//===-- MipsAsmPrinter.cpp - Mips LLVM assembly writer --------------------===// // // The LLVM Compiler Infrastructure // // This file was developed by Bruno Cardoso Lopes and is distributed under the // University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains a printer that converts from our internal representation // of machine-dependent LLVM code to GAS-format MIPS assembly language. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "mips-asm-printer" #include "Mips.h" #include "MipsInstrInfo.h" #include "MipsTargetMachine.h" #include "MipsMachineFunction.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Module.h" #include "llvm/CodeGen/AsmPrinter.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/Target/TargetAsmInfo.h" #include "llvm/Target/TargetData.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Support/Mangler.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Support/Debug.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/MathExtras.h" #include using namespace llvm; STATISTIC(EmittedInsts, "Number of machine instrs printed"); namespace { struct VISIBILITY_HIDDEN MipsAsmPrinter : public AsmPrinter { MipsAsmPrinter(std::ostream &O, MipsTargetMachine &TM, const TargetAsmInfo *T): AsmPrinter(O, TM, T) {} virtual const char *getPassName() const { return "Mips Assembly Printer"; } enum SetDirectiveFlags { REORDER, // enables instruction reordering. NOREORDER, // disables instruction reordering. MACRO, // enables GAS macros. NOMACRO // disables GAS macros. }; void printOperand(const MachineInstr *MI, int opNum); void printMemOperand(const MachineInstr *MI, int opNum, const char *Modifier = 0); void printHex32(unsigned int Value); void emitFunctionStart(MachineFunction &MF); void emitFunctionEnd(); void emitFrameDirective(MachineFunction &MF); void emitMaskDirective(MachineFunction &MF); void emitFMaskDirective(); void emitSetDirective(SetDirectiveFlags Flag); bool printInstruction(const MachineInstr *MI); // autogenerated. bool runOnMachineFunction(MachineFunction &F); bool doInitialization(Module &M); bool doFinalization(Module &M); }; } // end of anonymous namespace #include "MipsGenAsmWriter.inc" /// createMipsCodePrinterPass - Returns a pass that prints the MIPS /// assembly code for a MachineFunction to the given output stream, /// using the given target machine description. This should work /// regardless of whether the function is in SSA form. FunctionPass *llvm::createMipsCodePrinterPass(std::ostream &o, MipsTargetMachine &tm) { return new MipsAsmPrinter(o, tm, tm.getTargetAsmInfo()); } /// This pattern will be emitted : /// .frame reg1, size, reg2 /// It describes the stack frame. /// reg1 - stack pointer /// size - stack size allocated for the function /// reg2 - return address register void MipsAsmPrinter:: emitFrameDirective(MachineFunction &MF) { const MRegisterInfo &RI = *TM.getRegisterInfo(); unsigned stackReg = RI.getFrameRegister(MF); unsigned returnReg = RI.getRARegister(); unsigned stackSize = MF.getFrameInfo()->getStackSize(); O << "\t.frame\t" << "$" << LowercaseString(RI.get(stackReg).Name) << "," << stackSize << "," << "$" << LowercaseString(RI.get(returnReg).Name) << "\n"; } /// This pattern will be emitted : /// .mask bitmask, offset /// Tells the assembler (and possibly linker) which registers are saved and where. /// bitmask - mask of all GPRs (little endian) /// offset - negative value. offset+stackSize should give where on the stack /// the first GPR is saved. /// TODO: consider calle saved GPR regs here, not hardcode register numbers. void MipsAsmPrinter:: emitMaskDirective(MachineFunction &MF) { const MRegisterInfo &RI = *TM.getRegisterInfo(); MipsFunctionInfo *MipsFI = MF.getInfo(); bool hasFP = RI.hasFP(MF); bool saveRA = MF.getFrameInfo()->hasCalls(); int offset; if (!MipsFI->getTopSavedRegOffset()) offset = 0; else offset = -(MF.getFrameInfo()->getStackSize() -MipsFI->getTopSavedRegOffset()); #ifndef NDEBUG DOUT << "<--ASM PRINTER--emitMaskDirective-->" << "\n"; DOUT << "StackSize : " << MF.getFrameInfo()->getStackSize() << "\n"; DOUT << "getTopSavedRegOffset() : " << MipsFI->getTopSavedRegOffset() << "\n"; DOUT << "offset : " << offset << "\n\n"; #endif unsigned int bitmask = 0; if (hasFP) bitmask |= (1 << 30); if (saveRA) bitmask |= (1 << 31); O << "\t.mask\t"; printHex32(bitmask); O << "," << offset << "\n"; } /// This pattern will be emitted : /// .fmask bitmask, offset /// Tells the assembler (and possibly linker) which float registers are saved. /// bitmask - mask of all Float Point registers (little endian) /// offset - negative value. offset+stackSize should give where on the stack /// the first Float Point register is saved. /// TODO: implement this, dummy for now void MipsAsmPrinter:: emitFMaskDirective() { O << "\t.fmask\t0x00000000,0" << "\n"; } /// Print a 32 bit hex number filling with 0's on the left. /// TODO: make this setfill and setw void MipsAsmPrinter:: printHex32(unsigned int Value) { O << "0x" << std::hex << Value << std::dec; } /// Emit Set directives. void MipsAsmPrinter:: emitSetDirective(SetDirectiveFlags Flag) { O << "\t.set\t"; switch(Flag) { case REORDER: O << "reorder" << "\n"; break; case NOREORDER: O << "noreorder" << "\n"; break; case MACRO: O << "macro" << "\n"; break; case NOMACRO: O << "nomacro" << "\n"; break; default: break; } } /// Emit the directives used by GAS on the start of functions void MipsAsmPrinter:: emitFunctionStart(MachineFunction &MF) { // Print out the label for the function. const Function *F = MF.getFunction(); SwitchToTextSection(getSectionForFunction(*F).c_str(), F); // On Mips GAS, if .align #n is present, #n means the number of bits // to be cleared. So, if we want 4 byte alignment, we must have .align 2 EmitAlignment(1, F); O << "\t.globl\t" << CurrentFnName << "\n"; O << "\t.ent\t" << CurrentFnName << "\n"; O << "\t.type\t" << CurrentFnName << ", @function\n"; O << CurrentFnName << ":\n"; emitFrameDirective(MF); emitMaskDirective(MF); emitFMaskDirective(); emitSetDirective(NOREORDER); emitSetDirective(NOMACRO); } /// Emit the directives used by GAS on the end of functions void MipsAsmPrinter:: emitFunctionEnd() { emitSetDirective(MACRO); emitSetDirective(REORDER); O << "\t.end\t" << CurrentFnName << "\n"; } /// runOnMachineFunction - This uses the printMachineInstruction() /// method to print assembly for each instruction. bool MipsAsmPrinter:: runOnMachineFunction(MachineFunction &MF) { SetupMachineFunction(MF); // Print out constants referenced by the function EmitConstantPool(MF.getConstantPool()); O << "\n\n"; // What's my mangled name? CurrentFnName = Mang->getValueName(MF.getFunction()); // Emit the function start directives emitFunctionStart(MF); // Print out code for the function. for (MachineFunction::const_iterator I = MF.begin(), E = MF.end(); I != E; ++I) { // Print a label for the basic block. if (I != MF.begin()) { printBasicBlockLabel(I, true); O << '\n'; } for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end(); II != E; ++II) { // Print the assembly for the instruction. O << "\t"; printInstruction(II); ++EmittedInsts; } } // Emit function end directives emitFunctionEnd(); // We didn't modify anything. return false; } void MipsAsmPrinter:: printOperand(const MachineInstr *MI, int opNum) { const MachineOperand &MO = MI->getOperand(opNum); const MRegisterInfo &RI = *TM.getRegisterInfo(); bool closeP=false; // %hi and %lo used on mips gas to break large constants if (MI->getOpcode() == Mips::LUi && !MO.isRegister() && !MO.isImmediate()) { O << "%hi("; closeP = true; } else if ((MI->getOpcode() == Mips::ADDiu) && !MO.isRegister() && !MO.isImmediate()) { O << "%lo("; closeP = true; } switch (MO.getType()) { case MachineOperand::MO_Register: if (MRegisterInfo::isPhysicalRegister(MO.getReg())) O << "$" << LowercaseString (RI.get(MO.getReg()).Name); else O << "$" << MO.getReg(); break; case MachineOperand::MO_Immediate: if ((MI->getOpcode() == Mips::SLTiu) || (MI->getOpcode() == Mips::ORi) || (MI->getOpcode() == Mips::LUi) || (MI->getOpcode() == Mips::ANDi)) O << (unsigned short int)MO.getImmedValue(); else O << (short int)MO.getImmedValue(); break; case MachineOperand::MO_MachineBasicBlock: printBasicBlockLabel(MO.getMachineBasicBlock()); return; case MachineOperand::MO_GlobalAddress: O << Mang->getValueName(MO.getGlobal()); break; case MachineOperand::MO_ExternalSymbol: O << MO.getSymbolName(); break; case MachineOperand::MO_ConstantPoolIndex: O << TAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << "_" << MO.getConstantPoolIndex(); break; default: O << ""; abort (); break; } if (closeP) O << ")"; } void MipsAsmPrinter:: printMemOperand(const MachineInstr *MI, int opNum, const char *Modifier) { // lw/sw $reg, MemOperand // will turn into : // lw/sw $reg, imm($reg) printOperand(MI, opNum); O << "("; printOperand(MI, opNum+1); O << ")"; } bool MipsAsmPrinter:: doInitialization(Module &M) { Mang = new Mangler(M); return false; // success } bool MipsAsmPrinter:: doFinalization(Module &M) { const TargetData *TD = TM.getTargetData(); // Print out module-level global variables here. for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); I != E; ++I) // External global require no code if (I->hasInitializer()) { // Check to see if this is a special global // used by LLVM, if so, emit it. if (EmitSpecialLLVMGlobal(I)) continue; O << "\n\n"; std::string name = Mang->getValueName(I); Constant *C = I->getInitializer(); unsigned Size = TD->getTypeSize(C->getType()); unsigned Align = TD->getPrefTypeAlignment(C->getType()); if (C->isNullValue() && (I->hasLinkOnceLinkage() || I->hasInternalLinkage() || I->hasWeakLinkage() /* FIXME: Verify correct */)) { SwitchToDataSection(".data", I); if (I->hasInternalLinkage()) O << "\t.local " << name << "\n"; O << "\t.comm " << name << "," << TD->getTypeSize(C->getType()) << "," << Align << "\n"; } else { switch (I->getLinkage()) { case GlobalValue::LinkOnceLinkage: case GlobalValue::WeakLinkage: // FIXME: Verify correct for weak. // Nonnull linkonce -> weak O << "\t.weak " << name << "\n"; SwitchToDataSection("", I); O << "\t.section\t\".llvm.linkonce.d." << name << "\",\"aw\",@progbits\n"; break; case GlobalValue::AppendingLinkage: // FIXME: appending linkage variables // should go into a section of their name or // something. For now, just emit them as external. case GlobalValue::ExternalLinkage: // If external or appending, declare as a global symbol O << "\t.globl " << name << "\n"; case GlobalValue::InternalLinkage: if (C->isNullValue()) SwitchToDataSection(".bss", I); else SwitchToDataSection(".data", I); break; case GlobalValue::GhostLinkage: cerr << "Should not have any" << "unmaterialized functions!\n"; abort(); case GlobalValue::DLLImportLinkage: cerr << "DLLImport linkage is" << "not supported by this target!\n"; abort(); case GlobalValue::DLLExportLinkage: cerr << "DLLExport linkage is" << "not supported by this target!\n"; abort(); default: assert(0 && "Unknown linkage type!"); } O << "\t.align " << Align << "\n"; O << "\t.type " << name << ",@object\n"; O << "\t.size " << name << "," << Size << "\n"; O << name << ":\n"; EmitGlobalConstant(C); } } AsmPrinter::doFinalization(M); return false; // success }