//===- CorrelatedValuePropagation.cpp - Propagate CFG-derived info --------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the Correlated Value Propagation pass. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "correlated-value-propagation" #include "llvm/Transforms/Scalar.h" #include "llvm/Function.h" #include "llvm/Instructions.h" #include "llvm/Pass.h" #include "llvm/Analysis/LazyValueInfo.h" #include "llvm/Support/CFG.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/ADT/Statistic.h" using namespace llvm; STATISTIC(NumPhis, "Number of phis propagated"); STATISTIC(NumSelects, "Number of selects propagated"); STATISTIC(NumMemAccess, "Number of memory access targets propagated"); STATISTIC(NumCmps, "Number of comparisons propagated"); namespace { class CorrelatedValuePropagation : public FunctionPass { LazyValueInfo *LVI; bool processSelect(SelectInst *SI); bool processPHI(PHINode *P); bool processMemAccess(Instruction *I); bool processCmp(CmpInst *C); public: static char ID; CorrelatedValuePropagation(): FunctionPass(ID) { } bool runOnFunction(Function &F); virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); } }; } char CorrelatedValuePropagation::ID = 0; INITIALIZE_PASS(CorrelatedValuePropagation, "correlated-propagation", "Value Propagation", false, false) // Public interface to the Value Propagation pass Pass *llvm::createCorrelatedValuePropagationPass() { return new CorrelatedValuePropagation(); } bool CorrelatedValuePropagation::processSelect(SelectInst *S) { if (S->getType()->isVectorTy()) return false; if (isa(S->getOperand(0))) return false; Constant *C = LVI->getConstant(S->getOperand(0), S->getParent()); if (!C) return false; ConstantInt *CI = dyn_cast(C); if (!CI) return false; S->replaceAllUsesWith(S->getOperand(CI->isOne() ? 1 : 2)); S->eraseFromParent(); ++NumSelects; return true; } bool CorrelatedValuePropagation::processPHI(PHINode *P) { bool Changed = false; BasicBlock *BB = P->getParent(); for (unsigned i = 0, e = P->getNumIncomingValues(); i < e; ++i) { Value *Incoming = P->getIncomingValue(i); if (isa(Incoming)) continue; Constant *C = LVI->getConstantOnEdge(P->getIncomingValue(i), P->getIncomingBlock(i), BB); if (!C) continue; P->setIncomingValue(i, C); Changed = true; } if (Value *ConstVal = P->hasConstantValue()) { P->replaceAllUsesWith(ConstVal); P->eraseFromParent(); Changed = true; } ++NumPhis; return Changed; } bool CorrelatedValuePropagation::processMemAccess(Instruction *I) { Value *Pointer = 0; if (LoadInst *L = dyn_cast(I)) Pointer = L->getPointerOperand(); else Pointer = cast(I)->getPointerOperand(); if (isa(Pointer)) return false; Constant *C = LVI->getConstant(Pointer, I->getParent()); if (!C) return false; ++NumMemAccess; I->replaceUsesOfWith(Pointer, C); return true; } /// processCmp - If the value of this comparison could be determined locally, /// constant propagation would already have figured it out. Instead, walk /// the predecessors and statically evaluate the comparison based on information /// available on that edge. If a given static evaluation is true on ALL /// incoming edges, then it's true universally and we can simplify the compare. bool CorrelatedValuePropagation::processCmp(CmpInst *C) { Value *Op0 = C->getOperand(0); if (isa(Op0) && cast(Op0)->getParent() == C->getParent()) return false; Constant *Op1 = dyn_cast(C->getOperand(1)); if (!Op1) return false; pred_iterator PI = pred_begin(C->getParent()), PE = pred_end(C->getParent()); if (PI == PE) return false; LazyValueInfo::Tristate Result = LVI->getPredicateOnEdge(C->getPredicate(), C->getOperand(0), Op1, *PI, C->getParent()); if (Result == LazyValueInfo::Unknown) return false; ++PI; while (PI != PE) { LazyValueInfo::Tristate Res = LVI->getPredicateOnEdge(C->getPredicate(), C->getOperand(0), Op1, *PI, C->getParent()); if (Res != Result) return false; ++PI; } ++NumCmps; if (Result == LazyValueInfo::True) C->replaceAllUsesWith(ConstantInt::getTrue(C->getContext())); else C->replaceAllUsesWith(ConstantInt::getFalse(C->getContext())); C->eraseFromParent(); return true; } bool CorrelatedValuePropagation::runOnFunction(Function &F) { LVI = &getAnalysis(); bool FnChanged = false; // Perform a depth-first walk of the CFG so that we don't waste time // optimizing unreachable blocks. for (df_iterator FI = df_begin(&F.getEntryBlock()), FE = df_end(&F.getEntryBlock()); FI != FE; ++FI) { bool BBChanged = false; for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); BI != BE; ) { Instruction *II = BI++; switch (II->getOpcode()) { case Instruction::Select: BBChanged |= processSelect(cast(II)); break; case Instruction::PHI: BBChanged |= processPHI(cast(II)); break; case Instruction::ICmp: case Instruction::FCmp: BBChanged |= processCmp(cast(II)); break; case Instruction::Load: case Instruction::Store: BBChanged |= processMemAccess(II); break; } } // Propagating correlated values might leave cruft around. // Try to clean it up before we continue. if (BBChanged) SimplifyInstructionsInBlock(*FI); FnChanged |= BBChanged; } return FnChanged; }