//===-- HexagonHardwareLoops.cpp - Identify and generate hardware loops ---===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass identifies loops where we can generate the Hexagon hardware // loop instruction. The hardware loop can perform loop branches with a // zero-cycle overhead. // // The pattern that defines the induction variable can changed depending on // prior optimizations. For example, the IndVarSimplify phase run by 'opt' // normalizes induction variables, and the Loop Strength Reduction pass // run by 'llc' may also make changes to the induction variable. // The pattern detected by this phase is due to running Strength Reduction. // // Criteria for hardware loops: // - Countable loops (w/ ind. var for a trip count) // - Assumes loops are normalized by IndVarSimplify // - Try inner-most loops first // - No nested hardware loops. // - No function calls in loops. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "hwloops" #include "Hexagon.h" #include "HexagonTargetMachine.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/Statistic.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/RegisterScavenging.h" #include "llvm/Constants.h" #include "llvm/PassSupport.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetInstrInfo.h" #include using namespace llvm; STATISTIC(NumHWLoops, "Number of loops converted to hardware loops"); namespace { class CountValue; struct HexagonHardwareLoops : public MachineFunctionPass { MachineLoopInfo *MLI; MachineRegisterInfo *MRI; const TargetInstrInfo *TII; public: static char ID; // Pass identification, replacement for typeid HexagonHardwareLoops() : MachineFunctionPass(ID) {} virtual bool runOnMachineFunction(MachineFunction &MF); const char *getPassName() const { return "Hexagon Hardware Loops"; } virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesCFG(); AU.addRequired(); AU.addPreserved(); AU.addRequired(); AU.addPreserved(); MachineFunctionPass::getAnalysisUsage(AU); } private: /// getCanonicalInductionVariable - Check to see if the loop has a canonical /// induction variable. /// Should be defined in MachineLoop. Based upon version in class Loop. const MachineInstr *getCanonicalInductionVariable(MachineLoop *L) const; /// getTripCount - Return a loop-invariant LLVM register indicating the /// number of times the loop will be executed. If the trip-count cannot /// be determined, this return null. CountValue *getTripCount(MachineLoop *L) const; /// isInductionOperation - Return true if the instruction matches the /// pattern for an opertion that defines an induction variable. bool isInductionOperation(const MachineInstr *MI, unsigned IVReg) const; /// isInvalidOperation - Return true if the instruction is not valid within /// a hardware loop. bool isInvalidLoopOperation(const MachineInstr *MI) const; /// containsInavlidInstruction - Return true if the loop contains an /// instruction that inhibits using the hardware loop. bool containsInvalidInstruction(MachineLoop *L) const; /// converToHardwareLoop - Given a loop, check if we can convert it to a /// hardware loop. If so, then perform the conversion and return true. bool convertToHardwareLoop(MachineLoop *L); }; char HexagonHardwareLoops::ID = 0; // CountValue class - Abstraction for a trip count of a loop. A // smaller vesrsion of the MachineOperand class without the concerns // of changing the operand representation. class CountValue { public: enum CountValueType { CV_Register, CV_Immediate }; private: CountValueType Kind; union Values { unsigned RegNum; int64_t ImmVal; Values(unsigned r) : RegNum(r) {} Values(int64_t i) : ImmVal(i) {} } Contents; bool isNegative; public: CountValue(unsigned r, bool neg) : Kind(CV_Register), Contents(r), isNegative(neg) {} explicit CountValue(int64_t i) : Kind(CV_Immediate), Contents(i), isNegative(i < 0) {} CountValueType getType() const { return Kind; } bool isReg() const { return Kind == CV_Register; } bool isImm() const { return Kind == CV_Immediate; } bool isNeg() const { return isNegative; } unsigned getReg() const { assert(isReg() && "Wrong CountValue accessor"); return Contents.RegNum; } void setReg(unsigned Val) { Contents.RegNum = Val; } int64_t getImm() const { assert(isImm() && "Wrong CountValue accessor"); if (isNegative) { return -Contents.ImmVal; } return Contents.ImmVal; } void setImm(int64_t Val) { Contents.ImmVal = Val; } void print(raw_ostream &OS, const TargetMachine *TM = 0) const { if (isReg()) { OS << PrintReg(getReg()); } if (isImm()) { OS << getImm(); } } }; struct HexagonFixupHwLoops : public MachineFunctionPass { public: static char ID; // Pass identification, replacement for typeid. HexagonFixupHwLoops() : MachineFunctionPass(ID) {} virtual bool runOnMachineFunction(MachineFunction &MF); const char *getPassName() const { return "Hexagon Hardware Loop Fixup"; } virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesCFG(); MachineFunctionPass::getAnalysisUsage(AU); } private: /// Maximum distance between the loop instr and the basic block. /// Just an estimate. static const unsigned MAX_LOOP_DISTANCE = 200; /// fixupLoopInstrs - Check the offset between each loop instruction and /// the loop basic block to determine if we can use the LOOP instruction /// or if we need to set the LC/SA registers explicitly. bool fixupLoopInstrs(MachineFunction &MF); /// convertLoopInstr - Add the instruction to set the LC and SA registers /// explicitly. void convertLoopInstr(MachineFunction &MF, MachineBasicBlock::iterator &MII, RegScavenger &RS); }; char HexagonFixupHwLoops::ID = 0; } // end anonymous namespace /// isHardwareLoop - Returns true if the instruction is a hardware loop /// instruction. static bool isHardwareLoop(const MachineInstr *MI) { return MI->getOpcode() == Hexagon::LOOP0_r || MI->getOpcode() == Hexagon::LOOP0_i; } /// isCompareEquals - Returns true if the instruction is a compare equals /// instruction with an immediate operand. static bool isCompareEqualsImm(const MachineInstr *MI) { return MI->getOpcode() == Hexagon::CMPEQri; } /// createHexagonHardwareLoops - Factory for creating /// the hardware loop phase. FunctionPass *llvm::createHexagonHardwareLoops() { return new HexagonHardwareLoops(); } bool HexagonHardwareLoops::runOnMachineFunction(MachineFunction &MF) { DEBUG(dbgs() << "********* Hexagon Hardware Loops *********\n"); bool Changed = false; // get the loop information MLI = &getAnalysis(); // get the register information MRI = &MF.getRegInfo(); // the target specific instructio info. TII = MF.getTarget().getInstrInfo(); for (MachineLoopInfo::iterator I = MLI->begin(), E = MLI->end(); I != E; ++I) { MachineLoop *L = *I; if (!L->getParentLoop()) { Changed |= convertToHardwareLoop(L); } } return Changed; } /// getCanonicalInductionVariable - Check to see if the loop has a canonical /// induction variable. We check for a simple recurrence pattern - an /// integer recurrence that decrements by one each time through the loop and /// ends at zero. If so, return the phi node that corresponds to it. /// /// Based upon the similar code in LoopInfo except this code is specific to /// the machine. /// This method assumes that the IndVarSimplify pass has been run by 'opt'. /// const MachineInstr *HexagonHardwareLoops::getCanonicalInductionVariable(MachineLoop *L) const { MachineBasicBlock *TopMBB = L->getTopBlock(); MachineBasicBlock::pred_iterator PI = TopMBB->pred_begin(); assert(PI != TopMBB->pred_end() && "Loop must have more than one incoming edge!"); MachineBasicBlock *Backedge = *PI++; if (PI == TopMBB->pred_end()) return 0; // dead loop MachineBasicBlock *Incoming = *PI++; if (PI != TopMBB->pred_end()) return 0; // multiple backedges? // make sure there is one incoming and one backedge and determine which // is which. if (L->contains(Incoming)) { if (L->contains(Backedge)) return 0; std::swap(Incoming, Backedge); } else if (!L->contains(Backedge)) return 0; // Loop over all of the PHI nodes, looking for a canonical induction variable: // - The PHI node is "reg1 = PHI reg2, BB1, reg3, BB2". // - The recurrence comes from the backedge. // - the definition is an induction operatio.n for (MachineBasicBlock::iterator I = TopMBB->begin(), E = TopMBB->end(); I != E && I->isPHI(); ++I) { const MachineInstr *MPhi = &*I; unsigned DefReg = MPhi->getOperand(0).getReg(); for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) { // Check each operand for the value from the backedge. MachineBasicBlock *MBB = MPhi->getOperand(i+1).getMBB(); if (L->contains(MBB)) { // operands comes from the backedge // Check if the definition is an induction operation. const MachineInstr *DI = MRI->getVRegDef(MPhi->getOperand(i).getReg()); if (isInductionOperation(DI, DefReg)) { return MPhi; } } } } return 0; } /// getTripCount - Return a loop-invariant LLVM value indicating the /// number of times the loop will be executed. The trip count can /// be either a register or a constant value. If the trip-count /// cannot be determined, this returns null. /// /// We find the trip count from the phi instruction that defines the /// induction variable. We follow the links to the CMP instruction /// to get the trip count. /// /// Based upon getTripCount in LoopInfo. /// CountValue *HexagonHardwareLoops::getTripCount(MachineLoop *L) const { // Check that the loop has a induction variable. const MachineInstr *IV_Inst = getCanonicalInductionVariable(L); if (IV_Inst == 0) return 0; // Canonical loops will end with a 'cmpeq_ri IV, Imm', // if Imm is 0, get the count from the PHI opnd // if Imm is -M, than M is the count // Otherwise, Imm is the count const MachineOperand *IV_Opnd; const MachineOperand *InitialValue; if (!L->contains(IV_Inst->getOperand(2).getMBB())) { InitialValue = &IV_Inst->getOperand(1); IV_Opnd = &IV_Inst->getOperand(3); } else { InitialValue = &IV_Inst->getOperand(3); IV_Opnd = &IV_Inst->getOperand(1); } // Look for the cmp instruction to determine if we // can get a useful trip count. The trip count can // be either a register or an immediate. The location // of the value depends upon the type (reg or imm). for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(IV_Opnd->getReg()), RE = MRI->reg_end(); RI != RE; ++RI) { IV_Opnd = &RI.getOperand(); const MachineInstr *MI = IV_Opnd->getParent(); if (L->contains(MI) && isCompareEqualsImm(MI)) { const MachineOperand &MO = MI->getOperand(2); assert(MO.isImm() && "IV Cmp Operand should be 0"); int64_t ImmVal = MO.getImm(); const MachineInstr *IV_DefInstr = MRI->getVRegDef(IV_Opnd->getReg()); assert(L->contains(IV_DefInstr->getParent()) && "IV definition should occurs in loop"); int64_t iv_value = IV_DefInstr->getOperand(2).getImm(); if (ImmVal == 0) { // Make sure the induction variable changes by one on each iteration. if (iv_value != 1 && iv_value != -1) { return 0; } return new CountValue(InitialValue->getReg(), iv_value > 0); } else { assert(InitialValue->isReg() && "Expecting register for init value"); const MachineInstr *DefInstr = MRI->getVRegDef(InitialValue->getReg()); if (DefInstr && DefInstr->getOpcode() == Hexagon::TFRI) { int64_t count = ImmVal - DefInstr->getOperand(1).getImm(); if ((count % iv_value) != 0) { return 0; } return new CountValue(count/iv_value); } } } } return 0; } /// isInductionOperation - return true if the operation is matches the /// pattern that defines an induction variable: /// add iv, c /// bool HexagonHardwareLoops::isInductionOperation(const MachineInstr *MI, unsigned IVReg) const { return (MI->getOpcode() == Hexagon::ADD_ri && MI->getOperand(1).getReg() == IVReg); } /// isInvalidOperation - Return true if the operation is invalid within /// hardware loop. bool HexagonHardwareLoops::isInvalidLoopOperation(const MachineInstr *MI) const { // call is not allowed because the callee may use a hardware loop if (MI->getDesc().isCall()) { return true; } // do not allow nested hardware loops if (isHardwareLoop(MI)) { return true; } // check if the instruction defines a hardware loop register for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { const MachineOperand &MO = MI->getOperand(i); if (MO.isReg() && MO.isDef() && (MO.getReg() == Hexagon::LC0 || MO.getReg() == Hexagon::LC1 || MO.getReg() == Hexagon::SA0 || MO.getReg() == Hexagon::SA0)) { return true; } } return false; } /// containsInvalidInstruction - Return true if the loop contains /// an instruction that inhibits the use of the hardware loop function. /// bool HexagonHardwareLoops::containsInvalidInstruction(MachineLoop *L) const { const std::vector Blocks = L->getBlocks(); for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { MachineBasicBlock *MBB = Blocks[i]; for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end(); MII != E; ++MII) { const MachineInstr *MI = &*MII; if (isInvalidLoopOperation(MI)) { return true; } } } return false; } /// converToHardwareLoop - check if the loop is a candidate for /// converting to a hardware loop. If so, then perform the /// transformation. /// /// This function works on innermost loops first. A loop can /// be converted if it is a counting loop; either a register /// value or an immediate. /// /// The code makes several assumptions about the representation /// of the loop in llvm. bool HexagonHardwareLoops::convertToHardwareLoop(MachineLoop *L) { bool Changed = false; // Process nested loops first. for (MachineLoop::iterator I = L->begin(), E = L->end(); I != E; ++I) { Changed |= convertToHardwareLoop(*I); } // If a nested loop has been converted, then we can't convert this loop. if (Changed) { return Changed; } // Are we able to determine the trip count for the loop? CountValue *TripCount = getTripCount(L); if (TripCount == 0) { return false; } // Does the loop contain any invalid instructions? if (containsInvalidInstruction(L)) { return false; } MachineBasicBlock *Preheader = L->getLoopPreheader(); // No preheader means there's not place for the loop instr. if (Preheader == 0) { return false; } MachineBasicBlock::iterator InsertPos = Preheader->getFirstTerminator(); MachineBasicBlock *LastMBB = L->getExitingBlock(); // Don't generate hw loop if the loop has more than one exit. if (LastMBB == 0) { return false; } MachineBasicBlock::iterator LastI = LastMBB->getFirstTerminator(); if (LastI == LastMBB->end()) { return false; } // Determine the loop start. MachineBasicBlock *LoopStart = L->getTopBlock(); if (L->getLoopLatch() != LastMBB) { // When the exit and latch are not the same, use the latch block as the // start. // The loop start address is used only after the 1st iteration, and the loop // latch may contains instrs. that need to be executed after the 1st iter. LoopStart = L->getLoopLatch(); // Make sure the latch is a successor of the exit, otherwise it won't work. if (!LastMBB->isSuccessor(LoopStart)) { return false; } } // Convert the loop to a hardware loop DEBUG(dbgs() << "Change to hardware loop at "; L->dump()); DebugLoc InsertPosDL; if (InsertPos != Preheader->end()) InsertPosDL = InsertPos->getDebugLoc(); if (TripCount->isReg()) { // Create a copy of the loop count register. MachineFunction *MF = LastMBB->getParent(); const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(TripCount->getReg()); unsigned CountReg = MF->getRegInfo().createVirtualRegister(RC); BuildMI(*Preheader, InsertPos, InsertPosDL, TII->get(TargetOpcode::COPY), CountReg).addReg(TripCount->getReg()); if (TripCount->isNeg()) { unsigned CountReg1 = CountReg; CountReg = MF->getRegInfo().createVirtualRegister(RC); BuildMI(*Preheader, InsertPos, InsertPosDL, TII->get(Hexagon::NEG), CountReg).addReg(CountReg1); } // Add the Loop instruction to the beginning of the loop. BuildMI(*Preheader, InsertPos, InsertPosDL, TII->get(Hexagon::LOOP0_r)).addMBB(LoopStart).addReg(CountReg); } else { assert(TripCount->isImm() && "Expecting immedate vaule for trip count"); // Add the Loop immediate instruction to the beginning of the loop. int64_t CountImm = TripCount->getImm(); BuildMI(*Preheader, InsertPos, InsertPosDL, TII->get(Hexagon::LOOP0_i)).addMBB(LoopStart).addImm(CountImm); } // Make sure the loop start always has a reference in the CFG. We need to // create a BlockAddress operand to get this mechanism to work both the // MachineBasicBlock and BasicBlock objects need the flag set. LoopStart->setHasAddressTaken(); // This line is needed to set the hasAddressTaken flag on the BasicBlock // object BlockAddress::get(const_cast(LoopStart->getBasicBlock())); // Replace the loop branch with an endloop instruction. DebugLoc LastIDL = LastI->getDebugLoc(); BuildMI(*LastMBB, LastI, LastIDL, TII->get(Hexagon::ENDLOOP0)).addMBB(LoopStart); // The loop ends with either: // - a conditional branch followed by an unconditional branch, or // - a conditional branch to the loop start. if (LastI->getOpcode() == Hexagon::JMP_c || LastI->getOpcode() == Hexagon::JMP_cNot) { // delete one and change/add an uncond. branch to out of the loop MachineBasicBlock *BranchTarget = LastI->getOperand(1).getMBB(); LastI = LastMBB->erase(LastI); if (!L->contains(BranchTarget)) { if (LastI != LastMBB->end()) { TII->RemoveBranch(*LastMBB); } SmallVector Cond; TII->InsertBranch(*LastMBB, BranchTarget, 0, Cond, LastIDL); } } else { // Conditional branch to loop start; just delete it. LastMBB->erase(LastI); } delete TripCount; ++NumHWLoops; return true; } /// createHexagonFixupHwLoops - Factory for creating the hardware loop /// phase. FunctionPass *llvm::createHexagonFixupHwLoops() { return new HexagonFixupHwLoops(); } bool HexagonFixupHwLoops::runOnMachineFunction(MachineFunction &MF) { DEBUG(dbgs() << "****** Hexagon Hardware Loop Fixup ******\n"); bool Changed = fixupLoopInstrs(MF); return Changed; } /// fixupLoopInsts - For Hexagon, if the loop label is to far from the /// loop instruction then we need to set the LC0 and SA0 registers /// explicitly instead of using LOOP(start,count). This function /// checks the distance, and generates register assignments if needed. /// /// This function makes two passes over the basic blocks. The first /// pass computes the offset of the basic block from the start. /// The second pass checks all the loop instructions. bool HexagonFixupHwLoops::fixupLoopInstrs(MachineFunction &MF) { // Offset of the current instruction from the start. unsigned InstOffset = 0; // Map for each basic block to it's first instruction. DenseMap BlockToInstOffset; // First pass - compute the offset of each basic block. for (MachineFunction::iterator MBB = MF.begin(), MBBe = MF.end(); MBB != MBBe; ++MBB) { BlockToInstOffset[MBB] = InstOffset; InstOffset += (MBB->size() * 4); } // Second pass - check each loop instruction to see if it needs to // be converted. InstOffset = 0; bool Changed = false; RegScavenger RS; // Loop over all the basic blocks. for (MachineFunction::iterator MBB = MF.begin(), MBBe = MF.end(); MBB != MBBe; ++MBB) { InstOffset = BlockToInstOffset[MBB]; RS.enterBasicBlock(MBB); // Loop over all the instructions. MachineBasicBlock::iterator MIE = MBB->end(); MachineBasicBlock::iterator MII = MBB->begin(); while (MII != MIE) { if (isHardwareLoop(MII)) { RS.forward(MII); assert(MII->getOperand(0).isMBB() && "Expect a basic block as loop operand"); int diff = InstOffset - BlockToInstOffset[MII->getOperand(0).getMBB()]; diff = (diff > 0 ? diff : -diff); if ((unsigned)diff > MAX_LOOP_DISTANCE) { // Convert to explicity setting LC0 and SA0. convertLoopInstr(MF, MII, RS); MII = MBB->erase(MII); Changed = true; } else { ++MII; } } else { ++MII; } InstOffset += 4; } } return Changed; } /// convertLoopInstr - convert a loop instruction to a sequence of instructions /// that set the lc and sa register explicitly. void HexagonFixupHwLoops::convertLoopInstr(MachineFunction &MF, MachineBasicBlock::iterator &MII, RegScavenger &RS) { const TargetInstrInfo *TII = MF.getTarget().getInstrInfo(); MachineBasicBlock *MBB = MII->getParent(); DebugLoc DL = MII->getDebugLoc(); unsigned Scratch = RS.scavengeRegister(&Hexagon::IntRegsRegClass, MII, 0); // First, set the LC0 with the trip count. if (MII->getOperand(1).isReg()) { // Trip count is a register BuildMI(*MBB, MII, DL, TII->get(Hexagon::TFCR), Hexagon::LC0) .addReg(MII->getOperand(1).getReg()); } else { // Trip count is an immediate. BuildMI(*MBB, MII, DL, TII->get(Hexagon::TFRI), Scratch) .addImm(MII->getOperand(1).getImm()); BuildMI(*MBB, MII, DL, TII->get(Hexagon::TFCR), Hexagon::LC0) .addReg(Scratch); } // Then, set the SA0 with the loop start address. BuildMI(*MBB, MII, DL, TII->get(Hexagon::CONST32_Label), Scratch) .addMBB(MII->getOperand(0).getMBB()); BuildMI(*MBB, MII, DL, TII->get(Hexagon::TFCR), Hexagon::SA0).addReg(Scratch); }