llvm-6502/lib/Target/AMDGPU/AMDGPUFrameLowering.cpp
Tom Stellard 953c681473 R600 -> AMDGPU rename
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239657 91177308-0d34-0410-b5e6-96231b3b80d8
2015-06-13 03:28:10 +00:00

113 lines
3.6 KiB
C++

//===----------------------- AMDGPUFrameLowering.cpp ----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//==-----------------------------------------------------------------------===//
//
// Interface to describe a layout of a stack frame on a AMDIL target machine
//
//===----------------------------------------------------------------------===//
#include "AMDGPUFrameLowering.h"
#include "AMDGPURegisterInfo.h"
#include "R600MachineFunctionInfo.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/IR/Instructions.h"
using namespace llvm;
AMDGPUFrameLowering::AMDGPUFrameLowering(StackDirection D, unsigned StackAl,
int LAO, unsigned TransAl)
: TargetFrameLowering(D, StackAl, LAO, TransAl) { }
AMDGPUFrameLowering::~AMDGPUFrameLowering() { }
unsigned AMDGPUFrameLowering::getStackWidth(const MachineFunction &MF) const {
// XXX: Hardcoding to 1 for now.
//
// I think the StackWidth should stored as metadata associated with the
// MachineFunction. This metadata can either be added by a frontend, or
// calculated by a R600 specific LLVM IR pass.
//
// The StackWidth determines how stack objects are laid out in memory.
// For a vector stack variable, like: int4 stack[2], the data will be stored
// in the following ways depending on the StackWidth.
//
// StackWidth = 1:
//
// T0.X = stack[0].x
// T1.X = stack[0].y
// T2.X = stack[0].z
// T3.X = stack[0].w
// T4.X = stack[1].x
// T5.X = stack[1].y
// T6.X = stack[1].z
// T7.X = stack[1].w
//
// StackWidth = 2:
//
// T0.X = stack[0].x
// T0.Y = stack[0].y
// T1.X = stack[0].z
// T1.Y = stack[0].w
// T2.X = stack[1].x
// T2.Y = stack[1].y
// T3.X = stack[1].z
// T3.Y = stack[1].w
//
// StackWidth = 4:
// T0.X = stack[0].x
// T0.Y = stack[0].y
// T0.Z = stack[0].z
// T0.W = stack[0].w
// T1.X = stack[1].x
// T1.Y = stack[1].y
// T1.Z = stack[1].z
// T1.W = stack[1].w
return 1;
}
/// \returns The number of registers allocated for \p FI.
int AMDGPUFrameLowering::getFrameIndexOffset(const MachineFunction &MF,
int FI) const {
const MachineFrameInfo *MFI = MF.getFrameInfo();
// Start the offset at 2 so we don't overwrite work group information.
// XXX: We should only do this when the shader actually uses this
// information.
unsigned OffsetBytes = 2 * (getStackWidth(MF) * 4);
int UpperBound = FI == -1 ? MFI->getNumObjects() : FI;
for (int i = MFI->getObjectIndexBegin(); i < UpperBound; ++i) {
OffsetBytes = RoundUpToAlignment(OffsetBytes, MFI->getObjectAlignment(i));
OffsetBytes += MFI->getObjectSize(i);
// Each register holds 4 bytes, so we must always align the offset to at
// least 4 bytes, so that 2 frame objects won't share the same register.
OffsetBytes = RoundUpToAlignment(OffsetBytes, 4);
}
if (FI != -1)
OffsetBytes = RoundUpToAlignment(OffsetBytes, MFI->getObjectAlignment(FI));
return OffsetBytes / (getStackWidth(MF) * 4);
}
const TargetFrameLowering::SpillSlot *
AMDGPUFrameLowering::getCalleeSavedSpillSlots(unsigned &NumEntries) const {
NumEntries = 0;
return nullptr;
}
void AMDGPUFrameLowering::emitPrologue(MachineFunction &MF,
MachineBasicBlock &MBB) const {}
void
AMDGPUFrameLowering::emitEpilogue(MachineFunction &MF,
MachineBasicBlock &MBB) const {
}
bool
AMDGPUFrameLowering::hasFP(const MachineFunction &MF) const {
return false;
}