//===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the X86 specific subclass of TargetMachine. // //===----------------------------------------------------------------------===// #include "X86TargetMachine.h" #include "X86.h" #include "llvm/Module.h" #include "llvm/PassManager.h" #include "llvm/CodeGen/IntrinsicLowering.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/Passes.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Target/TargetMachineRegistry.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Support/CommandLine.h" #include "llvm/ADT/Statistic.h" using namespace llvm; X86VectorEnum llvm::X86Vector = NoSSE; bool llvm::X86ScalarSSE = false; /// X86TargetMachineModule - Note that this is used on hosts that cannot link /// in a library unless there are references into the library. In particular, /// it seems that it is not possible to get things to work on Win32 without /// this. Though it is unused, do not remove it. extern "C" int X86TargetMachineModule; int X86TargetMachineModule = 0; namespace { cl::opt NoSSAPeephole("disable-ssa-peephole", cl::init(true), cl::desc("Disable the ssa-based peephole optimizer " "(defaults to disabled)")); cl::opt DisableOutput("disable-x86-llc-output", cl::Hidden, cl::desc("Disable the X86 asm printer, for use " "when profiling the code generator.")); cl::opt EnableSSEFP("enable-sse-scalar-fp", cl::desc("Perform FP math in SSE regs instead of the FP stack"), cl::location(X86ScalarSSE), cl::init(false)); // FIXME: This should eventually be handled with target triples and // subtarget support! cl::opt SSEArg( cl::desc("Enable SSE support in the X86 target:"), cl::values( clEnumValN(SSE, "sse", " Enable SSE support"), clEnumValN(SSE2, "sse2", " Enable SSE and SSE2 support"), clEnumValN(SSE3, "sse3", " Enable SSE, SSE2, and SSE3 support"), clEnumValEnd), cl::location(X86Vector), cl::init(NoSSE)); // Register the target. RegisterTarget X("x86", " IA-32 (Pentium and above)"); } unsigned X86TargetMachine::getJITMatchQuality() { #if defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86) return 10; #else return 0; #endif } unsigned X86TargetMachine::getModuleMatchQuality(const Module &M) { // We strongly match "i[3-9]86-*". std::string TT = M.getTargetTriple(); if (TT.size() >= 5 && TT[0] == 'i' && TT[2] == '8' && TT[3] == '6' && TT[4] == '-' && TT[1] - '3' < 6) return 20; if (M.getEndianness() == Module::LittleEndian && M.getPointerSize() == Module::Pointer32) return 10; // Weak match else if (M.getEndianness() != Module::AnyEndianness || M.getPointerSize() != Module::AnyPointerSize) return 0; // Match for some other target return getJITMatchQuality()/2; } /// X86TargetMachine ctor - Create an ILP32 architecture model /// X86TargetMachine::X86TargetMachine(const Module &M, IntrinsicLowering *IL) : TargetMachine("X86", IL, true, 4, 4, 4, 4, 4), Subtarget(M), FrameInfo(TargetFrameInfo::StackGrowsDown, Subtarget.getStackAlignment(), -4), JITInfo(*this) { // Scalar SSE FP requires at least SSE2 X86ScalarSSE &= X86Vector >= SSE2; } // addPassesToEmitFile - We currently use all of the same passes as the JIT // does to emit statically compiled machine code. bool X86TargetMachine::addPassesToEmitFile(PassManager &PM, std::ostream &Out, CodeGenFileType FileType) { if (FileType != TargetMachine::AssemblyFile && FileType != TargetMachine::ObjectFile) return true; // FIXME: Implement efficient support for garbage collection intrinsics. PM.add(createLowerGCPass()); // FIXME: Implement the invoke/unwind instructions! PM.add(createLowerInvokePass()); // FIXME: Implement the switch instruction in the instruction selector! PM.add(createLowerSwitchPass()); // Make sure that no unreachable blocks are instruction selected. PM.add(createUnreachableBlockEliminationPass()); // Default to pattern ISel if (PatternISelTriState == 0) PM.add(createX86SimpleInstructionSelector(*this)); else PM.add(createX86PatternInstructionSelector(*this)); // Run optional SSA-based machine code optimizations next... if (!NoSSAPeephole) PM.add(createX86SSAPeepholeOptimizerPass()); // Print the instruction selected machine code... if (PrintMachineCode) PM.add(createMachineFunctionPrinterPass(&std::cerr)); // Perform register allocation to convert to a concrete x86 representation PM.add(createRegisterAllocator()); if (PrintMachineCode) PM.add(createMachineFunctionPrinterPass(&std::cerr)); PM.add(createX86FloatingPointStackifierPass()); if (PrintMachineCode) PM.add(createMachineFunctionPrinterPass(&std::cerr)); // Insert prolog/epilog code. Eliminate abstract frame index references... PM.add(createPrologEpilogCodeInserter()); PM.add(createX86PeepholeOptimizerPass()); if (PrintMachineCode) // Print the register-allocated code PM.add(createX86CodePrinterPass(std::cerr, *this)); if (!DisableOutput) switch (FileType) { default: assert(0 && "Unexpected filetype here!"); case TargetMachine::AssemblyFile: PM.add(createX86CodePrinterPass(Out, *this)); break; case TargetMachine::ObjectFile: // FIXME: We only support emission of ELF files for now, this should check // the target triple and decide on the format to write (e.g. COFF on // win32). addX86ELFObjectWriterPass(PM, Out, *this); break; } // Delete machine code for this function PM.add(createMachineCodeDeleter()); return false; // success! } /// addPassesToJITCompile - Add passes to the specified pass manager to /// implement a fast dynamic compiler for this target. Return true if this is /// not supported for this target. /// void X86JITInfo::addPassesToJITCompile(FunctionPassManager &PM) { // FIXME: Implement efficient support for garbage collection intrinsics. PM.add(createLowerGCPass()); // FIXME: Implement the invoke/unwind instructions! PM.add(createLowerInvokePass()); // FIXME: Implement the switch instruction in the instruction selector! PM.add(createLowerSwitchPass()); // Make sure that no unreachable blocks are instruction selected. PM.add(createUnreachableBlockEliminationPass()); // Default to pattern ISel if (PatternISelTriState == 0) PM.add(createX86SimpleInstructionSelector(TM)); else PM.add(createX86PatternInstructionSelector(TM)); // Run optional SSA-based machine code optimizations next... if (!NoSSAPeephole) PM.add(createX86SSAPeepholeOptimizerPass()); // FIXME: Add SSA based peephole optimizer here. // Print the instruction selected machine code... if (PrintMachineCode) PM.add(createMachineFunctionPrinterPass(&std::cerr)); // Perform register allocation to convert to a concrete x86 representation PM.add(createRegisterAllocator()); if (PrintMachineCode) PM.add(createMachineFunctionPrinterPass(&std::cerr)); PM.add(createX86FloatingPointStackifierPass()); if (PrintMachineCode) PM.add(createMachineFunctionPrinterPass(&std::cerr)); // Insert prolog/epilog code. Eliminate abstract frame index references... PM.add(createPrologEpilogCodeInserter()); PM.add(createX86PeepholeOptimizerPass()); if (PrintMachineCode) // Print the register-allocated code PM.add(createX86CodePrinterPass(std::cerr, TM)); } bool X86TargetMachine::addPassesToEmitMachineCode(FunctionPassManager &PM, MachineCodeEmitter &MCE) { PM.add(createX86CodeEmitterPass(MCE)); // Delete machine code for this function PM.add(createMachineCodeDeleter()); return false; }