//===-- llvm/Module.h - C++ class to represent a VM module ------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // /// @file /// Module.h This file contains the declarations for the Module class. // //===----------------------------------------------------------------------===// #ifndef LLVM_IR_MODULE_H #define LLVM_IR_MODULE_H #include "llvm/ADT/OwningPtr.h" #include "llvm/IR/Function.h" #include "llvm/IR/GlobalAlias.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/Metadata.h" #include "llvm/Support/CBindingWrapping.h" #include "llvm/Support/DataTypes.h" namespace llvm { class FunctionType; class GVMaterializer; class LLVMContext; class StructType; template struct DenseMapInfo; template class DenseMap; template<> struct ilist_traits : public SymbolTableListTraits { // createSentinel is used to get hold of the node that marks the end of the // list... (same trick used here as in ilist_traits) Function *createSentinel() const { return static_cast(&Sentinel); } static void destroySentinel(Function*) {} Function *provideInitialHead() const { return createSentinel(); } Function *ensureHead(Function*) const { return createSentinel(); } static void noteHead(Function*, Function*) {} private: mutable ilist_node Sentinel; }; template<> struct ilist_traits : public SymbolTableListTraits { // createSentinel is used to create a node that marks the end of the list. GlobalVariable *createSentinel() const { return static_cast(&Sentinel); } static void destroySentinel(GlobalVariable*) {} GlobalVariable *provideInitialHead() const { return createSentinel(); } GlobalVariable *ensureHead(GlobalVariable*) const { return createSentinel(); } static void noteHead(GlobalVariable*, GlobalVariable*) {} private: mutable ilist_node Sentinel; }; template<> struct ilist_traits : public SymbolTableListTraits { // createSentinel is used to create a node that marks the end of the list. GlobalAlias *createSentinel() const { return static_cast(&Sentinel); } static void destroySentinel(GlobalAlias*) {} GlobalAlias *provideInitialHead() const { return createSentinel(); } GlobalAlias *ensureHead(GlobalAlias*) const { return createSentinel(); } static void noteHead(GlobalAlias*, GlobalAlias*) {} private: mutable ilist_node Sentinel; }; template<> struct ilist_traits : public ilist_default_traits { // createSentinel is used to get hold of a node that marks the end of // the list... NamedMDNode *createSentinel() const { return static_cast(&Sentinel); } static void destroySentinel(NamedMDNode*) {} NamedMDNode *provideInitialHead() const { return createSentinel(); } NamedMDNode *ensureHead(NamedMDNode*) const { return createSentinel(); } static void noteHead(NamedMDNode*, NamedMDNode*) {} void addNodeToList(NamedMDNode *) {} void removeNodeFromList(NamedMDNode *) {} private: mutable ilist_node Sentinel; }; /// A Module instance is used to store all the information related to an /// LLVM module. Modules are the top level container of all other LLVM /// Intermediate Representation (IR) objects. Each module directly contains a /// list of globals variables, a list of functions, a list of libraries (or /// other modules) this module depends on, a symbol table, and various data /// about the target's characteristics. /// /// A module maintains a GlobalValRefMap object that is used to hold all /// constant references to global variables in the module. When a global /// variable is destroyed, it should have no entries in the GlobalValueRefMap. /// @brief The main container class for the LLVM Intermediate Representation. class Module { /// @name Types And Enumerations /// @{ public: /// The type for the list of global variables. typedef iplist GlobalListType; /// The type for the list of functions. typedef iplist FunctionListType; /// The type for the list of aliases. typedef iplist AliasListType; /// The type for the list of named metadata. typedef ilist NamedMDListType; /// The Global Variable iterator. typedef GlobalListType::iterator global_iterator; /// The Global Variable constant iterator. typedef GlobalListType::const_iterator const_global_iterator; /// The Function iterators. typedef FunctionListType::iterator iterator; /// The Function constant iterator typedef FunctionListType::const_iterator const_iterator; /// The Global Alias iterators. typedef AliasListType::iterator alias_iterator; /// The Global Alias constant iterator typedef AliasListType::const_iterator const_alias_iterator; /// The named metadata iterators. typedef NamedMDListType::iterator named_metadata_iterator; /// The named metadata constant interators. typedef NamedMDListType::const_iterator const_named_metadata_iterator; /// An enumeration for describing the endianess of the target machine. enum Endianness { AnyEndianness, LittleEndian, BigEndian }; /// An enumeration for describing the size of a pointer on the target machine. enum PointerSize { AnyPointerSize, Pointer32, Pointer64 }; /// This enumeration defines the supported behaviors of module flags. enum ModFlagBehavior { /// Emits an error if two values disagree, otherwise the resulting value is /// that of the operands. Error = 1, /// Emits a warning if two values disagree. The result value will be the /// operand for the flag from the first module being linked. Warning = 2, /// Adds a requirement that another module flag be present and have a /// specified value after linking is performed. The value must be a metadata /// pair, where the first element of the pair is the ID of the module flag /// to be restricted, and the second element of the pair is the value the /// module flag should be restricted to. This behavior can be used to /// restrict the allowable results (via triggering of an error) of linking /// IDs with the **Override** behavior. Require = 3, /// Uses the specified value, regardless of the behavior or value of the /// other module. If both modules specify **Override**, but the values /// differ, an error will be emitted. Override = 4, /// Appends the two values, which are required to be metadata nodes. Append = 5, /// Appends the two values, which are required to be metadata /// nodes. However, duplicate entries in the second list are dropped /// during the append operation. AppendUnique = 6 }; struct ModuleFlagEntry { ModFlagBehavior Behavior; MDString *Key; Value *Val; ModuleFlagEntry(ModFlagBehavior B, MDString *K, Value *V) : Behavior(B), Key(K), Val(V) {} }; /// @} /// @name Member Variables /// @{ private: LLVMContext &Context; ///< The LLVMContext from which types and ///< constants are allocated. GlobalListType GlobalList; ///< The Global Variables in the module FunctionListType FunctionList; ///< The Functions in the module AliasListType AliasList; ///< The Aliases in the module NamedMDListType NamedMDList; ///< The named metadata in the module std::string GlobalScopeAsm; ///< Inline Asm at global scope. ValueSymbolTable *ValSymTab; ///< Symbol table for values OwningPtr Materializer; ///< Used to materialize GlobalValues std::string ModuleID; ///< Human readable identifier for the module std::string TargetTriple; ///< Platform target triple Module compiled on std::string DataLayout; ///< Target data description void *NamedMDSymTab; ///< NamedMDNode names. friend class Constant; /// @} /// @name Constructors /// @{ public: /// The Module constructor. Note that there is no default constructor. You /// must provide a name for the module upon construction. explicit Module(StringRef ModuleID, LLVMContext& C); /// The module destructor. This will dropAllReferences. ~Module(); /// @} /// @name Module Level Accessors /// @{ /// Get the module identifier which is, essentially, the name of the module. /// @returns the module identifier as a string const std::string &getModuleIdentifier() const { return ModuleID; } /// Get the data layout string for the module's target platform. This encodes /// the type sizes and alignments expected by this module. /// @returns the data layout as a string const std::string &getDataLayout() const { return DataLayout; } /// Get the target triple which is a string describing the target host. /// @returns a string containing the target triple. const std::string &getTargetTriple() const { return TargetTriple; } /// Get the target endian information. /// @returns Endianess - an enumeration for the endianess of the target Endianness getEndianness() const; /// Get the target pointer size. /// @returns PointerSize - an enumeration for the size of the target's pointer PointerSize getPointerSize() const; /// Get the global data context. /// @returns LLVMContext - a container for LLVM's global information LLVMContext &getContext() const { return Context; } /// Get any module-scope inline assembly blocks. /// @returns a string containing the module-scope inline assembly blocks. const std::string &getModuleInlineAsm() const { return GlobalScopeAsm; } /// @} /// @name Module Level Mutators /// @{ /// Set the module identifier. void setModuleIdentifier(StringRef ID) { ModuleID = ID; } /// Set the data layout void setDataLayout(StringRef DL) { DataLayout = DL; } /// Set the target triple. void setTargetTriple(StringRef T) { TargetTriple = T; } /// Set the module-scope inline assembly blocks. void setModuleInlineAsm(StringRef Asm) { GlobalScopeAsm = Asm; if (!GlobalScopeAsm.empty() && GlobalScopeAsm[GlobalScopeAsm.size()-1] != '\n') GlobalScopeAsm += '\n'; } /// Append to the module-scope inline assembly blocks, automatically inserting /// a separating newline if necessary. void appendModuleInlineAsm(StringRef Asm) { GlobalScopeAsm += Asm; if (!GlobalScopeAsm.empty() && GlobalScopeAsm[GlobalScopeAsm.size()-1] != '\n') GlobalScopeAsm += '\n'; } /// @} /// @name Generic Value Accessors /// @{ /// getNamedValue - Return the global value in the module with /// the specified name, of arbitrary type. This method returns null /// if a global with the specified name is not found. GlobalValue *getNamedValue(StringRef Name) const; /// getMDKindID - Return a unique non-zero ID for the specified metadata kind. /// This ID is uniqued across modules in the current LLVMContext. unsigned getMDKindID(StringRef Name) const; /// getMDKindNames - Populate client supplied SmallVector with the name for /// custom metadata IDs registered in this LLVMContext. void getMDKindNames(SmallVectorImpl &Result) const; typedef DenseMap > NumeredTypesMapTy; /// getTypeByName - Return the type with the specified name, or null if there /// is none by that name. StructType *getTypeByName(StringRef Name) const; /// @} /// @name Function Accessors /// @{ /// getOrInsertFunction - Look up the specified function in the module symbol /// table. Four possibilities: /// 1. If it does not exist, add a prototype for the function and return it. /// 2. If it exists, and has a local linkage, the existing function is /// renamed and a new one is inserted. /// 3. Otherwise, if the existing function has the correct prototype, return /// the existing function. /// 4. Finally, the function exists but has the wrong prototype: return the /// function with a constantexpr cast to the right prototype. Constant *getOrInsertFunction(StringRef Name, FunctionType *T, AttributeSet AttributeList); Constant *getOrInsertFunction(StringRef Name, FunctionType *T); /// getOrInsertFunction - Look up the specified function in the module symbol /// table. If it does not exist, add a prototype for the function and return /// it. This function guarantees to return a constant of pointer to the /// specified function type or a ConstantExpr BitCast of that type if the /// named function has a different type. This version of the method takes a /// null terminated list of function arguments, which makes it easier for /// clients to use. Constant *getOrInsertFunction(StringRef Name, AttributeSet AttributeList, Type *RetTy, ...) END_WITH_NULL; /// getOrInsertFunction - Same as above, but without the attributes. Constant *getOrInsertFunction(StringRef Name, Type *RetTy, ...) END_WITH_NULL; /// getFunction - Look up the specified function in the module symbol table. /// If it does not exist, return null. Function *getFunction(StringRef Name) const; /// @} /// @name Global Variable Accessors /// @{ /// getGlobalVariable - Look up the specified global variable in the module /// symbol table. If it does not exist, return null. If AllowInternal is set /// to true, this function will return types that have InternalLinkage. By /// default, these types are not returned. GlobalVariable *getGlobalVariable(StringRef Name, bool AllowInternal = false) const; /// getNamedGlobal - Return the global variable in the module with the /// specified name, of arbitrary type. This method returns null if a global /// with the specified name is not found. GlobalVariable *getNamedGlobal(StringRef Name) const { return getGlobalVariable(Name, true); } /// getOrInsertGlobal - Look up the specified global in the module symbol /// table. /// 1. If it does not exist, add a declaration of the global and return it. /// 2. Else, the global exists but has the wrong type: return the function /// with a constantexpr cast to the right type. /// 3. Finally, if the existing global is the correct declaration, return /// the existing global. Constant *getOrInsertGlobal(StringRef Name, Type *Ty); /// @} /// @name Global Alias Accessors /// @{ /// getNamedAlias - Return the global alias in the module with the /// specified name, of arbitrary type. This method returns null if a global /// with the specified name is not found. GlobalAlias *getNamedAlias(StringRef Name) const; /// @} /// @name Named Metadata Accessors /// @{ /// getNamedMetadata - Return the NamedMDNode in the module with the /// specified name. This method returns null if a NamedMDNode with the /// specified name is not found. NamedMDNode *getNamedMetadata(const Twine &Name) const; /// getOrInsertNamedMetadata - Return the named MDNode in the module /// with the specified name. This method returns a new NamedMDNode if a /// NamedMDNode with the specified name is not found. NamedMDNode *getOrInsertNamedMetadata(StringRef Name); /// eraseNamedMetadata - Remove the given NamedMDNode from this module /// and delete it. void eraseNamedMetadata(NamedMDNode *NMD); /// @} /// @name Module Flags Accessors /// @{ /// getModuleFlagsMetadata - Returns the module flags in the provided vector. void getModuleFlagsMetadata(SmallVectorImpl &Flags) const; /// getModuleFlagsMetadata - Returns the NamedMDNode in the module that /// represents module-level flags. This method returns null if there are no /// module-level flags. NamedMDNode *getModuleFlagsMetadata() const; /// getOrInsertModuleFlagsMetadata - Returns the NamedMDNode in the module /// that represents module-level flags. If module-level flags aren't found, /// it creates the named metadata that contains them. NamedMDNode *getOrInsertModuleFlagsMetadata(); /// addModuleFlag - Add a module-level flag to the module-level flags /// metadata. It will create the module-level flags named metadata if it /// doesn't already exist. void addModuleFlag(ModFlagBehavior Behavior, StringRef Key, Value *Val); void addModuleFlag(ModFlagBehavior Behavior, StringRef Key, uint32_t Val); void addModuleFlag(MDNode *Node); /// @} /// @name Materialization /// @{ /// setMaterializer - Sets the GVMaterializer to GVM. This module must not /// yet have a Materializer. To reset the materializer for a module that /// already has one, call MaterializeAllPermanently first. Destroying this /// module will destroy its materializer without materializing any more /// GlobalValues. Without destroying the Module, there is no way to detach or /// destroy a materializer without materializing all the GVs it controls, to /// avoid leaving orphan unmaterialized GVs. void setMaterializer(GVMaterializer *GVM); /// getMaterializer - Retrieves the GVMaterializer, if any, for this Module. GVMaterializer *getMaterializer() const { return Materializer.get(); } /// isMaterializable - True if the definition of GV has yet to be materialized /// from the GVMaterializer. bool isMaterializable(const GlobalValue *GV) const; /// isDematerializable - Returns true if this GV was loaded from this Module's /// GVMaterializer and the GVMaterializer knows how to dematerialize the GV. bool isDematerializable(const GlobalValue *GV) const; /// Materialize - Make sure the GlobalValue is fully read. If the module is /// corrupt, this returns true and fills in the optional string with /// information about the problem. If successful, this returns false. bool Materialize(GlobalValue *GV, std::string *ErrInfo = 0); /// Dematerialize - If the GlobalValue is read in, and if the GVMaterializer /// supports it, release the memory for the function, and set it up to be /// materialized lazily. If !isDematerializable(), this method is a noop. void Dematerialize(GlobalValue *GV); /// MaterializeAll - Make sure all GlobalValues in this Module are fully read. /// If the module is corrupt, this returns true and fills in the optional /// string with information about the problem. If successful, this returns /// false. bool MaterializeAll(std::string *ErrInfo = 0); /// MaterializeAllPermanently - Make sure all GlobalValues in this Module are /// fully read and clear the Materializer. If the module is corrupt, this /// returns true, fills in the optional string with information about the /// problem, and DOES NOT clear the old Materializer. If successful, this /// returns false. bool MaterializeAllPermanently(std::string *ErrInfo = 0); /// @} /// @name Direct access to the globals list, functions list, and symbol table /// @{ /// Get the Module's list of global variables (constant). const GlobalListType &getGlobalList() const { return GlobalList; } /// Get the Module's list of global variables. GlobalListType &getGlobalList() { return GlobalList; } static iplist Module::*getSublistAccess(GlobalVariable*) { return &Module::GlobalList; } /// Get the Module's list of functions (constant). const FunctionListType &getFunctionList() const { return FunctionList; } /// Get the Module's list of functions. FunctionListType &getFunctionList() { return FunctionList; } static iplist Module::*getSublistAccess(Function*) { return &Module::FunctionList; } /// Get the Module's list of aliases (constant). const AliasListType &getAliasList() const { return AliasList; } /// Get the Module's list of aliases. AliasListType &getAliasList() { return AliasList; } static iplist Module::*getSublistAccess(GlobalAlias*) { return &Module::AliasList; } /// Get the Module's list of named metadata (constant). const NamedMDListType &getNamedMDList() const { return NamedMDList; } /// Get the Module's list of named metadata. NamedMDListType &getNamedMDList() { return NamedMDList; } static ilist Module::*getSublistAccess(NamedMDNode*) { return &Module::NamedMDList; } /// Get the symbol table of global variable and function identifiers const ValueSymbolTable &getValueSymbolTable() const { return *ValSymTab; } /// Get the Module's symbol table of global variable and function identifiers. ValueSymbolTable &getValueSymbolTable() { return *ValSymTab; } /// @} /// @name Global Variable Iteration /// @{ global_iterator global_begin() { return GlobalList.begin(); } const_global_iterator global_begin() const { return GlobalList.begin(); } global_iterator global_end () { return GlobalList.end(); } const_global_iterator global_end () const { return GlobalList.end(); } bool global_empty() const { return GlobalList.empty(); } /// @} /// @name Function Iteration /// @{ iterator begin() { return FunctionList.begin(); } const_iterator begin() const { return FunctionList.begin(); } iterator end () { return FunctionList.end(); } const_iterator end () const { return FunctionList.end(); } size_t size() const { return FunctionList.size(); } bool empty() const { return FunctionList.empty(); } /// @} /// @name Alias Iteration /// @{ alias_iterator alias_begin() { return AliasList.begin(); } const_alias_iterator alias_begin() const { return AliasList.begin(); } alias_iterator alias_end () { return AliasList.end(); } const_alias_iterator alias_end () const { return AliasList.end(); } size_t alias_size () const { return AliasList.size(); } bool alias_empty() const { return AliasList.empty(); } /// @} /// @name Named Metadata Iteration /// @{ named_metadata_iterator named_metadata_begin() { return NamedMDList.begin(); } const_named_metadata_iterator named_metadata_begin() const { return NamedMDList.begin(); } named_metadata_iterator named_metadata_end() { return NamedMDList.end(); } const_named_metadata_iterator named_metadata_end() const { return NamedMDList.end(); } size_t named_metadata_size() const { return NamedMDList.size(); } bool named_metadata_empty() const { return NamedMDList.empty(); } /// @} /// @name Utility functions for printing and dumping Module objects /// @{ /// Print the module to an output stream with an optional /// AssemblyAnnotationWriter. void print(raw_ostream &OS, AssemblyAnnotationWriter *AAW) const; /// Dump the module to stderr (for debugging). void dump() const; /// This function causes all the subinstructions to "let go" of all references /// that they are maintaining. This allows one to 'delete' a whole class at /// a time, even though there may be circular references... first all /// references are dropped, and all use counts go to zero. Then everything /// is delete'd for real. Note that no operations are valid on an object /// that has "dropped all references", except operator delete. void dropAllReferences(); /// @} }; /// An raw_ostream inserter for modules. inline raw_ostream &operator<<(raw_ostream &O, const Module &M) { M.print(O, 0); return O; } // Create wrappers for C Binding types (see CBindingWrapping.h). DEFINE_SIMPLE_CONVERSION_FUNCTIONS(Module, LLVMModuleRef) /* LLVMModuleProviderRef exists for historical reasons, but now just holds a * Module. */ inline Module *unwrap(LLVMModuleProviderRef MP) { return reinterpret_cast(MP); } } // End llvm namespace #endif