntInit *II = dynamic_cast(N->getLeafValue())) { OS << " if (cast(" << RootName << ")->getSignExtended() != " << II->getValue() << ")\n" << " goto P" << PatternNo << "Fail;\n"; return; } else if (!NodeIsComplexPattern(N)) { assert(0 && "Cannot match this as a leaf value!"); abort(); } } // If this node has a name associated with it, capture it in VariableMap. If // we already saw this in the pattern, emit code to verify dagness. if (!N->getName().empty()) { std::string &VarMapEntry = VariableMap[N->getName()]; if (VarMapEntry.empty()) { VarMapEntry = RootName; } else { // If we get here, this is a second reference to a specific name. Since // we already have checked that the first reference is valid, we don't // have to recursively match it, just check that it's the same as the // previously named thing. OS << " if (" << VarMapEntry << " != " << RootName << ") goto P" << PatternNo << "Fail;\n"; return; } } // Emit code to load the child nodes and match their contents recursively. unsigned OpNo = 0; if (NodeHasChain(N, ISE)) { OpNo = 1; if (!isRoot) { const SDNodeInfo &CInfo = ISE.getSDNodeInfo(N->getOperator()); OS << " if (!" << RootName << ".hasOneUse()) goto P" << PatternNo << "Fail; // Multiple uses of actual result?\n"; OS << " if (CodeGenMap.count(" << RootName << ".getValue(" << CInfo.getNumResults() << "))) goto P" << PatternNo << "Fail; // Already selected for a chain use?\n"; } if (InnerChain.empty()) { OS << " SDOperand " << RootName << "0 = " << RootName << ".getOperand(0);\n"; InnerChain = RootName + "0"; } } for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) { OS << " SDOperand " << RootName << OpNo <<" = " << RootName << ".getOperand(" << OpNo << ");\n"; TreePatternNode *Child = N->getChild(i); if (!Child->isLeaf()) { // If it's not a leaf, recursively match. const SDNodeInfo &CInfo = ISE.getSDNodeInfo(Child->getOperator()); OS << " if (" << RootName << OpNo << ".getOpcode() != " << CInfo.getEnumName() << ") goto P" << PatternNo << "Fail;\n"; EmitMatchCode(Child, RootName + utostr(OpNo)); if (NodeHasChain(Child, ISE)) FoldedChains.push_back(RootName + utostr(OpNo)); } else { // If this child has a name associated with it, capture it in VarMap. If // we already saw this in the pattern, emit code to verify dagness. if (!Child->getName().empty()) { std::string &VarMapEntry = VariableMap[Child->getName()]; if (VarMapEntry.empty()) { VarMapEntry = RootName + utostr(OpNo); } else { // If we get here, this is a second reference to a specific name. Since // we already have checked that the first reference is valid, we don't // have to recursively match it, just check that it's the same as the // previously named thing. OS << " if (" << VarMapEntry << " != " << RootName << OpNo << ") goto P" << PatternNo << "Fail;\n"; continue; } } // Handle leaves of various types. if (DefInit *DI = dynamic_cast(Child->getLeafValue())) { Record *LeafRec = DI->getDef(); if (LeafRec->isSubClassOf("RegisterClass")) { // Handle register references. Nothing to do here. } else if (LeafRec->isSubClassOf("Register")) { if (!InFlag) { OS << " SDOperand InFlag = SDOperand(0,0);\n"; InFlag = true; } } else if (LeafRec->isSubClassOf("ComplexPattern")) { // Handle complex pattern. Nothing to do here. } else if (LeafRec->isSubClassOf("ValueType")) { // Make sure this is the specified value type. OS << " if (cast(" << RootName << OpNo << ")->getVT() != " << "MVT::" << LeafRec->getName() << ") goto P" << PatternNo << "Fail;\n"; } else if (LeafRec->isSubClassOf("CondCode")) { // Make sure this is the specified cond code. OS << " if (cast(" << RootName << OpNo << ")->get() != " << "ISD::" << LeafRec->getName() << ") goto P" << PatternNo << "Fail;\n"; } else { Child->dump(); assert(0 && "Unknown leaf type!"); } } else if (IntInit *II = dynamic_cast(Child->getLeafValue())) { OS << " if (!isa(" << RootName << OpNo << ") ||\n" << " cast(" << RootName << OpNo << ")->getSignExtended() != " << II->getValue() << ")\n" << " goto P" << PatternNo << "Fail;\n"; } else { Child->dump(); assert(0 && "Unknown leaf type!"); } } } // If there is a node predicate for this, emit the call. if (!N->getPredicateFn().empty()) OS << " if (!" << N->getPredicateFn() << "(" << RootName << ".Val)) goto P" << PatternNo << "Fail;\n"; } /// EmitResultCode - Emit the action for a pattern. Now that it has matched /// we actually have to build a DAG! std::pair EmitResultCode(TreePatternNode *N, bool isRoot = false) { // This is something selected from the pattern we matched. if (!N->getName().empty()) { assert(!isRoot && "Root of pattern cannot be a leaf!"); std::string &Val = VariableMap[N->getName()]; assert(!Val.empty() && "Variable referenced but not defined and not caught earlier!"); if (Val[0] == 'T' && Val[1] == 'm' && Val[2] == 'p') { // Already selected this operand, just return the tmpval. return std::make_pair(1, atoi(Val.c_str()+3)); } const ComplexPattern *CP; unsigned ResNo = TmpNo++; unsigned NumRes = 1; if (!N->isLeaf() && N->getOperator()->getName() == "imm") { switch (N->getType()) { default: assert(0 && "Unknown type for constant node!"); case MVT::i1: OS << " bool Tmp"; break; case MVT::i8: OS << " unsigned char Tmp"; break; case MVT::i16: OS << " unsigned short Tmp"; break; case MVT::i32: OS << " unsigned Tmp"; break; case MVT::i64: OS << " uint64_t Tmp"; break; } OS << ResNo << "C = cast(" << Val << ")->getValue();\n"; OS << " SDOperand Tmp" << ResNo << " = CurDAG->getTargetConstant(Tmp" << ResNo << "C, MVT::" << getEnumName(N->getType()) << ");\n"; } else if (!N->isLeaf() && N->getOperator()->getName() == "tglobaladdr") { OS << " SDOperand Tmp" << ResNo << " = " << Val << ";\n"; } else if (!N->isLeaf() && N->getOperator()->getName() == "tconstpool") { OS << " SDOperand Tmp" << ResNo << " = " << Val << ";\n"; } else if (N->isLeaf() && (CP = NodeGetComplexPattern(N, ISE))) { std::string Fn = CP->getSelectFunc(); NumRes = CP->getNumOperands(); OS << " SDOperand "; for (unsigned i = 0; i < NumRes; i++) { if (i != 0) OS << ", "; OS << "Tmp" << i + ResNo; } OS << ";\n"; OS << " if (!" << Fn << "(" << Val; for (unsigned i = 0; i < NumRes; i++) OS << " , Tmp" << i + ResNo; OS << ")) goto P" << PatternNo << "Fail;\n"; TmpNo = ResNo + NumRes; } else { OS << " SDOperand Tmp" << ResNo << " = Select(" << Val << ");\n"; } // Add Tmp to VariableMap, so that we don't multiply select this // value if used multiple times by this pattern result. Val = "Tmp"+utostr(ResNo); return std::make_pair(NumRes, ResNo); } if (N->isLeaf()) { // If this is an explicit register reference, handle it. if (DefInit *DI = dynamic_cast(N->getLeafValue())) { unsigned ResNo = TmpNo++; if (DI->getDef()->isSubClassOf("Register")) { OS << " SDOperand Tmp" << ResNo << " = CurDAG->getRegister(" << ISE.getQualifiedName(DI->getDef()) << ", MVT::" << getEnumName(N->getType()) << ");\n"; return std::make_pair(1, ResNo); } } else if (IntInit *II = dynamic_cast(N->getLeafValue())) { unsigned ResNo = TmpNo++; OS << " SDOperand Tmp" << ResNo << " = CurDAG->getTargetConstant(" << II->getValue() << ", MVT::" << getEnumName(N->getType()) << ");\n"; return std::make_pair(1, ResNo); } N->dump(); assert(0 && "Unknown leaf type!"); return std::make_pair(1, ~0U); } Record *Op = N->getOperator(); if (Op->isSubClassOf("Instruction")) { // Determine operand emission order. Complex pattern first. std::vector > EmitOrder; std::vector >::iterator OI; for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { TreePatternNode *Child = N->getChild(i); if (i == 0) { EmitOrder.push_back(std::make_pair(i, Child)); OI = EmitOrder.begin(); } else if (NodeIsComplexPattern(Child)) { OI = EmitOrder.insert(OI, std::make_pair(i, Child)); } else { EmitOrder.push_back(std::make_pair(i, Child)); } } // Emit all of the operands. std::vector > NumTemps(EmitOrder.size()); for (unsigned i = 0, e = EmitOrder.size(); i != e; ++i) { unsigned OpOrder = EmitOrder[i].first; TreePatternNode *Child = EmitOrder[i].second; std::pair NumTemp = EmitResultCode(Child); NumTemps[OpOrder] = NumTemp; } // List all the operands in the right order. std::vector Ops; for (unsigned i = 0, e = NumTemps.size(); i != e; i++) { for (unsigned j = 0; j < NumTemps[i].first; j++) Ops.push_back(NumTemps[i].second + j); } CodeGenInstruction &II = ISE.getTargetInfo().getInstruction(Op->getName()); // Emit all the chain and CopyToReg stuff. if (II.hasCtrlDep) OS << " SDOperand Chain = Select(" << InnerChain << ");\n"; EmitCopyToRegs(LHS, "N", II.hasCtrlDep); const DAGInstruction &Inst = ISE.getInstruction(Op); unsigned NumResults = Inst.getNumResults(); unsigned ResNo = TmpNo++; if (!isRoot) { OS << " SDOperand Tmp" << ResNo << " = CurDAG->getTargetNode(" << II.Namespace << "::" << II.TheDef->getName() << ", MVT::" << getEnumName(N->getType()); unsigned LastOp = 0; for (unsigned i = 0, e = Ops.size(); i != e; ++i) { LastOp = Ops[i]; OS << ", Tmp" << LastOp; } OS << ");\n"; if (II.hasCtrlDep) { // Must have at least one result OS << " Chain = Tmp" << LastOp << ".getValue(" << NumResults << ");\n"; } } else if (II.hasCtrlDep) { OS << " SDOperand Result = "; OS << "CurDAG->getTargetNode(" << II.Namespace << "::" << II.TheDef->getName(); if (NumResults > 0) OS << ", MVT::" << getEnumName(N->getType()); // TODO: multiple results? OS << ", MVT::Other"; for (unsigned i = 0, e = Ops.size(); i != e; ++i) OS << ", Tmp" << Ops[i]; OS << ", Chain"; if (InFlag) OS << ", InFlag"; OS << ");\n"; if (NumResults != 0) { OS << " CodeGenMap[N] = Result;\n"; } OS << " Chain "; if (NodeHasChain(LHS, ISE)) OS << "= CodeGenMap[N.getValue(" << NumResults << ")] "; for (unsigned j = 0, e = FoldedChains.size(); j < e; j++) OS << "= CodeGenMap[" << FoldedChains[j] << ".getValue(" << NumResults << ")] "; OS << "= Result.getValue(" << NumResults << ");\n"; if (NumResults == 0) OS << " return Chain;\n"; else OS << " return (N.ResNo) ? Chain : Result.getValue(0);\n"; } else { // If this instruction is the root, and if there is only one use of it, // use SelectNodeTo instead of getTargetNode to avoid an allocation. OS << " if (N.Val->hasOneUse()) {\n"; OS << " return CurDAG->SelectNodeTo(N.Val, " << II.Namespace << "::" << II.TheDef->getName() << ", MVT::" << getEnumName(N->getType()); for (unsigned i = 0, e = Ops.size(); i != e; ++i) OS << ", Tmp" << Ops[i]; if (InFlag) OS << ", InFlag"; OS << ");\n"; OS << " } else {\n"; OS << " return CodeGenMap[N] = CurDAG->getTargetNode(" << II.Namespace << "::" << II.TheDef->getName() << ", MVT::" << getEnumName(N->getType()); for (unsigned i = 0, e = Ops.size(); i != e; ++i) OS << ", Tmp" << Ops[i]; if (InFlag) OS << ", InFlag"; OS << ");\n"; OS << " }\n"; } return std::make_pair(1, ResNo); } else if (Op->isSubClassOf("SDNodeXForm")) { assert(N->getNumChildren() == 1 && "node xform should have one child!"); unsigned OpVal = EmitResultCode(N->getChild(0)) .second; unsigned ResNo = TmpNo++; OS << " SDOperand Tmp" << ResNo << " = Transform_" << Op->getName() << "(Tmp" << OpVal << ".Val);\n"; if (isRoot) { OS << " CodeGenMap[N] = Tmp" << ResNo << ";\n"; OS << " return Tmp" << ResNo << ";\n"; } return std::make_pair(1, ResNo); } else { N->dump(); assert(0 && "Unknown node in result pattern!"); return std::make_pair(1, ~0U); } } /// InsertOneTypeCheck - Insert a type-check for an unresolved type in 'Pat' and /// add it to the tree. 'Pat' and 'Other' are isomorphic trees except that /// 'Pat' may be missing types. If we find an unresolved type to add a check /// for, this returns true otherwise false if Pat has all types. bool InsertOneTypeCheck(TreePatternNode *Pat, TreePatternNode *Other, const std::string &Prefix) { // Did we find one? if (!Pat->hasTypeSet()) { // Move a type over from 'other' to 'pat'. Pat->setType(Other->getType()); OS << " if (" << Prefix << ".Val->getValueType(0) != MVT::" << getName(Pat->getType()) << ") goto P" << PatternNo << "Fail;\n"; return true; } unsigned OpNo = (unsigned) NodeHasChain(Pat, ISE); for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i, ++OpNo) if (InsertOneTypeCheck(Pat->getChild(i), Other->getChild(i), Prefix + utostr(OpNo))) return true; return false; } private: /// EmitCopyToRegs - Emit the flag operands for the DAG that is /// being built. void EmitCopyToRegs(TreePatternNode *N, const std::string &RootName, bool HasCtrlDep) { const CodeGenTarget &T = ISE.getTargetInfo(); unsigned OpNo = (unsigned) NodeHasChain(N, ISE); for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) { TreePatternNode *Child = N->getChild(i); if (!Child->isLeaf()) { EmitCopyToRegs(Child, RootName + utostr(OpNo), HasCtrlDep); } else { if (DefInit *DI = dynamic_cast(Child->getLeafValue())) { Record *RR = DI->getDef(); if (RR->isSubClassOf("Register")) { MVT::ValueType RVT = getRegisterValueType(RR, T); if (HasCtrlDep) { OS << " SDOperand " << RootName << "CR" << i << ";\n"; OS << " " << RootName << "CR" << i << " = CurDAG->getCopyToReg(Chain, CurDAG->getRegister(" << ISE.getQualifiedName(RR) << ", MVT::" << getEnumName(RVT) << ")" << ", Select(" << RootName << OpNo << "), InFlag);\n"; OS << " Chain = " << RootName << "CR" << i << ".getValue(0);\n"; OS << " InFlag = " << RootName << "CR" << i << ".getValue(1);\n"; } else { OS << " InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode()" << ", CurDAG->getRegister(" << ISE.getQualifiedName(RR) << ", MVT::" << getEnumName(RVT) << ")" << ", Select(" << RootName << OpNo << "), InFlag).getValue(1);\n"; } } } } } } }; /// EmitCodeForPattern - Given a pattern to match, emit code to the specified /// stream to match the pattern, and generate the code for the match if it /// succeeds. void DAGISelEmitter::EmitCodeForPattern(PatternToMatch &Pattern, std::ostream &OS) { static unsigned PatternCount = 0; unsigned PatternNo = PatternCount++; OS << " { // Pattern #" << PatternNo << ": "; Pattern.first->print(OS); OS << "\n // Emits: "; Pattern.second->print(OS); OS << "\n"; OS << " // Pattern complexity = " << getPatternSize(Pattern.first, *this) << " cost = " << getResultPatternCost(Pattern.second) << "\n"; PatternCodeEmitter Emitter(*this, Pattern.first, PatternNo, OS); // Emit the matcher, capturing named arguments in VariableMap. Emitter.EmitMatchCode(Pattern.first, "N", true /*the root*/); // TP - Get *SOME* tree pattern, we don't care which. TreePattern &TP = *PatternFragments.begin()->second; // At this point, we know that we structurally match the pattern, but the // types of the nodes may not match. Figure out the fewest number of type // comparisons we need to emit. For example, if there is only one integer // type supported by a target, there should be no type comparisons at all for // integer patterns! // // To figure out the fewest number of type checks needed, clone the pattern, // remove the types, then perform type inference on the pattern as a whole. // If there are unresolved types, emit an explicit check for those types, // apply the type to the tree, then rerun type inference. Iterate until all // types are resolved. // TreePatternNode *Pat = Pattern.first->clone(); RemoveAllTypes(Pat); do { // Resolve/propagate as many types as possible. try { bool MadeChange = true; while (MadeChange) MadeChange = Pat->ApplyTypeConstraints(TP,true/*Ignore reg constraints*/); } catch (...) { assert(0 && "Error: could not find consistent types for something we" " already decided was ok!"); abort(); } // Insert a check for an unresolved type and add it to the tree. If we find // an unresolved type to add a check for, this returns true and we iterate, // otherwise we are done. } while (Emitter.InsertOneTypeCheck(Pat, Pattern.first, "N")); Emitter.EmitResultCode(Pattern.second, true /*the root*/); delete Pat; OS << " }\n P" << PatternNo << "Fail:\n"; } namespace { /// CompareByRecordName - An ordering predicate that implements less-than by /// comparing the names records. struct CompareByRecordName { bool operator()(const Record *LHS, const Record *RHS) const { // Sort by name first. if (LHS->getName() < RHS->getName()) return true; // If both names are equal, sort by pointer. return LHS->getName() == RHS->getName() && LHS < RHS; } }; } void DAGISelEmitter::EmitInstructionSelector(std::ostream &OS) { std::string InstNS = Target.inst_begin()->second.Namespace; if (!InstNS.empty()) InstNS += "::"; // Emit boilerplate. OS << "// The main instruction selector code.\n" << "SDOperand SelectCode(SDOperand N) {\n" << " if (N.getOpcode() >= ISD::BUILTIN_OP_END &&\n" << " N.getOpcode() < (ISD::BUILTIN_OP_END+" << InstNS << "INSTRUCTION_LIST_END))\n" << " return N; // Already selected.\n\n" << " if (!N.Val->hasOneUse()) {\n" << " std::map::iterator CGMI = CodeGenMap.find(N);\n" << " if (CGMI != CodeGenMap.end()) return CGMI->second;\n" << " }\n" << " switch (N.getOpcode()) {\n" << " default: break;\n" << " case ISD::EntryToken: // These leaves remain the same.\n" << " return N;\n" << " case ISD::AssertSext:\n" << " case ISD::AssertZext: {\n" << " SDOperand Tmp0 = Select(N.getOperand(0));\n" << " if (!N.Val->hasOneUse()) CodeGenMap[N] = Tmp0;\n" << " return Tmp0;\n" << " }\n" << " case ISD::TokenFactor:\n" << " if (N.getNumOperands() == 2) {\n" << " SDOperand Op0 = Select(N.getOperand(0));\n" << " SDOperand Op1 = Select(N.getOperand(1));\n" << " return CodeGenMap[N] =\n" << " CurDAG->getNode(ISD::TokenFactor, MVT::Other, Op0, Op1);\n" << " } else {\n" << " std::vector Ops;\n" << " for (unsigned i = 0, e = N.getNumOperands(); i != e; ++i)\n" << " Ops.push_back(Select(N.getOperand(i)));\n" << " return CodeGenMap[N] = \n" << " CurDAG->getNode(ISD::TokenFactor, MVT::Other, Ops);\n" << " }\n" << " case ISD::CopyFromReg: {\n" << " SDOperand Chain = Select(N.getOperand(0));\n" << " if (Chain == N.getOperand(0)) return N; // No change\n" << " SDOperand New = CurDAG->getCopyFromReg(Chain,\n" << " cast(N.getOperand(1))->getReg(),\n" << " N.Val->getValueType(0));\n" << " return New.getValue(N.ResNo);\n" << " }\n" << " case ISD::CopyToReg: {\n" << " SDOperand Chain = Select(N.getOperand(0));\n" << " SDOperand Reg = N.getOperand(1);\n" << " SDOperand Val = Select(N.getOperand(2));\n" << " return CodeGenMap[N] = \n" << " CurDAG->getNode(ISD::CopyToReg, MVT::Other,\n" << " Chain, Reg, Val);\n" << " }\n"; // Group the patterns by their top-level opcodes. std::map, CompareByRecordName> PatternsByOpcode; for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) { TreePatternNode *Node = PatternsToMatch[i].first; if (!Node->isLeaf()) { PatternsByOpcode[Node->getOperator()].push_back(&PatternsToMatch[i]); } else { const ComplexPattern *CP; if (IntInit *II = dynamic_cast(Node->getLeafValue())) { PatternsByOpcode[getSDNodeNamed("imm")].push_back(&PatternsToMatch[i]); } else if ((CP = NodeGetComplexPattern(Node, *this))) { std::vector OpNodes = CP->getRootNodes(); for (unsigned j = 0, e = OpNodes.size(); j != e; j++) { PatternsByOpcode[OpNodes[j]].insert(PatternsByOpcode[OpNodes[j]].begin(), &PatternsToMatch[i]); } } else { std::cerr << "Unrecognized opcode '"; Node->dump(); std::cerr << "' on tree pattern '"; std::cerr << PatternsToMatch[i].second->getOperator()->getName(); std::cerr << "'!\n"; exit(1); } } } // Loop over all of the case statements. for (std::map, CompareByRecordName>::iterator PBOI = PatternsByOpcode.begin(), E = PatternsByOpcode.end(); PBOI != E; ++PBOI) { const SDNodeInfo &OpcodeInfo = getSDNodeInfo(PBOI->first); std::vector &Patterns = PBOI->second; OS << " case " << OpcodeInfo.getEnumName() << ":\n"; // We want to emit all of the matching code now. However, we want to emit // the matches in order of minimal cost. Sort the patterns so the least // cost one is at the start. std::stable_sort(Patterns.begin(), Patterns.end(), PatternSortingPredicate(*this)); for (unsigned i = 0, e = Patterns.size(); i != e; ++i) EmitCodeForPattern(*Patterns[i], OS); OS << " break;\n\n"; } OS << " } // end of big switch.\n\n" << " std::cerr << \"Cannot yet select: \";\n" << " N.Val->dump();\n" << " std::cerr << '\\n';\n" << " abort();\n" << "}\n"; } void DAGISelEmitter::run(std::ostream &OS) { EmitSourceFileHeader("DAG Instruction Selector for the " + Target.getName() + " target", OS); OS << "// *** NOTE: This file is #included into the middle of the target\n" << "// *** instruction selector class. These functions are really " << "methods.\n\n"; OS << "// Instance var to keep track of multiply used nodes that have \n" << "// already been selected.\n" << "std::map CodeGenMap;\n"; ParseNodeInfo(); ParseNodeTransforms(OS); ParseComplexPatterns(); ParsePatternFragments(OS); ParseInstructions(); ParsePatterns(); // Generate variants. For example, commutative patterns can match // multiple ways. Add them to PatternsToMatch as well. GenerateVariants(); DEBUG(std::cerr << "\n\nALL PATTERNS TO MATCH:\n\n"; for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) { std::cerr << "PATTERN: "; PatternsToMatch[i].first->dump(); std::cerr << "\nRESULT: ";PatternsToMatch[i].second->dump(); std::cerr << "\n"; }); // At this point, we have full information about the 'Patterns' we need to // parse, both implicitly from instructions as well as from explicit pattern // definitions. Emit the resultant instruction selector. EmitInstructionSelector(OS); for (std::map::iterator I = PatternFragments.begin(), E = PatternFragments.end(); I != E; ++I) delete I->second; PatternFragments.clear(); Instructions.clear(); }