//===- PassManager.cpp - LLVM Pass Infrastructure Implementation ----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the LLVM Pass Manager infrastructure. // //===----------------------------------------------------------------------===// #include "llvm/PassManagers.h" #include "llvm/PassManager.h" #include "llvm/DebugInfoProbe.h" #include "llvm/Assembly/PrintModulePass.h" #include "llvm/Assembly/Writer.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Timer.h" #include "llvm/Module.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/ManagedStatic.h" #include "llvm/Support/PassNameParser.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Support/Mutex.h" #include "llvm/ADT/StringMap.h" #include #include #include using namespace llvm; // See PassManagers.h for Pass Manager infrastructure overview. namespace llvm { //===----------------------------------------------------------------------===// // Pass debugging information. Often it is useful to find out what pass is // running when a crash occurs in a utility. When this library is compiled with // debugging on, a command line option (--debug-pass) is enabled that causes the // pass name to be printed before it executes. // // Different debug levels that can be enabled... enum PassDebugLevel { None, Arguments, Structure, Executions, Details }; static cl::opt PassDebugging("debug-pass", cl::Hidden, cl::desc("Print PassManager debugging information"), cl::values( clEnumVal(None , "disable debug output"), clEnumVal(Arguments , "print pass arguments to pass to 'opt'"), clEnumVal(Structure , "print pass structure before run()"), clEnumVal(Executions, "print pass name before it is executed"), clEnumVal(Details , "print pass details when it is executed"), clEnumValEnd)); typedef llvm::cl::list PassOptionList; // Print IR out before/after specified passes. static PassOptionList PrintBefore("print-before", llvm::cl::desc("Print IR before specified passes"), cl::Hidden); static PassOptionList PrintAfter("print-after", llvm::cl::desc("Print IR after specified passes"), cl::Hidden); static cl::opt PrintBeforeAll("print-before-all", llvm::cl::desc("Print IR before each pass"), cl::init(false)); static cl::opt PrintAfterAll("print-after-all", llvm::cl::desc("Print IR after each pass"), cl::init(false)); /// This is a helper to determine whether to print IR before or /// after a pass. static bool ShouldPrintBeforeOrAfterPass(const void *PassID, PassOptionList &PassesToPrint) { if (const llvm::PassInfo *PI = PassRegistry::getPassRegistry()->getPassInfo(PassID)) { for (unsigned i = 0, ie = PassesToPrint.size(); i < ie; ++i) { const llvm::PassInfo *PassInf = PassesToPrint[i]; if (PassInf) if (PassInf->getPassArgument() == PI->getPassArgument()) { return true; } } } return false; } /// This is a utility to check whether a pass should have IR dumped /// before it. static bool ShouldPrintBeforePass(const void *PassID) { return PrintBeforeAll || ShouldPrintBeforeOrAfterPass(PassID, PrintBefore); } /// This is a utility to check whether a pass should have IR dumped /// after it. static bool ShouldPrintAfterPass(const void *PassID) { return PrintAfterAll || ShouldPrintBeforeOrAfterPass(PassID, PrintAfter); } } // End of llvm namespace /// isPassDebuggingExecutionsOrMore - Return true if -debug-pass=Executions /// or higher is specified. bool PMDataManager::isPassDebuggingExecutionsOrMore() const { return PassDebugging >= Executions; } void PassManagerPrettyStackEntry::print(raw_ostream &OS) const { if (V == 0 && M == 0) OS << "Releasing pass '"; else OS << "Running pass '"; OS << P->getPassName() << "'"; if (M) { OS << " on module '" << M->getModuleIdentifier() << "'.\n"; return; } if (V == 0) { OS << '\n'; return; } OS << " on "; if (isa(V)) OS << "function"; else if (isa(V)) OS << "basic block"; else OS << "value"; OS << " '"; WriteAsOperand(OS, V, /*PrintTy=*/false, M); OS << "'\n"; } namespace { //===----------------------------------------------------------------------===// // BBPassManager // /// BBPassManager manages BasicBlockPass. It batches all the /// pass together and sequence them to process one basic block before /// processing next basic block. class BBPassManager : public PMDataManager, public FunctionPass { public: static char ID; explicit BBPassManager(int Depth) : PMDataManager(Depth), FunctionPass(ID) {} /// Execute all of the passes scheduled for execution. Keep track of /// whether any of the passes modifies the function, and if so, return true. bool runOnFunction(Function &F); /// Pass Manager itself does not invalidate any analysis info. void getAnalysisUsage(AnalysisUsage &Info) const { Info.setPreservesAll(); } bool doInitialization(Module &M); bool doInitialization(Function &F); bool doFinalization(Module &M); bool doFinalization(Function &F); virtual PMDataManager *getAsPMDataManager() { return this; } virtual Pass *getAsPass() { return this; } virtual const char *getPassName() const { return "BasicBlock Pass Manager"; } // Print passes managed by this manager void dumpPassStructure(unsigned Offset) { llvm::dbgs() << std::string(Offset*2, ' ') << "BasicBlockPass Manager\n"; for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) { BasicBlockPass *BP = getContainedPass(Index); BP->dumpPassStructure(Offset + 1); dumpLastUses(BP, Offset+1); } } BasicBlockPass *getContainedPass(unsigned N) { assert(N < PassVector.size() && "Pass number out of range!"); BasicBlockPass *BP = static_cast(PassVector[N]); return BP; } virtual PassManagerType getPassManagerType() const { return PMT_BasicBlockPassManager; } }; char BBPassManager::ID = 0; } namespace llvm { //===----------------------------------------------------------------------===// // FunctionPassManagerImpl // /// FunctionPassManagerImpl manages FPPassManagers class FunctionPassManagerImpl : public Pass, public PMDataManager, public PMTopLevelManager { private: bool wasRun; public: static char ID; explicit FunctionPassManagerImpl(int Depth) : Pass(PT_PassManager, ID), PMDataManager(Depth), PMTopLevelManager(new FPPassManager(1)), wasRun(false) {} /// add - Add a pass to the queue of passes to run. This passes ownership of /// the Pass to the PassManager. When the PassManager is destroyed, the pass /// will be destroyed as well, so there is no need to delete the pass. This /// implies that all passes MUST be allocated with 'new'. void add(Pass *P) { schedulePass(P); } /// createPrinterPass - Get a function printer pass. Pass *createPrinterPass(raw_ostream &O, const std::string &Banner) const { return createPrintFunctionPass(Banner, &O); } // Prepare for running an on the fly pass, freeing memory if needed // from a previous run. void releaseMemoryOnTheFly(); /// run - Execute all of the passes scheduled for execution. Keep track of /// whether any of the passes modifies the module, and if so, return true. bool run(Function &F); /// doInitialization - Run all of the initializers for the function passes. /// bool doInitialization(Module &M); /// doFinalization - Run all of the finalizers for the function passes. /// bool doFinalization(Module &M); virtual PMDataManager *getAsPMDataManager() { return this; } virtual Pass *getAsPass() { return this; } /// Pass Manager itself does not invalidate any analysis info. void getAnalysisUsage(AnalysisUsage &Info) const { Info.setPreservesAll(); } void addTopLevelPass(Pass *P) { if (ImmutablePass *IP = P->getAsImmutablePass()) { // P is a immutable pass and it will be managed by this // top level manager. Set up analysis resolver to connect them. AnalysisResolver *AR = new AnalysisResolver(*this); P->setResolver(AR); initializeAnalysisImpl(P); addImmutablePass(IP); recordAvailableAnalysis(IP); } else { P->assignPassManager(activeStack, PMT_FunctionPassManager); } } FPPassManager *getContainedManager(unsigned N) { assert(N < PassManagers.size() && "Pass number out of range!"); FPPassManager *FP = static_cast(PassManagers[N]); return FP; } }; char FunctionPassManagerImpl::ID = 0; //===----------------------------------------------------------------------===// // MPPassManager // /// MPPassManager manages ModulePasses and function pass managers. /// It batches all Module passes and function pass managers together and /// sequences them to process one module. class MPPassManager : public Pass, public PMDataManager { public: static char ID; explicit MPPassManager(int Depth) : Pass(PT_PassManager, ID), PMDataManager(Depth) { } // Delete on the fly managers. virtual ~MPPassManager() { for (std::map::iterator I = OnTheFlyManagers.begin(), E = OnTheFlyManagers.end(); I != E; ++I) { FunctionPassManagerImpl *FPP = I->second; delete FPP; } } /// createPrinterPass - Get a module printer pass. Pass *createPrinterPass(raw_ostream &O, const std::string &Banner) const { return createPrintModulePass(&O, false, Banner); } /// run - Execute all of the passes scheduled for execution. Keep track of /// whether any of the passes modifies the module, and if so, return true. bool runOnModule(Module &M); /// Pass Manager itself does not invalidate any analysis info. void getAnalysisUsage(AnalysisUsage &Info) const { Info.setPreservesAll(); } /// Add RequiredPass into list of lower level passes required by pass P. /// RequiredPass is run on the fly by Pass Manager when P requests it /// through getAnalysis interface. virtual void addLowerLevelRequiredPass(Pass *P, Pass *RequiredPass); /// Return function pass corresponding to PassInfo PI, that is /// required by module pass MP. Instantiate analysis pass, by using /// its runOnFunction() for function F. virtual Pass* getOnTheFlyPass(Pass *MP, AnalysisID PI, Function &F); virtual const char *getPassName() const { return "Module Pass Manager"; } virtual PMDataManager *getAsPMDataManager() { return this; } virtual Pass *getAsPass() { return this; } // Print passes managed by this manager void dumpPassStructure(unsigned Offset) { llvm::dbgs() << std::string(Offset*2, ' ') << "ModulePass Manager\n"; for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) { ModulePass *MP = getContainedPass(Index); MP->dumpPassStructure(Offset + 1); std::map::const_iterator I = OnTheFlyManagers.find(MP); if (I != OnTheFlyManagers.end()) I->second->dumpPassStructure(Offset + 2); dumpLastUses(MP, Offset+1); } } ModulePass *getContainedPass(unsigned N) { assert(N < PassVector.size() && "Pass number out of range!"); return static_cast(PassVector[N]); } virtual PassManagerType getPassManagerType() const { return PMT_ModulePassManager; } private: /// Collection of on the fly FPPassManagers. These managers manage /// function passes that are required by module passes. std::map OnTheFlyManagers; }; char MPPassManager::ID = 0; //===----------------------------------------------------------------------===// // PassManagerImpl // /// PassManagerImpl manages MPPassManagers class PassManagerImpl : public Pass, public PMDataManager, public PMTopLevelManager { public: static char ID; explicit PassManagerImpl(int Depth) : Pass(PT_PassManager, ID), PMDataManager(Depth), PMTopLevelManager(new MPPassManager(1)) {} /// add - Add a pass to the queue of passes to run. This passes ownership of /// the Pass to the PassManager. When the PassManager is destroyed, the pass /// will be destroyed as well, so there is no need to delete the pass. This /// implies that all passes MUST be allocated with 'new'. void add(Pass *P) { schedulePass(P); } /// createPrinterPass - Get a module printer pass. Pass *createPrinterPass(raw_ostream &O, const std::string &Banner) const { return createPrintModulePass(&O, false, Banner); } /// run - Execute all of the passes scheduled for execution. Keep track of /// whether any of the passes modifies the module, and if so, return true. bool run(Module &M); /// Pass Manager itself does not invalidate any analysis info. void getAnalysisUsage(AnalysisUsage &Info) const { Info.setPreservesAll(); } void addTopLevelPass(Pass *P) { if (ImmutablePass *IP = P->getAsImmutablePass()) { // P is a immutable pass and it will be managed by this // top level manager. Set up analysis resolver to connect them. AnalysisResolver *AR = new AnalysisResolver(*this); P->setResolver(AR); initializeAnalysisImpl(P); addImmutablePass(IP); recordAvailableAnalysis(IP); } else { P->assignPassManager(activeStack, PMT_ModulePassManager); } } virtual PMDataManager *getAsPMDataManager() { return this; } virtual Pass *getAsPass() { return this; } MPPassManager *getContainedManager(unsigned N) { assert(N < PassManagers.size() && "Pass number out of range!"); MPPassManager *MP = static_cast(PassManagers[N]); return MP; } }; char PassManagerImpl::ID = 0; } // End of llvm namespace namespace { //===----------------------------------------------------------------------===// // DebugInfoProbe static DebugInfoProbeInfo *TheDebugProbe; static void createDebugInfoProbe() { if (TheDebugProbe) return; // Constructed the first time this is called. This guarantees that the // object will be constructed, if -enable-debug-info-probe is set, // before static globals, thus it will be destroyed before them. static ManagedStatic DIP; TheDebugProbe = &*DIP; } //===----------------------------------------------------------------------===// /// TimingInfo Class - This class is used to calculate information about the /// amount of time each pass takes to execute. This only happens when /// -time-passes is enabled on the command line. /// static ManagedStatic > TimingInfoMutex; class TimingInfo { DenseMap TimingData; TimerGroup TG; public: // Use 'create' member to get this. TimingInfo() : TG("... Pass execution timing report ...") {} // TimingDtor - Print out information about timing information ~TimingInfo() { // Delete all of the timers, which accumulate their info into the // TimerGroup. for (DenseMap::iterator I = TimingData.begin(), E = TimingData.end(); I != E; ++I) delete I->second; // TimerGroup is deleted next, printing the report. } // createTheTimeInfo - This method either initializes the TheTimeInfo pointer // to a non null value (if the -time-passes option is enabled) or it leaves it // null. It may be called multiple times. static void createTheTimeInfo(); /// getPassTimer - Return the timer for the specified pass if it exists. Timer *getPassTimer(Pass *P) { if (P->getAsPMDataManager()) return 0; sys::SmartScopedLock Lock(*TimingInfoMutex); Timer *&T = TimingData[P]; if (T == 0) T = new Timer(P->getPassName(), TG); return T; } }; } // End of anon namespace static TimingInfo *TheTimeInfo; //===----------------------------------------------------------------------===// // PMTopLevelManager implementation /// Initialize top level manager. Create first pass manager. PMTopLevelManager::PMTopLevelManager(PMDataManager *PMDM) { PMDM->setTopLevelManager(this); addPassManager(PMDM); activeStack.push(PMDM); } /// Set pass P as the last user of the given analysis passes. void PMTopLevelManager::setLastUser(const SmallVectorImpl &AnalysisPasses, Pass *P) { unsigned PDepth = 0; if (P->getResolver()) PDepth = P->getResolver()->getPMDataManager().getDepth(); for (SmallVectorImpl::const_iterator I = AnalysisPasses.begin(), E = AnalysisPasses.end(); I != E; ++I) { Pass *AP = *I; LastUser[AP] = P; if (P == AP) continue; // Update the last users of passes that are required transitive by AP. AnalysisUsage *AnUsage = findAnalysisUsage(AP); const AnalysisUsage::VectorType &IDs = AnUsage->getRequiredTransitiveSet(); SmallVector LastUses; SmallVector LastPMUses; for (AnalysisUsage::VectorType::const_iterator I = IDs.begin(), E = IDs.end(); I != E; ++I) { Pass *AnalysisPass = findAnalysisPass(*I); assert(AnalysisPass && "Expected analysis pass to exist."); AnalysisResolver *AR = AnalysisPass->getResolver(); assert(AR && "Expected analysis resolver to exist."); unsigned APDepth = AR->getPMDataManager().getDepth(); if (PDepth == APDepth) LastUses.push_back(AnalysisPass); else if (PDepth > APDepth) LastPMUses.push_back(AnalysisPass); } setLastUser(LastUses, P); // If this pass has a corresponding pass manager, push higher level // analysis to this pass manager. if (P->getResolver()) setLastUser(LastPMUses, P->getResolver()->getPMDataManager().getAsPass()); // If AP is the last user of other passes then make P last user of // such passes. for (DenseMap::iterator LUI = LastUser.begin(), LUE = LastUser.end(); LUI != LUE; ++LUI) { if (LUI->second == AP) // DenseMap iterator is not invalidated here because // this is just updating existing entries. LastUser[LUI->first] = P; } } } /// Collect passes whose last user is P void PMTopLevelManager::collectLastUses(SmallVectorImpl &LastUses, Pass *P) { DenseMap >::iterator DMI = InversedLastUser.find(P); if (DMI == InversedLastUser.end()) return; SmallPtrSet &LU = DMI->second; for (SmallPtrSet::iterator I = LU.begin(), E = LU.end(); I != E; ++I) { LastUses.push_back(*I); } } AnalysisUsage *PMTopLevelManager::findAnalysisUsage(Pass *P) { AnalysisUsage *AnUsage = NULL; DenseMap::iterator DMI = AnUsageMap.find(P); if (DMI != AnUsageMap.end()) AnUsage = DMI->second; else { AnUsage = new AnalysisUsage(); P->getAnalysisUsage(*AnUsage); AnUsageMap[P] = AnUsage; } return AnUsage; } /// Schedule pass P for execution. Make sure that passes required by /// P are run before P is run. Update analysis info maintained by /// the manager. Remove dead passes. This is a recursive function. void PMTopLevelManager::schedulePass(Pass *P) { // TODO : Allocate function manager for this pass, other wise required set // may be inserted into previous function manager // Give pass a chance to prepare the stage. P->preparePassManager(activeStack); // If P is an analysis pass and it is available then do not // generate the analysis again. Stale analysis info should not be // available at this point. const PassInfo *PI = PassRegistry::getPassRegistry()->getPassInfo(P->getPassID()); if (PI && PI->isAnalysis() && findAnalysisPass(P->getPassID())) { delete P; return; } AnalysisUsage *AnUsage = findAnalysisUsage(P); bool checkAnalysis = true; while (checkAnalysis) { checkAnalysis = false; const AnalysisUsage::VectorType &RequiredSet = AnUsage->getRequiredSet(); for (AnalysisUsage::VectorType::const_iterator I = RequiredSet.begin(), E = RequiredSet.end(); I != E; ++I) { Pass *AnalysisPass = findAnalysisPass(*I); if (!AnalysisPass) { const PassInfo *PI = PassRegistry::getPassRegistry()->getPassInfo(*I); assert(PI && "Expected required passes to be initialized"); AnalysisPass = PI->createPass(); if (P->getPotentialPassManagerType () == AnalysisPass->getPotentialPassManagerType()) // Schedule analysis pass that is managed by the same pass manager. schedulePass(AnalysisPass); else if (P->getPotentialPassManagerType () > AnalysisPass->getPotentialPassManagerType()) { // Schedule analysis pass that is managed by a new manager. schedulePass(AnalysisPass); // Recheck analysis passes to ensure that required analyses that // are already checked are still available. checkAnalysis = true; } else // Do not schedule this analysis. Lower level analsyis // passes are run on the fly. delete AnalysisPass; } } } // Now all required passes are available. addTopLevelPass(P); } /// Find the pass that implements Analysis AID. Search immutable /// passes and all pass managers. If desired pass is not found /// then return NULL. Pass *PMTopLevelManager::findAnalysisPass(AnalysisID AID) { // Check pass managers for (SmallVectorImpl::iterator I = PassManagers.begin(), E = PassManagers.end(); I != E; ++I) if (Pass *P = (*I)->findAnalysisPass(AID, false)) return P; // Check other pass managers for (SmallVectorImpl::iterator I = IndirectPassManagers.begin(), E = IndirectPassManagers.end(); I != E; ++I) if (Pass *P = (*I)->findAnalysisPass(AID, false)) return P; // Check the immutable passes. Iterate in reverse order so that we find // the most recently registered passes first. for (SmallVector::reverse_iterator I = ImmutablePasses.rbegin(), E = ImmutablePasses.rend(); I != E; ++I) { AnalysisID PI = (*I)->getPassID(); if (PI == AID) return *I; // If Pass not found then check the interfaces implemented by Immutable Pass const PassInfo *PassInf = PassRegistry::getPassRegistry()->getPassInfo(PI); assert(PassInf && "Expected all immutable passes to be initialized"); const std::vector &ImmPI = PassInf->getInterfacesImplemented(); for (std::vector::const_iterator II = ImmPI.begin(), EE = ImmPI.end(); II != EE; ++II) { if ((*II)->getTypeInfo() == AID) return *I; } } return 0; } // Print passes managed by this top level manager. void PMTopLevelManager::dumpPasses() const { if (PassDebugging < Structure) return; // Print out the immutable passes for (unsigned i = 0, e = ImmutablePasses.size(); i != e; ++i) { ImmutablePasses[i]->dumpPassStructure(0); } // Every class that derives from PMDataManager also derives from Pass // (sometimes indirectly), but there's no inheritance relationship // between PMDataManager and Pass, so we have to getAsPass to get // from a PMDataManager* to a Pass*. for (SmallVector::const_iterator I = PassManagers.begin(), E = PassManagers.end(); I != E; ++I) (*I)->getAsPass()->dumpPassStructure(1); } void PMTopLevelManager::dumpArguments() const { if (PassDebugging < Arguments) return; dbgs() << "Pass Arguments: "; for (SmallVector::const_iterator I = ImmutablePasses.begin(), E = ImmutablePasses.end(); I != E; ++I) if (const PassInfo *PI = PassRegistry::getPassRegistry()->getPassInfo((*I)->getPassID())) { assert(PI && "Expected all immutable passes to be initialized"); if (!PI->isAnalysisGroup()) dbgs() << " -" << PI->getPassArgument(); } for (SmallVector::const_iterator I = PassManagers.begin(), E = PassManagers.end(); I != E; ++I) (*I)->dumpPassArguments(); dbgs() << "\n"; } void PMTopLevelManager::initializeAllAnalysisInfo() { for (SmallVectorImpl::iterator I = PassManagers.begin(), E = PassManagers.end(); I != E; ++I) (*I)->initializeAnalysisInfo(); // Initailize other pass managers for (SmallVectorImpl::iterator I = IndirectPassManagers.begin(), E = IndirectPassManagers.end(); I != E; ++I) (*I)->initializeAnalysisInfo(); for (DenseMap::iterator DMI = LastUser.begin(), DME = LastUser.end(); DMI != DME; ++DMI) { DenseMap >::iterator InvDMI = InversedLastUser.find(DMI->second); if (InvDMI != InversedLastUser.end()) { SmallPtrSet &L = InvDMI->second; L.insert(DMI->first); } else { SmallPtrSet L; L.insert(DMI->first); InversedLastUser[DMI->second] = L; } } } /// Destructor PMTopLevelManager::~PMTopLevelManager() { for (SmallVectorImpl::iterator I = PassManagers.begin(), E = PassManagers.end(); I != E; ++I) delete *I; for (SmallVectorImpl::iterator I = ImmutablePasses.begin(), E = ImmutablePasses.end(); I != E; ++I) delete *I; for (DenseMap::iterator DMI = AnUsageMap.begin(), DME = AnUsageMap.end(); DMI != DME; ++DMI) delete DMI->second; } //===----------------------------------------------------------------------===// // PMDataManager implementation /// Augement AvailableAnalysis by adding analysis made available by pass P. void PMDataManager::recordAvailableAnalysis(Pass *P) { AnalysisID PI = P->getPassID(); AvailableAnalysis[PI] = P; assert(!AvailableAnalysis.empty()); // This pass is the current implementation of all of the interfaces it // implements as well. const PassInfo *PInf = PassRegistry::getPassRegistry()->getPassInfo(PI); if (PInf == 0) return; const std::vector &II = PInf->getInterfacesImplemented(); for (unsigned i = 0, e = II.size(); i != e; ++i) AvailableAnalysis[II[i]->getTypeInfo()] = P; } // Return true if P preserves high level analysis used by other // passes managed by this manager bool PMDataManager::preserveHigherLevelAnalysis(Pass *P) { AnalysisUsage *AnUsage = TPM->findAnalysisUsage(P); if (AnUsage->getPreservesAll()) return true; const AnalysisUsage::VectorType &PreservedSet = AnUsage->getPreservedSet(); for (SmallVectorImpl::iterator I = HigherLevelAnalysis.begin(), E = HigherLevelAnalysis.end(); I != E; ++I) { Pass *P1 = *I; if (P1->getAsImmutablePass() == 0 && std::find(PreservedSet.begin(), PreservedSet.end(), P1->getPassID()) == PreservedSet.end()) return false; } return true; } /// verifyPreservedAnalysis -- Verify analysis preserved by pass P. void PMDataManager::verifyPreservedAnalysis(Pass *P) { // Don't do this unless assertions are enabled. #ifdef NDEBUG return; #endif AnalysisUsage *AnUsage = TPM->findAnalysisUsage(P); const AnalysisUsage::VectorType &PreservedSet = AnUsage->getPreservedSet(); // Verify preserved analysis for (AnalysisUsage::VectorType::const_iterator I = PreservedSet.begin(), E = PreservedSet.end(); I != E; ++I) { AnalysisID AID = *I; if (Pass *AP = findAnalysisPass(AID, true)) { TimeRegion PassTimer(getPassTimer(AP)); AP->verifyAnalysis(); } } } /// Remove Analysis not preserved by Pass P void PMDataManager::removeNotPreservedAnalysis(Pass *P) { AnalysisUsage *AnUsage = TPM->findAnalysisUsage(P); if (AnUsage->getPreservesAll()) return; const AnalysisUsage::VectorType &PreservedSet = AnUsage->getPreservedSet(); for (std::map::iterator I = AvailableAnalysis.begin(), E = AvailableAnalysis.end(); I != E; ) { std::map::iterator Info = I++; if (Info->second->getAsImmutablePass() == 0 && std::find(PreservedSet.begin(), PreservedSet.end(), Info->first) == PreservedSet.end()) { // Remove this analysis if (PassDebugging >= Details) { Pass *S = Info->second; dbgs() << " -- '" << P->getPassName() << "' is not preserving '"; dbgs() << S->getPassName() << "'\n"; } AvailableAnalysis.erase(Info); } } // Check inherited analysis also. If P is not preserving analysis // provided by parent manager then remove it here. for (unsigned Index = 0; Index < PMT_Last; ++Index) { if (!InheritedAnalysis[Index]) continue; for (std::map::iterator I = InheritedAnalysis[Index]->begin(), E = InheritedAnalysis[Index]->end(); I != E; ) { std::map::iterator Info = I++; if (Info->second->getAsImmutablePass() == 0 && std::find(PreservedSet.begin(), PreservedSet.end(), Info->first) == PreservedSet.end()) { // Remove this analysis if (PassDebugging >= Details) { Pass *S = Info->second; dbgs() << " -- '" << P->getPassName() << "' is not preserving '"; dbgs() << S->getPassName() << "'\n"; } InheritedAnalysis[Index]->erase(Info); } } } } /// Remove analysis passes that are not used any longer void PMDataManager::removeDeadPasses(Pass *P, StringRef Msg, enum PassDebuggingString DBG_STR) { SmallVector DeadPasses; // If this is a on the fly manager then it does not have TPM. if (!TPM) return; TPM->collectLastUses(DeadPasses, P); if (PassDebugging >= Details && !DeadPasses.empty()) { dbgs() << " -*- '" << P->getPassName(); dbgs() << "' is the last user of following pass instances."; dbgs() << " Free these instances\n"; } for (SmallVectorImpl::iterator I = DeadPasses.begin(), E = DeadPasses.end(); I != E; ++I) freePass(*I, Msg, DBG_STR); } void PMDataManager::freePass(Pass *P, StringRef Msg, enum PassDebuggingString DBG_STR) { dumpPassInfo(P, FREEING_MSG, DBG_STR, Msg); { // If the pass crashes releasing memory, remember this. PassManagerPrettyStackEntry X(P); TimeRegion PassTimer(getPassTimer(P)); P->releaseMemory(); } AnalysisID PI = P->getPassID(); if (const PassInfo *PInf = PassRegistry::getPassRegistry()->getPassInfo(PI)) { // Remove the pass itself (if it is not already removed). AvailableAnalysis.erase(PI); // Remove all interfaces this pass implements, for which it is also // listed as the available implementation. const std::vector &II = PInf->getInterfacesImplemented(); for (unsigned i = 0, e = II.size(); i != e; ++i) { std::map::iterator Pos = AvailableAnalysis.find(II[i]->getTypeInfo()); if (Pos != AvailableAnalysis.end() && Pos->second == P) AvailableAnalysis.erase(Pos); } } } /// Add pass P into the PassVector. Update /// AvailableAnalysis appropriately if ProcessAnalysis is true. void PMDataManager::add(Pass *P, bool ProcessAnalysis) { // This manager is going to manage pass P. Set up analysis resolver // to connect them. AnalysisResolver *AR = new AnalysisResolver(*this); P->setResolver(AR); // If a FunctionPass F is the last user of ModulePass info M // then the F's manager, not F, records itself as a last user of M. SmallVector TransferLastUses; if (!ProcessAnalysis) { // Add pass PassVector.push_back(P); return; } // At the moment, this pass is the last user of all required passes. SmallVector LastUses; SmallVector RequiredPasses; SmallVector ReqAnalysisNotAvailable; unsigned PDepth = this->getDepth(); collectRequiredAnalysis(RequiredPasses, ReqAnalysisNotAvailable, P); for (SmallVectorImpl::iterator I = RequiredPasses.begin(), E = RequiredPasses.end(); I != E; ++I) { Pass *PRequired = *I; unsigned RDepth = 0; assert(PRequired->getResolver() && "Analysis Resolver is not set"); PMDataManager &DM = PRequired->getResolver()->getPMDataManager(); RDepth = DM.getDepth(); if (PDepth == RDepth) LastUses.push_back(PRequired); else if (PDepth > RDepth) { // Let the parent claim responsibility of last use TransferLastUses.push_back(PRequired); // Keep track of higher level analysis used by this manager. HigherLevelAnalysis.push_back(PRequired); } else llvm_unreachable("Unable to accommodate Required Pass"); } // Set P as P's last user until someone starts using P. // However, if P is a Pass Manager then it does not need // to record its last user. if (P->getAsPMDataManager() == 0) LastUses.push_back(P); TPM->setLastUser(LastUses, P); if (!TransferLastUses.empty()) { Pass *My_PM = getAsPass(); TPM->setLastUser(TransferLastUses, My_PM); TransferLastUses.clear(); } // Now, take care of required analyses that are not available. for (SmallVectorImpl::iterator I = ReqAnalysisNotAvailable.begin(), E = ReqAnalysisNotAvailable.end() ;I != E; ++I) { const PassInfo *PI = PassRegistry::getPassRegistry()->getPassInfo(*I); Pass *AnalysisPass = PI->createPass(); this->addLowerLevelRequiredPass(P, AnalysisPass); } // Take a note of analysis required and made available by this pass. // Remove the analysis not preserved by this pass removeNotPreservedAnalysis(P); recordAvailableAnalysis(P); // Add pass PassVector.push_back(P); } /// Populate RP with analysis pass that are required by /// pass P and are available. Populate RP_NotAvail with analysis /// pass that are required by pass P but are not available. void PMDataManager::collectRequiredAnalysis(SmallVectorImpl &RP, SmallVectorImpl &RP_NotAvail, Pass *P) { AnalysisUsage *AnUsage = TPM->findAnalysisUsage(P); const AnalysisUsage::VectorType &RequiredSet = AnUsage->getRequiredSet(); for (AnalysisUsage::VectorType::const_iterator I = RequiredSet.begin(), E = RequiredSet.end(); I != E; ++I) { if (Pass *AnalysisPass = findAnalysisPass(*I, true)) RP.push_back(AnalysisPass); else RP_NotAvail.push_back(*I); } const AnalysisUsage::VectorType &IDs = AnUsage->getRequiredTransitiveSet(); for (AnalysisUsage::VectorType::const_iterator I = IDs.begin(), E = IDs.end(); I != E; ++I) { if (Pass *AnalysisPass = findAnalysisPass(*I, true)) RP.push_back(AnalysisPass); else RP_NotAvail.push_back(*I); } } // All Required analyses should be available to the pass as it runs! Here // we fill in the AnalysisImpls member of the pass so that it can // successfully use the getAnalysis() method to retrieve the // implementations it needs. // void PMDataManager::initializeAnalysisImpl(Pass *P) { AnalysisUsage *AnUsage = TPM->findAnalysisUsage(P); for (AnalysisUsage::VectorType::const_iterator I = AnUsage->getRequiredSet().begin(), E = AnUsage->getRequiredSet().end(); I != E; ++I) { Pass *Impl = findAnalysisPass(*I, true); if (Impl == 0) // This may be analysis pass that is initialized on the fly. // If that is not the case then it will raise an assert when it is used. continue; AnalysisResolver *AR = P->getResolver(); assert(AR && "Analysis Resolver is not set"); AR->addAnalysisImplsPair(*I, Impl); } } /// Find the pass that implements Analysis AID. If desired pass is not found /// then return NULL. Pass *PMDataManager::findAnalysisPass(AnalysisID AID, bool SearchParent) { // Check if AvailableAnalysis map has one entry. std::map::const_iterator I = AvailableAnalysis.find(AID); if (I != AvailableAnalysis.end()) return I->second; // Search Parents through TopLevelManager if (SearchParent) return TPM->findAnalysisPass(AID); return NULL; } // Print list of passes that are last used by P. void PMDataManager::dumpLastUses(Pass *P, unsigned Offset) const{ SmallVector LUses; // If this is a on the fly manager then it does not have TPM. if (!TPM) return; TPM->collectLastUses(LUses, P); for (SmallVectorImpl::iterator I = LUses.begin(), E = LUses.end(); I != E; ++I) { llvm::dbgs() << "--" << std::string(Offset*2, ' '); (*I)->dumpPassStructure(0); } } void PMDataManager::dumpPassArguments() const { for (SmallVectorImpl::const_iterator I = PassVector.begin(), E = PassVector.end(); I != E; ++I) { if (PMDataManager *PMD = (*I)->getAsPMDataManager()) PMD->dumpPassArguments(); else if (const PassInfo *PI = PassRegistry::getPassRegistry()->getPassInfo((*I)->getPassID())) if (!PI->isAnalysisGroup()) dbgs() << " -" << PI->getPassArgument(); } } void PMDataManager::dumpPassInfo(Pass *P, enum PassDebuggingString S1, enum PassDebuggingString S2, StringRef Msg) { if (PassDebugging < Executions) return; dbgs() << (void*)this << std::string(getDepth()*2+1, ' '); switch (S1) { case EXECUTION_MSG: dbgs() << "Executing Pass '" << P->getPassName(); break; case MODIFICATION_MSG: dbgs() << "Made Modification '" << P->getPassName(); break; case FREEING_MSG: dbgs() << " Freeing Pass '" << P->getPassName(); break; default: break; } switch (S2) { case ON_BASICBLOCK_MSG: dbgs() << "' on BasicBlock '" << Msg << "'...\n"; break; case ON_FUNCTION_MSG: dbgs() << "' on Function '" << Msg << "'...\n"; break; case ON_MODULE_MSG: dbgs() << "' on Module '" << Msg << "'...\n"; break; case ON_REGION_MSG: dbgs() << "' on Region '" << Msg << "'...\n"; break; case ON_LOOP_MSG: dbgs() << "' on Loop '" << Msg << "'...\n"; break; case ON_CG_MSG: dbgs() << "' on Call Graph Nodes '" << Msg << "'...\n"; break; default: break; } } void PMDataManager::dumpRequiredSet(const Pass *P) const { if (PassDebugging < Details) return; AnalysisUsage analysisUsage; P->getAnalysisUsage(analysisUsage); dumpAnalysisUsage("Required", P, analysisUsage.getRequiredSet()); } void PMDataManager::dumpPreservedSet(const Pass *P) const { if (PassDebugging < Details) return; AnalysisUsage analysisUsage; P->getAnalysisUsage(analysisUsage); dumpAnalysisUsage("Preserved", P, analysisUsage.getPreservedSet()); } void PMDataManager::dumpAnalysisUsage(StringRef Msg, const Pass *P, const AnalysisUsage::VectorType &Set) const { assert(PassDebugging >= Details); if (Set.empty()) return; dbgs() << (void*)P << std::string(getDepth()*2+3, ' ') << Msg << " Analyses:"; for (unsigned i = 0; i != Set.size(); ++i) { if (i) dbgs() << ','; const PassInfo *PInf = PassRegistry::getPassRegistry()->getPassInfo(Set[i]); if (!PInf) { // Some preserved passes, such as AliasAnalysis, may not be initialized by // all drivers. dbgs() << " Uninitialized Pass"; continue; } dbgs() << ' ' << PInf->getPassName(); } dbgs() << '\n'; } /// Add RequiredPass into list of lower level passes required by pass P. /// RequiredPass is run on the fly by Pass Manager when P requests it /// through getAnalysis interface. /// This should be handled by specific pass manager. void PMDataManager::addLowerLevelRequiredPass(Pass *P, Pass *RequiredPass) { if (TPM) { TPM->dumpArguments(); TPM->dumpPasses(); } // Module Level pass may required Function Level analysis info // (e.g. dominator info). Pass manager uses on the fly function pass manager // to provide this on demand. In that case, in Pass manager terminology, // module level pass is requiring lower level analysis info managed by // lower level pass manager. // When Pass manager is not able to order required analysis info, Pass manager // checks whether any lower level manager will be able to provide this // analysis info on demand or not. #ifndef NDEBUG dbgs() << "Unable to schedule '" << RequiredPass->getPassName(); dbgs() << "' required by '" << P->getPassName() << "'\n"; #endif llvm_unreachable("Unable to schedule pass"); } Pass *PMDataManager::getOnTheFlyPass(Pass *P, AnalysisID PI, Function &F) { assert(0 && "Unable to find on the fly pass"); return NULL; } // Destructor PMDataManager::~PMDataManager() { for (SmallVectorImpl::iterator I = PassVector.begin(), E = PassVector.end(); I != E; ++I) delete *I; } //===----------------------------------------------------------------------===// // NOTE: Is this the right place to define this method ? // getAnalysisIfAvailable - Return analysis result or null if it doesn't exist. Pass *AnalysisResolver::getAnalysisIfAvailable(AnalysisID ID, bool dir) const { return PM.findAnalysisPass(ID, dir); } Pass *AnalysisResolver::findImplPass(Pass *P, AnalysisID AnalysisPI, Function &F) { return PM.getOnTheFlyPass(P, AnalysisPI, F); } //===----------------------------------------------------------------------===// // BBPassManager implementation /// Execute all of the passes scheduled for execution by invoking /// runOnBasicBlock method. Keep track of whether any of the passes modifies /// the function, and if so, return true. bool BBPassManager::runOnFunction(Function &F) { if (F.isDeclaration()) return false; bool Changed = doInitialization(F); for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) { BasicBlockPass *BP = getContainedPass(Index); bool LocalChanged = false; dumpPassInfo(BP, EXECUTION_MSG, ON_BASICBLOCK_MSG, I->getName()); dumpRequiredSet(BP); initializeAnalysisImpl(BP); { // If the pass crashes, remember this. PassManagerPrettyStackEntry X(BP, *I); TimeRegion PassTimer(getPassTimer(BP)); LocalChanged |= BP->runOnBasicBlock(*I); } Changed |= LocalChanged; if (LocalChanged) dumpPassInfo(BP, MODIFICATION_MSG, ON_BASICBLOCK_MSG, I->getName()); dumpPreservedSet(BP); verifyPreservedAnalysis(BP); removeNotPreservedAnalysis(BP); recordAvailableAnalysis(BP); removeDeadPasses(BP, I->getName(), ON_BASICBLOCK_MSG); } return doFinalization(F) || Changed; } // Implement doInitialization and doFinalization bool BBPassManager::doInitialization(Module &M) { bool Changed = false; for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) Changed |= getContainedPass(Index)->doInitialization(M); return Changed; } bool BBPassManager::doFinalization(Module &M) { bool Changed = false; for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) Changed |= getContainedPass(Index)->doFinalization(M); return Changed; } bool BBPassManager::doInitialization(Function &F) { bool Changed = false; for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) { BasicBlockPass *BP = getContainedPass(Index); Changed |= BP->doInitialization(F); } return Changed; } bool BBPassManager::doFinalization(Function &F) { bool Changed = false; for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) { BasicBlockPass *BP = getContainedPass(Index); Changed |= BP->doFinalization(F); } return Changed; } //===----------------------------------------------------------------------===// // FunctionPassManager implementation /// Create new Function pass manager FunctionPassManager::FunctionPassManager(Module *m) : M(m) { FPM = new FunctionPassManagerImpl(0); // FPM is the top level manager. FPM->setTopLevelManager(FPM); AnalysisResolver *AR = new AnalysisResolver(*FPM); FPM->setResolver(AR); } FunctionPassManager::~FunctionPassManager() { delete FPM; } /// addImpl - Add a pass to the queue of passes to run, without /// checking whether to add a printer pass. void FunctionPassManager::addImpl(Pass *P) { FPM->add(P); } /// add - Add a pass to the queue of passes to run. This passes /// ownership of the Pass to the PassManager. When the /// PassManager_X is destroyed, the pass will be destroyed as well, so /// there is no need to delete the pass. (TODO delete passes.) /// This implies that all passes MUST be allocated with 'new'. void FunctionPassManager::add(Pass *P) { // If this is a not a function pass, don't add a printer for it. const void *PassID = P->getPassID(); if (P->getPassKind() == PT_Function) if (ShouldPrintBeforePass(PassID)) addImpl(P->createPrinterPass(dbgs(), std::string("*** IR Dump Before ") + P->getPassName() + " ***")); addImpl(P); if (P->getPassKind() == PT_Function) if (ShouldPrintAfterPass(PassID)) addImpl(P->createPrinterPass(dbgs(), std::string("*** IR Dump After ") + P->getPassName() + " ***")); } /// run - Execute all of the passes scheduled for execution. Keep /// track of whether any of the passes modifies the function, and if /// so, return true. /// bool FunctionPassManager::run(Function &F) { if (F.isMaterializable()) { std::string errstr; if (F.Materialize(&errstr)) report_fatal_error("Error reading bitcode file: " + Twine(errstr)); } return FPM->run(F); } /// doInitialization - Run all of the initializers for the function passes. /// bool FunctionPassManager::doInitialization() { return FPM->doInitialization(*M); } /// doFinalization - Run all of the finalizers for the function passes. /// bool FunctionPassManager::doFinalization() { return FPM->doFinalization(*M); } //===----------------------------------------------------------------------===// // FunctionPassManagerImpl implementation // bool FunctionPassManagerImpl::doInitialization(Module &M) { bool Changed = false; dumpArguments(); dumpPasses(); for (unsigned Index = 0; Index < getNumContainedManagers(); ++Index) Changed |= getContainedManager(Index)->doInitialization(M); return Changed; } bool FunctionPassManagerImpl::doFinalization(Module &M) { bool Changed = false; for (unsigned Index = 0; Index < getNumContainedManagers(); ++Index) Changed |= getContainedManager(Index)->doFinalization(M); return Changed; } /// cleanup - After running all passes, clean up pass manager cache. void FPPassManager::cleanup() { for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) { FunctionPass *FP = getContainedPass(Index); AnalysisResolver *AR = FP->getResolver(); assert(AR && "Analysis Resolver is not set"); AR->clearAnalysisImpls(); } } void FunctionPassManagerImpl::releaseMemoryOnTheFly() { if (!wasRun) return; for (unsigned Index = 0; Index < getNumContainedManagers(); ++Index) { FPPassManager *FPPM = getContainedManager(Index); for (unsigned Index = 0; Index < FPPM->getNumContainedPasses(); ++Index) { FPPM->getContainedPass(Index)->releaseMemory(); } } wasRun = false; } // Execute all the passes managed by this top level manager. // Return true if any function is modified by a pass. bool FunctionPassManagerImpl::run(Function &F) { bool Changed = false; TimingInfo::createTheTimeInfo(); createDebugInfoProbe(); initializeAllAnalysisInfo(); for (unsigned Index = 0; Index < getNumContainedManagers(); ++Index) Changed |= getContainedManager(Index)->runOnFunction(F); for (unsigned Index = 0; Index < getNumContainedManagers(); ++Index) getContainedManager(Index)->cleanup(); wasRun = true; return Changed; } //===----------------------------------------------------------------------===// // FPPassManager implementation char FPPassManager::ID = 0; /// Print passes managed by this manager void FPPassManager::dumpPassStructure(unsigned Offset) { llvm::dbgs() << std::string(Offset*2, ' ') << "FunctionPass Manager\n"; for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) { FunctionPass *FP = getContainedPass(Index); FP->dumpPassStructure(Offset + 1); dumpLastUses(FP, Offset+1); } } /// Execute all of the passes scheduled for execution by invoking /// runOnFunction method. Keep track of whether any of the passes modifies /// the function, and if so, return true. bool FPPassManager::runOnFunction(Function &F) { if (F.isDeclaration()) return false; bool Changed = false; // Collect inherited analysis from Module level pass manager. populateInheritedAnalysis(TPM->activeStack); for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) { FunctionPass *FP = getContainedPass(Index); bool LocalChanged = false; dumpPassInfo(FP, EXECUTION_MSG, ON_FUNCTION_MSG, F.getName()); dumpRequiredSet(FP); initializeAnalysisImpl(FP); if (TheDebugProbe) TheDebugProbe->initialize(FP, F); { PassManagerPrettyStackEntry X(FP, F); TimeRegion PassTimer(getPassTimer(FP)); LocalChanged |= FP->runOnFunction(F); } if (TheDebugProbe) TheDebugProbe->finalize(FP, F); Changed |= LocalChanged; if (LocalChanged) dumpPassInfo(FP, MODIFICATION_MSG, ON_FUNCTION_MSG, F.getName()); dumpPreservedSet(FP); verifyPreservedAnalysis(FP); removeNotPreservedAnalysis(FP); recordAvailableAnalysis(FP); removeDeadPasses(FP, F.getName(), ON_FUNCTION_MSG); } return Changed; } bool FPPassManager::runOnModule(Module &M) { bool Changed = doInitialization(M); for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) Changed |= runOnFunction(*I); return doFinalization(M) || Changed; } bool FPPassManager::doInitialization(Module &M) { bool Changed = false; for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) Changed |= getContainedPass(Index)->doInitialization(M); return Changed; } bool FPPassManager::doFinalization(Module &M) { bool Changed = false; for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) Changed |= getContainedPass(Index)->doFinalization(M); return Changed; } //===----------------------------------------------------------------------===// // MPPassManager implementation /// Execute all of the passes scheduled for execution by invoking /// runOnModule method. Keep track of whether any of the passes modifies /// the module, and if so, return true. bool MPPassManager::runOnModule(Module &M) { bool Changed = false; // Initialize on-the-fly passes for (std::map::iterator I = OnTheFlyManagers.begin(), E = OnTheFlyManagers.end(); I != E; ++I) { FunctionPassManagerImpl *FPP = I->second; Changed |= FPP->doInitialization(M); } for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) { ModulePass *MP = getContainedPass(Index); bool LocalChanged = false; dumpPassInfo(MP, EXECUTION_MSG, ON_MODULE_MSG, M.getModuleIdentifier()); dumpRequiredSet(MP); initializeAnalysisImpl(MP); { PassManagerPrettyStackEntry X(MP, M); TimeRegion PassTimer(getPassTimer(MP)); LocalChanged |= MP->runOnModule(M); } Changed |= LocalChanged; if (LocalChanged) dumpPassInfo(MP, MODIFICATION_MSG, ON_MODULE_MSG, M.getModuleIdentifier()); dumpPreservedSet(MP); verifyPreservedAnalysis(MP); removeNotPreservedAnalysis(MP); recordAvailableAnalysis(MP); removeDeadPasses(MP, M.getModuleIdentifier(), ON_MODULE_MSG); } // Finalize on-the-fly passes for (std::map::iterator I = OnTheFlyManagers.begin(), E = OnTheFlyManagers.end(); I != E; ++I) { FunctionPassManagerImpl *FPP = I->second; // We don't know when is the last time an on-the-fly pass is run, // so we need to releaseMemory / finalize here FPP->releaseMemoryOnTheFly(); Changed |= FPP->doFinalization(M); } return Changed; } /// Add RequiredPass into list of lower level passes required by pass P. /// RequiredPass is run on the fly by Pass Manager when P requests it /// through getAnalysis interface. void MPPassManager::addLowerLevelRequiredPass(Pass *P, Pass *RequiredPass) { assert(P->getPotentialPassManagerType() == PMT_ModulePassManager && "Unable to handle Pass that requires lower level Analysis pass"); assert((P->getPotentialPassManagerType() < RequiredPass->getPotentialPassManagerType()) && "Unable to handle Pass that requires lower level Analysis pass"); FunctionPassManagerImpl *FPP = OnTheFlyManagers[P]; if (!FPP) { FPP = new FunctionPassManagerImpl(0); // FPP is the top level manager. FPP->setTopLevelManager(FPP); OnTheFlyManagers[P] = FPP; } FPP->add(RequiredPass); // Register P as the last user of RequiredPass. SmallVector LU; LU.push_back(RequiredPass); FPP->setLastUser(LU, P); } /// Return function pass corresponding to PassInfo PI, that is /// required by module pass MP. Instantiate analysis pass, by using /// its runOnFunction() for function F. Pass* MPPassManager::getOnTheFlyPass(Pass *MP, AnalysisID PI, Function &F){ FunctionPassManagerImpl *FPP = OnTheFlyManagers[MP]; assert(FPP && "Unable to find on the fly pass"); FPP->releaseMemoryOnTheFly(); FPP->run(F); return ((PMTopLevelManager*)FPP)->findAnalysisPass(PI); } //===----------------------------------------------------------------------===// // PassManagerImpl implementation // /// run - Execute all of the passes scheduled for execution. Keep track of /// whether any of the passes modifies the module, and if so, return true. bool PassManagerImpl::run(Module &M) { bool Changed = false; TimingInfo::createTheTimeInfo(); createDebugInfoProbe(); dumpArguments(); dumpPasses(); initializeAllAnalysisInfo(); for (unsigned Index = 0; Index < getNumContainedManagers(); ++Index) Changed |= getContainedManager(Index)->runOnModule(M); return Changed; } //===----------------------------------------------------------------------===// // PassManager implementation /// Create new pass manager PassManager::PassManager() { PM = new PassManagerImpl(0); // PM is the top level manager PM->setTopLevelManager(PM); } PassManager::~PassManager() { delete PM; } /// addImpl - Add a pass to the queue of passes to run, without /// checking whether to add a printer pass. void PassManager::addImpl(Pass *P) { PM->add(P); } /// add - Add a pass to the queue of passes to run. This passes ownership of /// the Pass to the PassManager. When the PassManager is destroyed, the pass /// will be destroyed as well, so there is no need to delete the pass. This /// implies that all passes MUST be allocated with 'new'. void PassManager::add(Pass *P) { const void* PassID = P->getPassID(); if (ShouldPrintBeforePass(PassID)) addImpl(P->createPrinterPass(dbgs(), std::string("*** IR Dump Before ") + P->getPassName() + " ***")); addImpl(P); if (ShouldPrintAfterPass(PassID)) addImpl(P->createPrinterPass(dbgs(), std::string("*** IR Dump After ") + P->getPassName() + " ***")); } /// run - Execute all of the passes scheduled for execution. Keep track of /// whether any of the passes modifies the module, and if so, return true. bool PassManager::run(Module &M) { return PM->run(M); } //===----------------------------------------------------------------------===// // TimingInfo Class - This class is used to calculate information about the // amount of time each pass takes to execute. This only happens with // -time-passes is enabled on the command line. // bool llvm::TimePassesIsEnabled = false; static cl::opt EnableTiming("time-passes", cl::location(TimePassesIsEnabled), cl::desc("Time each pass, printing elapsed time for each on exit")); // createTheTimeInfo - This method either initializes the TheTimeInfo pointer to // a non null value (if the -time-passes option is enabled) or it leaves it // null. It may be called multiple times. void TimingInfo::createTheTimeInfo() { if (!TimePassesIsEnabled || TheTimeInfo) return; // Constructed the first time this is called, iff -time-passes is enabled. // This guarantees that the object will be constructed before static globals, // thus it will be destroyed before them. static ManagedStatic TTI; TheTimeInfo = &*TTI; } /// If TimingInfo is enabled then start pass timer. Timer *llvm::getPassTimer(Pass *P) { if (TheTimeInfo) return TheTimeInfo->getPassTimer(P); return 0; } //===----------------------------------------------------------------------===// // PMStack implementation // // Pop Pass Manager from the stack and clear its analysis info. void PMStack::pop() { PMDataManager *Top = this->top(); Top->initializeAnalysisInfo(); S.pop_back(); } // Push PM on the stack and set its top level manager. void PMStack::push(PMDataManager *PM) { assert(PM && "Unable to push. Pass Manager expected"); if (!this->empty()) { PMTopLevelManager *TPM = this->top()->getTopLevelManager(); assert(TPM && "Unable to find top level manager"); TPM->addIndirectPassManager(PM); PM->setTopLevelManager(TPM); } S.push_back(PM); } // Dump content of the pass manager stack. void PMStack::dump() const { for (std::vector::const_iterator I = S.begin(), E = S.end(); I != E; ++I) printf("%s ", (*I)->getAsPass()->getPassName()); if (!S.empty()) printf("\n"); } /// Find appropriate Module Pass Manager in the PM Stack and /// add self into that manager. void ModulePass::assignPassManager(PMStack &PMS, PassManagerType PreferredType) { // Find Module Pass Manager while (!PMS.empty()) { PassManagerType TopPMType = PMS.top()->getPassManagerType(); if (TopPMType == PreferredType) break; // We found desired pass manager else if (TopPMType > PMT_ModulePassManager) PMS.pop(); // Pop children pass managers else break; } assert(!PMS.empty() && "Unable to find appropriate Pass Manager"); PMS.top()->add(this); } /// Find appropriate Function Pass Manager or Call Graph Pass Manager /// in the PM Stack and add self into that manager. void FunctionPass::assignPassManager(PMStack &PMS, PassManagerType PreferredType) { // Find Module Pass Manager while (!PMS.empty()) { if (PMS.top()->getPassManagerType() > PMT_FunctionPassManager) PMS.pop(); else break; } // Create new Function Pass Manager if needed. FPPassManager *FPP; if (PMS.top()->getPassManagerType() == PMT_FunctionPassManager) { FPP = (FPPassManager *)PMS.top(); } else { assert(!PMS.empty() && "Unable to create Function Pass Manager"); PMDataManager *PMD = PMS.top(); // [1] Create new Function Pass Manager FPP = new FPPassManager(PMD->getDepth() + 1); FPP->populateInheritedAnalysis(PMS); // [2] Set up new manager's top level manager PMTopLevelManager *TPM = PMD->getTopLevelManager(); TPM->addIndirectPassManager(FPP); // [3] Assign manager to manage this new manager. This may create // and push new managers into PMS FPP->assignPassManager(PMS, PMD->getPassManagerType()); // [4] Push new manager into PMS PMS.push(FPP); } // Assign FPP as the manager of this pass. FPP->add(this); } /// Find appropriate Basic Pass Manager or Call Graph Pass Manager /// in the PM Stack and add self into that manager. void BasicBlockPass::assignPassManager(PMStack &PMS, PassManagerType PreferredType) { BBPassManager *BBP; // Basic Pass Manager is a leaf pass manager. It does not handle // any other pass manager. if (!PMS.empty() && PMS.top()->getPassManagerType() == PMT_BasicBlockPassManager) { BBP = (BBPassManager *)PMS.top(); } else { // If leaf manager is not Basic Block Pass manager then create new // basic Block Pass manager. assert(!PMS.empty() && "Unable to create BasicBlock Pass Manager"); PMDataManager *PMD = PMS.top(); // [1] Create new Basic Block Manager BBP = new BBPassManager(PMD->getDepth() + 1); // [2] Set up new manager's top level manager // Basic Block Pass Manager does not live by itself PMTopLevelManager *TPM = PMD->getTopLevelManager(); TPM->addIndirectPassManager(BBP); // [3] Assign manager to manage this new manager. This may create // and push new managers into PMS BBP->assignPassManager(PMS, PreferredType); // [4] Push new manager into PMS PMS.push(BBP); } // Assign BBP as the manager of this pass. BBP->add(this); } PassManagerBase::~PassManagerBase() {}