//===-- RegAllocFast.cpp - A fast register allocator for debug code -------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This register allocator allocates registers to a basic block at a time, // attempting to keep values in registers and reusing registers as appropriate. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/Passes.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/IndexedMap.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/SparseSet.h" #include "llvm/ADT/Statistic.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/RegAllocRegistry.h" #include "llvm/CodeGen/RegisterClassInfo.h" #include "llvm/IR/BasicBlock.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetSubtargetInfo.h" #include using namespace llvm; #define DEBUG_TYPE "regalloc" STATISTIC(NumStores, "Number of stores added"); STATISTIC(NumLoads , "Number of loads added"); STATISTIC(NumCopies, "Number of copies coalesced"); static RegisterRegAlloc fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator); namespace { class RAFast : public MachineFunctionPass { public: static char ID; RAFast() : MachineFunctionPass(ID), StackSlotForVirtReg(-1), isBulkSpilling(false) {} private: MachineFunction *MF; MachineRegisterInfo *MRI; const TargetRegisterInfo *TRI; const TargetInstrInfo *TII; RegisterClassInfo RegClassInfo; // Basic block currently being allocated. MachineBasicBlock *MBB; // StackSlotForVirtReg - Maps virtual regs to the frame index where these // values are spilled. IndexedMap StackSlotForVirtReg; // Everything we know about a live virtual register. struct LiveReg { MachineInstr *LastUse; // Last instr to use reg. unsigned VirtReg; // Virtual register number. unsigned PhysReg; // Currently held here. unsigned short LastOpNum; // OpNum on LastUse. bool Dirty; // Register needs spill. explicit LiveReg(unsigned v) : LastUse(nullptr), VirtReg(v), PhysReg(0), LastOpNum(0), Dirty(false){} unsigned getSparseSetIndex() const { return TargetRegisterInfo::virtReg2Index(VirtReg); } }; typedef SparseSet LiveRegMap; // LiveVirtRegs - This map contains entries for each virtual register // that is currently available in a physical register. LiveRegMap LiveVirtRegs; DenseMap > LiveDbgValueMap; // RegState - Track the state of a physical register. enum RegState { // A disabled register is not available for allocation, but an alias may // be in use. A register can only be moved out of the disabled state if // all aliases are disabled. regDisabled, // A free register is not currently in use and can be allocated // immediately without checking aliases. regFree, // A reserved register has been assigned explicitly (e.g., setting up a // call parameter), and it remains reserved until it is used. regReserved // A register state may also be a virtual register number, indication that // the physical register is currently allocated to a virtual register. In // that case, LiveVirtRegs contains the inverse mapping. }; // PhysRegState - One of the RegState enums, or a virtreg. std::vector PhysRegState; // Set of register units. typedef SparseSet UsedInInstrSet; // Set of register units that are used in the current instruction, and so // cannot be allocated. UsedInInstrSet UsedInInstr; // Mark a physreg as used in this instruction. void markRegUsedInInstr(unsigned PhysReg) { for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) UsedInInstr.insert(*Units); } // Check if a physreg or any of its aliases are used in this instruction. bool isRegUsedInInstr(unsigned PhysReg) const { for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) if (UsedInInstr.count(*Units)) return true; return false; } // SkippedInstrs - Descriptors of instructions whose clobber list was // ignored because all registers were spilled. It is still necessary to // mark all the clobbered registers as used by the function. SmallPtrSet SkippedInstrs; // isBulkSpilling - This flag is set when LiveRegMap will be cleared // completely after spilling all live registers. LiveRegMap entries should // not be erased. bool isBulkSpilling; enum : unsigned { spillClean = 1, spillDirty = 100, spillImpossible = ~0u }; public: const char *getPassName() const override { return "Fast Register Allocator"; } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesCFG(); MachineFunctionPass::getAnalysisUsage(AU); } private: bool runOnMachineFunction(MachineFunction &Fn) override; void AllocateBasicBlock(); void handleThroughOperands(MachineInstr *MI, SmallVectorImpl &VirtDead); int getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC); bool isLastUseOfLocalReg(MachineOperand&); void addKillFlag(const LiveReg&); void killVirtReg(LiveRegMap::iterator); void killVirtReg(unsigned VirtReg); void spillVirtReg(MachineBasicBlock::iterator MI, LiveRegMap::iterator); void spillVirtReg(MachineBasicBlock::iterator MI, unsigned VirtReg); void usePhysReg(MachineOperand&); void definePhysReg(MachineInstr *MI, unsigned PhysReg, RegState NewState); unsigned calcSpillCost(unsigned PhysReg) const; void assignVirtToPhysReg(LiveReg&, unsigned PhysReg); LiveRegMap::iterator findLiveVirtReg(unsigned VirtReg) { return LiveVirtRegs.find(TargetRegisterInfo::virtReg2Index(VirtReg)); } LiveRegMap::const_iterator findLiveVirtReg(unsigned VirtReg) const { return LiveVirtRegs.find(TargetRegisterInfo::virtReg2Index(VirtReg)); } LiveRegMap::iterator assignVirtToPhysReg(unsigned VReg, unsigned PhysReg); LiveRegMap::iterator allocVirtReg(MachineInstr *MI, LiveRegMap::iterator, unsigned Hint); LiveRegMap::iterator defineVirtReg(MachineInstr *MI, unsigned OpNum, unsigned VirtReg, unsigned Hint); LiveRegMap::iterator reloadVirtReg(MachineInstr *MI, unsigned OpNum, unsigned VirtReg, unsigned Hint); void spillAll(MachineBasicBlock::iterator MI); bool setPhysReg(MachineInstr *MI, unsigned OpNum, unsigned PhysReg); }; char RAFast::ID = 0; } /// getStackSpaceFor - This allocates space for the specified virtual register /// to be held on the stack. int RAFast::getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC) { // Find the location Reg would belong... int SS = StackSlotForVirtReg[VirtReg]; if (SS != -1) return SS; // Already has space allocated? // Allocate a new stack object for this spill location... int FrameIdx = MF->getFrameInfo()->CreateSpillStackObject(RC->getSize(), RC->getAlignment()); // Assign the slot. StackSlotForVirtReg[VirtReg] = FrameIdx; return FrameIdx; } /// isLastUseOfLocalReg - Return true if MO is the only remaining reference to /// its virtual register, and it is guaranteed to be a block-local register. /// bool RAFast::isLastUseOfLocalReg(MachineOperand &MO) { // If the register has ever been spilled or reloaded, we conservatively assume // it is a global register used in multiple blocks. if (StackSlotForVirtReg[MO.getReg()] != -1) return false; // Check that the use/def chain has exactly one operand - MO. MachineRegisterInfo::reg_nodbg_iterator I = MRI->reg_nodbg_begin(MO.getReg()); if (&*I != &MO) return false; return ++I == MRI->reg_nodbg_end(); } /// addKillFlag - Set kill flags on last use of a virtual register. void RAFast::addKillFlag(const LiveReg &LR) { if (!LR.LastUse) return; MachineOperand &MO = LR.LastUse->getOperand(LR.LastOpNum); if (MO.isUse() && !LR.LastUse->isRegTiedToDefOperand(LR.LastOpNum)) { if (MO.getReg() == LR.PhysReg) MO.setIsKill(); else LR.LastUse->addRegisterKilled(LR.PhysReg, TRI, true); } } /// killVirtReg - Mark virtreg as no longer available. void RAFast::killVirtReg(LiveRegMap::iterator LRI) { addKillFlag(*LRI); assert(PhysRegState[LRI->PhysReg] == LRI->VirtReg && "Broken RegState mapping"); PhysRegState[LRI->PhysReg] = regFree; // Erase from LiveVirtRegs unless we're spilling in bulk. if (!isBulkSpilling) LiveVirtRegs.erase(LRI); } /// killVirtReg - Mark virtreg as no longer available. void RAFast::killVirtReg(unsigned VirtReg) { assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && "killVirtReg needs a virtual register"); LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); if (LRI != LiveVirtRegs.end()) killVirtReg(LRI); } /// spillVirtReg - This method spills the value specified by VirtReg into the /// corresponding stack slot if needed. void RAFast::spillVirtReg(MachineBasicBlock::iterator MI, unsigned VirtReg) { assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && "Spilling a physical register is illegal!"); LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); assert(LRI != LiveVirtRegs.end() && "Spilling unmapped virtual register"); spillVirtReg(MI, LRI); } /// spillVirtReg - Do the actual work of spilling. void RAFast::spillVirtReg(MachineBasicBlock::iterator MI, LiveRegMap::iterator LRI) { LiveReg &LR = *LRI; assert(PhysRegState[LR.PhysReg] == LRI->VirtReg && "Broken RegState mapping"); if (LR.Dirty) { // If this physreg is used by the instruction, we want to kill it on the // instruction, not on the spill. bool SpillKill = LR.LastUse != MI; LR.Dirty = false; DEBUG(dbgs() << "Spilling " << PrintReg(LRI->VirtReg, TRI) << " in " << PrintReg(LR.PhysReg, TRI)); const TargetRegisterClass *RC = MRI->getRegClass(LRI->VirtReg); int FI = getStackSpaceFor(LRI->VirtReg, RC); DEBUG(dbgs() << " to stack slot #" << FI << "\n"); TII->storeRegToStackSlot(*MBB, MI, LR.PhysReg, SpillKill, FI, RC, TRI); ++NumStores; // Update statistics // If this register is used by DBG_VALUE then insert new DBG_VALUE to // identify spilled location as the place to find corresponding variable's // value. SmallVectorImpl &LRIDbgValues = LiveDbgValueMap[LRI->VirtReg]; for (unsigned li = 0, le = LRIDbgValues.size(); li != le; ++li) { MachineInstr *DBG = LRIDbgValues[li]; const MDNode *Var = DBG->getDebugVariable(); const MDNode *Expr = DBG->getDebugExpression(); bool IsIndirect = DBG->isIndirectDebugValue(); uint64_t Offset = IsIndirect ? DBG->getOperand(1).getImm() : 0; DebugLoc DL; if (MI == MBB->end()) { // If MI is at basic block end then use last instruction's location. MachineBasicBlock::iterator EI = MI; DL = (--EI)->getDebugLoc(); } else DL = MI->getDebugLoc(); MachineInstr *NewDV = BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::DBG_VALUE)) .addFrameIndex(FI) .addImm(Offset) .addMetadata(Var) .addMetadata(Expr); assert(NewDV->getParent() == MBB && "dangling parent pointer"); (void)NewDV; DEBUG(dbgs() << "Inserting debug info due to spill:" << "\n" << *NewDV); } // Now this register is spilled there is should not be any DBG_VALUE // pointing to this register because they are all pointing to spilled value // now. LRIDbgValues.clear(); if (SpillKill) LR.LastUse = nullptr; // Don't kill register again } killVirtReg(LRI); } /// spillAll - Spill all dirty virtregs without killing them. void RAFast::spillAll(MachineBasicBlock::iterator MI) { if (LiveVirtRegs.empty()) return; isBulkSpilling = true; // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order // of spilling here is deterministic, if arbitrary. for (LiveRegMap::iterator i = LiveVirtRegs.begin(), e = LiveVirtRegs.end(); i != e; ++i) spillVirtReg(MI, i); LiveVirtRegs.clear(); isBulkSpilling = false; } /// usePhysReg - Handle the direct use of a physical register. /// Check that the register is not used by a virtreg. /// Kill the physreg, marking it free. /// This may add implicit kills to MO->getParent() and invalidate MO. void RAFast::usePhysReg(MachineOperand &MO) { unsigned PhysReg = MO.getReg(); assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && "Bad usePhysReg operand"); markRegUsedInInstr(PhysReg); switch (PhysRegState[PhysReg]) { case regDisabled: break; case regReserved: PhysRegState[PhysReg] = regFree; // Fall through case regFree: MO.setIsKill(); return; default: // The physreg was allocated to a virtual register. That means the value we // wanted has been clobbered. llvm_unreachable("Instruction uses an allocated register"); } // Maybe a superregister is reserved? for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) { unsigned Alias = *AI; switch (PhysRegState[Alias]) { case regDisabled: break; case regReserved: assert(TRI->isSuperRegister(PhysReg, Alias) && "Instruction is not using a subregister of a reserved register"); // Leave the superregister in the working set. PhysRegState[Alias] = regFree; MO.getParent()->addRegisterKilled(Alias, TRI, true); return; case regFree: if (TRI->isSuperRegister(PhysReg, Alias)) { // Leave the superregister in the working set. MO.getParent()->addRegisterKilled(Alias, TRI, true); return; } // Some other alias was in the working set - clear it. PhysRegState[Alias] = regDisabled; break; default: llvm_unreachable("Instruction uses an alias of an allocated register"); } } // All aliases are disabled, bring register into working set. PhysRegState[PhysReg] = regFree; MO.setIsKill(); } /// definePhysReg - Mark PhysReg as reserved or free after spilling any /// virtregs. This is very similar to defineVirtReg except the physreg is /// reserved instead of allocated. void RAFast::definePhysReg(MachineInstr *MI, unsigned PhysReg, RegState NewState) { markRegUsedInInstr(PhysReg); switch (unsigned VirtReg = PhysRegState[PhysReg]) { case regDisabled: break; default: spillVirtReg(MI, VirtReg); // Fall through. case regFree: case regReserved: PhysRegState[PhysReg] = NewState; return; } // This is a disabled register, disable all aliases. PhysRegState[PhysReg] = NewState; for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) { unsigned Alias = *AI; switch (unsigned VirtReg = PhysRegState[Alias]) { case regDisabled: break; default: spillVirtReg(MI, VirtReg); // Fall through. case regFree: case regReserved: PhysRegState[Alias] = regDisabled; if (TRI->isSuperRegister(PhysReg, Alias)) return; break; } } } // calcSpillCost - Return the cost of spilling clearing out PhysReg and // aliases so it is free for allocation. // Returns 0 when PhysReg is free or disabled with all aliases disabled - it // can be allocated directly. // Returns spillImpossible when PhysReg or an alias can't be spilled. unsigned RAFast::calcSpillCost(unsigned PhysReg) const { if (isRegUsedInInstr(PhysReg)) { DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is already used in instr.\n"); return spillImpossible; } switch (unsigned VirtReg = PhysRegState[PhysReg]) { case regDisabled: break; case regFree: return 0; case regReserved: DEBUG(dbgs() << PrintReg(VirtReg, TRI) << " corresponding " << PrintReg(PhysReg, TRI) << " is reserved already.\n"); return spillImpossible; default: { LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg); assert(I != LiveVirtRegs.end() && "Missing VirtReg entry"); return I->Dirty ? spillDirty : spillClean; } } // This is a disabled register, add up cost of aliases. DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is disabled.\n"); unsigned Cost = 0; for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) { unsigned Alias = *AI; switch (unsigned VirtReg = PhysRegState[Alias]) { case regDisabled: break; case regFree: ++Cost; break; case regReserved: return spillImpossible; default: { LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg); assert(I != LiveVirtRegs.end() && "Missing VirtReg entry"); Cost += I->Dirty ? spillDirty : spillClean; break; } } } return Cost; } /// assignVirtToPhysReg - This method updates local state so that we know /// that PhysReg is the proper container for VirtReg now. The physical /// register must not be used for anything else when this is called. /// void RAFast::assignVirtToPhysReg(LiveReg &LR, unsigned PhysReg) { DEBUG(dbgs() << "Assigning " << PrintReg(LR.VirtReg, TRI) << " to " << PrintReg(PhysReg, TRI) << "\n"); PhysRegState[PhysReg] = LR.VirtReg; assert(!LR.PhysReg && "Already assigned a physreg"); LR.PhysReg = PhysReg; } RAFast::LiveRegMap::iterator RAFast::assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg) { LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); assert(LRI != LiveVirtRegs.end() && "VirtReg disappeared"); assignVirtToPhysReg(*LRI, PhysReg); return LRI; } /// allocVirtReg - Allocate a physical register for VirtReg. RAFast::LiveRegMap::iterator RAFast::allocVirtReg(MachineInstr *MI, LiveRegMap::iterator LRI, unsigned Hint) { const unsigned VirtReg = LRI->VirtReg; assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && "Can only allocate virtual registers"); const TargetRegisterClass *RC = MRI->getRegClass(VirtReg); // Ignore invalid hints. if (Hint && (!TargetRegisterInfo::isPhysicalRegister(Hint) || !RC->contains(Hint) || !MRI->isAllocatable(Hint))) Hint = 0; // Take hint when possible. if (Hint) { // Ignore the hint if we would have to spill a dirty register. unsigned Cost = calcSpillCost(Hint); if (Cost < spillDirty) { if (Cost) definePhysReg(MI, Hint, regFree); // definePhysReg may kill virtual registers and modify LiveVirtRegs. // That invalidates LRI, so run a new lookup for VirtReg. return assignVirtToPhysReg(VirtReg, Hint); } } ArrayRef AO = RegClassInfo.getOrder(RC); // First try to find a completely free register. for (ArrayRef::iterator I = AO.begin(), E = AO.end(); I != E; ++I){ unsigned PhysReg = *I; if (PhysRegState[PhysReg] == regFree && !isRegUsedInInstr(PhysReg)) { assignVirtToPhysReg(*LRI, PhysReg); return LRI; } } DEBUG(dbgs() << "Allocating " << PrintReg(VirtReg) << " from " << RC->getName() << "\n"); unsigned BestReg = 0, BestCost = spillImpossible; for (ArrayRef::iterator I = AO.begin(), E = AO.end(); I != E; ++I){ unsigned Cost = calcSpillCost(*I); DEBUG(dbgs() << "\tRegister: " << PrintReg(*I, TRI) << "\n"); DEBUG(dbgs() << "\tCost: " << Cost << "\n"); DEBUG(dbgs() << "\tBestCost: " << BestCost << "\n"); // Cost is 0 when all aliases are already disabled. if (Cost == 0) { assignVirtToPhysReg(*LRI, *I); return LRI; } if (Cost < BestCost) BestReg = *I, BestCost = Cost; } if (BestReg) { definePhysReg(MI, BestReg, regFree); // definePhysReg may kill virtual registers and modify LiveVirtRegs. // That invalidates LRI, so run a new lookup for VirtReg. return assignVirtToPhysReg(VirtReg, BestReg); } // Nothing we can do. Report an error and keep going with a bad allocation. if (MI->isInlineAsm()) MI->emitError("inline assembly requires more registers than available"); else MI->emitError("ran out of registers during register allocation"); definePhysReg(MI, *AO.begin(), regFree); return assignVirtToPhysReg(VirtReg, *AO.begin()); } /// defineVirtReg - Allocate a register for VirtReg and mark it as dirty. RAFast::LiveRegMap::iterator RAFast::defineVirtReg(MachineInstr *MI, unsigned OpNum, unsigned VirtReg, unsigned Hint) { assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && "Not a virtual register"); LiveRegMap::iterator LRI; bool New; std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); if (New) { // If there is no hint, peek at the only use of this register. if ((!Hint || !TargetRegisterInfo::isPhysicalRegister(Hint)) && MRI->hasOneNonDBGUse(VirtReg)) { const MachineInstr &UseMI = *MRI->use_instr_nodbg_begin(VirtReg); // It's a copy, use the destination register as a hint. if (UseMI.isCopyLike()) Hint = UseMI.getOperand(0).getReg(); } LRI = allocVirtReg(MI, LRI, Hint); } else if (LRI->LastUse) { // Redefining a live register - kill at the last use, unless it is this // instruction defining VirtReg multiple times. if (LRI->LastUse != MI || LRI->LastUse->getOperand(LRI->LastOpNum).isUse()) addKillFlag(*LRI); } assert(LRI->PhysReg && "Register not assigned"); LRI->LastUse = MI; LRI->LastOpNum = OpNum; LRI->Dirty = true; markRegUsedInInstr(LRI->PhysReg); return LRI; } /// reloadVirtReg - Make sure VirtReg is available in a physreg and return it. RAFast::LiveRegMap::iterator RAFast::reloadVirtReg(MachineInstr *MI, unsigned OpNum, unsigned VirtReg, unsigned Hint) { assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && "Not a virtual register"); LiveRegMap::iterator LRI; bool New; std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); MachineOperand &MO = MI->getOperand(OpNum); if (New) { LRI = allocVirtReg(MI, LRI, Hint); const TargetRegisterClass *RC = MRI->getRegClass(VirtReg); int FrameIndex = getStackSpaceFor(VirtReg, RC); DEBUG(dbgs() << "Reloading " << PrintReg(VirtReg, TRI) << " into " << PrintReg(LRI->PhysReg, TRI) << "\n"); TII->loadRegFromStackSlot(*MBB, MI, LRI->PhysReg, FrameIndex, RC, TRI); ++NumLoads; } else if (LRI->Dirty) { if (isLastUseOfLocalReg(MO)) { DEBUG(dbgs() << "Killing last use: " << MO << "\n"); if (MO.isUse()) MO.setIsKill(); else MO.setIsDead(); } else if (MO.isKill()) { DEBUG(dbgs() << "Clearing dubious kill: " << MO << "\n"); MO.setIsKill(false); } else if (MO.isDead()) { DEBUG(dbgs() << "Clearing dubious dead: " << MO << "\n"); MO.setIsDead(false); } } else if (MO.isKill()) { // We must remove kill flags from uses of reloaded registers because the // register would be killed immediately, and there might be a second use: // %foo = OR %x, %x // This would cause a second reload of %x into a different register. DEBUG(dbgs() << "Clearing clean kill: " << MO << "\n"); MO.setIsKill(false); } else if (MO.isDead()) { DEBUG(dbgs() << "Clearing clean dead: " << MO << "\n"); MO.setIsDead(false); } assert(LRI->PhysReg && "Register not assigned"); LRI->LastUse = MI; LRI->LastOpNum = OpNum; markRegUsedInInstr(LRI->PhysReg); return LRI; } // setPhysReg - Change operand OpNum in MI the refer the PhysReg, considering // subregs. This may invalidate any operand pointers. // Return true if the operand kills its register. bool RAFast::setPhysReg(MachineInstr *MI, unsigned OpNum, unsigned PhysReg) { MachineOperand &MO = MI->getOperand(OpNum); bool Dead = MO.isDead(); if (!MO.getSubReg()) { MO.setReg(PhysReg); return MO.isKill() || Dead; } // Handle subregister index. MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : 0); MO.setSubReg(0); // A kill flag implies killing the full register. Add corresponding super // register kill. if (MO.isKill()) { MI->addRegisterKilled(PhysReg, TRI, true); return true; } // A of a sub-register requires an implicit def of the full // register. if (MO.isDef() && MO.isUndef()) MI->addRegisterDefined(PhysReg, TRI); return Dead; } // Handle special instruction operand like early clobbers and tied ops when // there are additional physreg defines. void RAFast::handleThroughOperands(MachineInstr *MI, SmallVectorImpl &VirtDead) { DEBUG(dbgs() << "Scanning for through registers:"); SmallSet ThroughRegs; for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand &MO = MI->getOperand(i); if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; if (MO.isEarlyClobber() || MI->isRegTiedToDefOperand(i) || (MO.getSubReg() && MI->readsVirtualRegister(Reg))) { if (ThroughRegs.insert(Reg)) DEBUG(dbgs() << ' ' << PrintReg(Reg)); } } // If any physreg defines collide with preallocated through registers, // we must spill and reallocate. DEBUG(dbgs() << "\nChecking for physdef collisions.\n"); for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand &MO = MI->getOperand(i); if (!MO.isReg() || !MO.isDef()) continue; unsigned Reg = MO.getReg(); if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; markRegUsedInInstr(Reg); for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) { if (ThroughRegs.count(PhysRegState[*AI])) definePhysReg(MI, *AI, regFree); } } SmallVector PartialDefs; DEBUG(dbgs() << "Allocating tied uses.\n"); for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand &MO = MI->getOperand(i); if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; if (MO.isUse()) { unsigned DefIdx = 0; if (!MI->isRegTiedToDefOperand(i, &DefIdx)) continue; DEBUG(dbgs() << "Operand " << i << "("<< MO << ") is tied to operand " << DefIdx << ".\n"); LiveRegMap::iterator LRI = reloadVirtReg(MI, i, Reg, 0); unsigned PhysReg = LRI->PhysReg; setPhysReg(MI, i, PhysReg); // Note: we don't update the def operand yet. That would cause the normal // def-scan to attempt spilling. } else if (MO.getSubReg() && MI->readsVirtualRegister(Reg)) { DEBUG(dbgs() << "Partial redefine: " << MO << "\n"); // Reload the register, but don't assign to the operand just yet. // That would confuse the later phys-def processing pass. LiveRegMap::iterator LRI = reloadVirtReg(MI, i, Reg, 0); PartialDefs.push_back(LRI->PhysReg); } } DEBUG(dbgs() << "Allocating early clobbers.\n"); for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand &MO = MI->getOperand(i); if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; if (!MO.isEarlyClobber()) continue; // Note: defineVirtReg may invalidate MO. LiveRegMap::iterator LRI = defineVirtReg(MI, i, Reg, 0); unsigned PhysReg = LRI->PhysReg; if (setPhysReg(MI, i, PhysReg)) VirtDead.push_back(Reg); } // Restore UsedInInstr to a state usable for allocating normal virtual uses. UsedInInstr.clear(); for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand &MO = MI->getOperand(i); if (!MO.isReg() || (MO.isDef() && !MO.isEarlyClobber())) continue; unsigned Reg = MO.getReg(); if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; DEBUG(dbgs() << "\tSetting " << PrintReg(Reg, TRI) << " as used in instr\n"); markRegUsedInInstr(Reg); } // Also mark PartialDefs as used to avoid reallocation. for (unsigned i = 0, e = PartialDefs.size(); i != e; ++i) markRegUsedInInstr(PartialDefs[i]); } void RAFast::AllocateBasicBlock() { DEBUG(dbgs() << "\nAllocating " << *MBB); PhysRegState.assign(TRI->getNumRegs(), regDisabled); assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?"); MachineBasicBlock::iterator MII = MBB->begin(); // Add live-in registers as live. for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(), E = MBB->livein_end(); I != E; ++I) if (MRI->isAllocatable(*I)) definePhysReg(MII, *I, regReserved); SmallVector VirtDead; SmallVector Coalesced; // Otherwise, sequentially allocate each instruction in the MBB. while (MII != MBB->end()) { MachineInstr *MI = MII++; const MCInstrDesc &MCID = MI->getDesc(); DEBUG({ dbgs() << "\n>> " << *MI << "Regs:"; for (unsigned Reg = 1, E = TRI->getNumRegs(); Reg != E; ++Reg) { if (PhysRegState[Reg] == regDisabled) continue; dbgs() << " " << TRI->getName(Reg); switch(PhysRegState[Reg]) { case regFree: break; case regReserved: dbgs() << "*"; break; default: { dbgs() << '=' << PrintReg(PhysRegState[Reg]); LiveRegMap::iterator I = findLiveVirtReg(PhysRegState[Reg]); assert(I != LiveVirtRegs.end() && "Missing VirtReg entry"); if (I->Dirty) dbgs() << "*"; assert(I->PhysReg == Reg && "Bad inverse map"); break; } } } dbgs() << '\n'; // Check that LiveVirtRegs is the inverse. for (LiveRegMap::iterator i = LiveVirtRegs.begin(), e = LiveVirtRegs.end(); i != e; ++i) { assert(TargetRegisterInfo::isVirtualRegister(i->VirtReg) && "Bad map key"); assert(TargetRegisterInfo::isPhysicalRegister(i->PhysReg) && "Bad map value"); assert(PhysRegState[i->PhysReg] == i->VirtReg && "Bad inverse map"); } }); // Debug values are not allowed to change codegen in any way. if (MI->isDebugValue()) { bool ScanDbgValue = true; while (ScanDbgValue) { ScanDbgValue = false; for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand &MO = MI->getOperand(i); if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; LiveRegMap::iterator LRI = findLiveVirtReg(Reg); if (LRI != LiveVirtRegs.end()) setPhysReg(MI, i, LRI->PhysReg); else { int SS = StackSlotForVirtReg[Reg]; if (SS == -1) { // We can't allocate a physreg for a DebugValue, sorry! DEBUG(dbgs() << "Unable to allocate vreg used by DBG_VALUE"); MO.setReg(0); } else { // Modify DBG_VALUE now that the value is in a spill slot. bool IsIndirect = MI->isIndirectDebugValue(); uint64_t Offset = IsIndirect ? MI->getOperand(1).getImm() : 0; const MDNode *Var = MI->getDebugVariable(); const MDNode *Expr = MI->getDebugExpression(); DebugLoc DL = MI->getDebugLoc(); MachineBasicBlock *MBB = MI->getParent(); MachineInstr *NewDV = BuildMI(*MBB, MBB->erase(MI), DL, TII->get(TargetOpcode::DBG_VALUE)) .addFrameIndex(SS) .addImm(Offset) .addMetadata(Var) .addMetadata(Expr); DEBUG(dbgs() << "Modifying debug info due to spill:" << "\t" << *NewDV); // Scan NewDV operands from the beginning. MI = NewDV; ScanDbgValue = true; break; } } LiveDbgValueMap[Reg].push_back(MI); } } // Next instruction. continue; } // If this is a copy, we may be able to coalesce. unsigned CopySrc = 0, CopyDst = 0, CopySrcSub = 0, CopyDstSub = 0; if (MI->isCopy()) { CopyDst = MI->getOperand(0).getReg(); CopySrc = MI->getOperand(1).getReg(); CopyDstSub = MI->getOperand(0).getSubReg(); CopySrcSub = MI->getOperand(1).getSubReg(); } // Track registers used by instruction. UsedInInstr.clear(); // First scan. // Mark physreg uses and early clobbers as used. // Find the end of the virtreg operands unsigned VirtOpEnd = 0; bool hasTiedOps = false; bool hasEarlyClobbers = false; bool hasPartialRedefs = false; bool hasPhysDefs = false; for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand &MO = MI->getOperand(i); // Make sure MRI knows about registers clobbered by regmasks. if (MO.isRegMask()) { MRI->addPhysRegsUsedFromRegMask(MO.getRegMask()); continue; } if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (!Reg) continue; if (TargetRegisterInfo::isVirtualRegister(Reg)) { VirtOpEnd = i+1; if (MO.isUse()) { hasTiedOps = hasTiedOps || MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1; } else { if (MO.isEarlyClobber()) hasEarlyClobbers = true; if (MO.getSubReg() && MI->readsVirtualRegister(Reg)) hasPartialRedefs = true; } continue; } if (!MRI->isAllocatable(Reg)) continue; if (MO.isUse()) { usePhysReg(MO); } else if (MO.isEarlyClobber()) { definePhysReg(MI, Reg, (MO.isImplicit() || MO.isDead()) ? regFree : regReserved); hasEarlyClobbers = true; } else hasPhysDefs = true; } // The instruction may have virtual register operands that must be allocated // the same register at use-time and def-time: early clobbers and tied // operands. If there are also physical defs, these registers must avoid // both physical defs and uses, making them more constrained than normal // operands. // Similarly, if there are multiple defs and tied operands, we must make // sure the same register is allocated to uses and defs. // We didn't detect inline asm tied operands above, so just make this extra // pass for all inline asm. if (MI->isInlineAsm() || hasEarlyClobbers || hasPartialRedefs || (hasTiedOps && (hasPhysDefs || MCID.getNumDefs() > 1))) { handleThroughOperands(MI, VirtDead); // Don't attempt coalescing when we have funny stuff going on. CopyDst = 0; // Pretend we have early clobbers so the use operands get marked below. // This is not necessary for the common case of a single tied use. hasEarlyClobbers = true; } // Second scan. // Allocate virtreg uses. for (unsigned i = 0; i != VirtOpEnd; ++i) { MachineOperand &MO = MI->getOperand(i); if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; if (MO.isUse()) { LiveRegMap::iterator LRI = reloadVirtReg(MI, i, Reg, CopyDst); unsigned PhysReg = LRI->PhysReg; CopySrc = (CopySrc == Reg || CopySrc == PhysReg) ? PhysReg : 0; if (setPhysReg(MI, i, PhysReg)) killVirtReg(LRI); } } for (UsedInInstrSet::iterator I = UsedInInstr.begin(), E = UsedInInstr.end(); I != E; ++I) MRI->setRegUnitUsed(*I); // Track registers defined by instruction - early clobbers and tied uses at // this point. UsedInInstr.clear(); if (hasEarlyClobbers) { for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand &MO = MI->getOperand(i); if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; // Look for physreg defs and tied uses. if (!MO.isDef() && !MI->isRegTiedToDefOperand(i)) continue; markRegUsedInInstr(Reg); } } unsigned DefOpEnd = MI->getNumOperands(); if (MI->isCall()) { // Spill all virtregs before a call. This serves two purposes: 1. If an // exception is thrown, the landing pad is going to expect to find // registers in their spill slots, and 2. we don't have to wade through // all the operands on the call instruction. DefOpEnd = VirtOpEnd; DEBUG(dbgs() << " Spilling remaining registers before call.\n"); spillAll(MI); // The imp-defs are skipped below, but we still need to mark those // registers as used by the function. SkippedInstrs.insert(&MCID); } // Third scan. // Allocate defs and collect dead defs. for (unsigned i = 0; i != DefOpEnd; ++i) { MachineOperand &MO = MI->getOperand(i); if (!MO.isReg() || !MO.isDef() || !MO.getReg() || MO.isEarlyClobber()) continue; unsigned Reg = MO.getReg(); if (TargetRegisterInfo::isPhysicalRegister(Reg)) { if (!MRI->isAllocatable(Reg)) continue; definePhysReg(MI, Reg, (MO.isImplicit() || MO.isDead()) ? regFree : regReserved); continue; } LiveRegMap::iterator LRI = defineVirtReg(MI, i, Reg, CopySrc); unsigned PhysReg = LRI->PhysReg; if (setPhysReg(MI, i, PhysReg)) { VirtDead.push_back(Reg); CopyDst = 0; // cancel coalescing; } else CopyDst = (CopyDst == Reg || CopyDst == PhysReg) ? PhysReg : 0; } // Kill dead defs after the scan to ensure that multiple defs of the same // register are allocated identically. We didn't need to do this for uses // because we are crerating our own kill flags, and they are always at the // last use. for (unsigned i = 0, e = VirtDead.size(); i != e; ++i) killVirtReg(VirtDead[i]); VirtDead.clear(); for (UsedInInstrSet::iterator I = UsedInInstr.begin(), E = UsedInInstr.end(); I != E; ++I) MRI->setRegUnitUsed(*I); if (CopyDst && CopyDst == CopySrc && CopyDstSub == CopySrcSub) { DEBUG(dbgs() << "-- coalescing: " << *MI); Coalesced.push_back(MI); } else { DEBUG(dbgs() << "<< " << *MI); } } // Spill all physical registers holding virtual registers now. DEBUG(dbgs() << "Spilling live registers at end of block.\n"); spillAll(MBB->getFirstTerminator()); // Erase all the coalesced copies. We are delaying it until now because // LiveVirtRegs might refer to the instrs. for (unsigned i = 0, e = Coalesced.size(); i != e; ++i) MBB->erase(Coalesced[i]); NumCopies += Coalesced.size(); DEBUG(MBB->dump()); } /// runOnMachineFunction - Register allocate the whole function /// bool RAFast::runOnMachineFunction(MachineFunction &Fn) { DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n" << "********** Function: " << Fn.getName() << '\n'); MF = &Fn; MRI = &MF->getRegInfo(); TRI = MF->getSubtarget().getRegisterInfo(); TII = MF->getSubtarget().getInstrInfo(); MRI->freezeReservedRegs(Fn); RegClassInfo.runOnMachineFunction(Fn); UsedInInstr.clear(); UsedInInstr.setUniverse(TRI->getNumRegUnits()); assert(!MRI->isSSA() && "regalloc requires leaving SSA"); // initialize the virtual->physical register map to have a 'null' // mapping for all virtual registers StackSlotForVirtReg.resize(MRI->getNumVirtRegs()); LiveVirtRegs.setUniverse(MRI->getNumVirtRegs()); // Loop over all of the basic blocks, eliminating virtual register references for (MachineFunction::iterator MBBi = Fn.begin(), MBBe = Fn.end(); MBBi != MBBe; ++MBBi) { MBB = &*MBBi; AllocateBasicBlock(); } // Add the clobber lists for all the instructions we skipped earlier. for (const MCInstrDesc *Desc : SkippedInstrs) if (const uint16_t *Defs = Desc->getImplicitDefs()) while (*Defs) MRI->setPhysRegUsed(*Defs++); // All machine operands and other references to virtual registers have been // replaced. Remove the virtual registers. MRI->clearVirtRegs(); SkippedInstrs.clear(); StackSlotForVirtReg.clear(); LiveDbgValueMap.clear(); return true; } FunctionPass *llvm::createFastRegisterAllocator() { return new RAFast(); }