llvm-6502/lib/Target/Mips/AsmParser/MipsAsmParser.cpp
Toma Tabacu e143a3abc2 [mips] [IAS] Add support for the .module softfloat/hardfloat directives.
These directives are used to set the default value of the SoftFloat feature.
They have the same effect as setting -m{soft, hard}-float from the command line.

Differential Revision: http://reviews.llvm.org/D9073

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241066 91177308-0d34-0410-b5e6-96231b3b80d8
2015-06-30 13:46:03 +00:00

5210 lines
174 KiB
C++

//===-- MipsAsmParser.cpp - Parse Mips assembly to MCInst instructions ----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "MCTargetDesc/MipsABIInfo.h"
#include "MCTargetDesc/MipsMCExpr.h"
#include "MCTargetDesc/MipsMCTargetDesc.h"
#include "MipsRegisterInfo.h"
#include "MipsTargetStreamer.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstBuilder.h"
#include "llvm/MC/MCParser/MCAsmLexer.h"
#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/MC/MCTargetAsmParser.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/raw_ostream.h"
#include <memory>
using namespace llvm;
#define DEBUG_TYPE "mips-asm-parser"
namespace llvm {
class MCInstrInfo;
}
namespace {
class MipsAssemblerOptions {
public:
MipsAssemblerOptions(const FeatureBitset &Features_) :
ATReg(1), Reorder(true), Macro(true), Features(Features_) {}
MipsAssemblerOptions(const MipsAssemblerOptions *Opts) {
ATReg = Opts->getATRegIndex();
Reorder = Opts->isReorder();
Macro = Opts->isMacro();
Features = Opts->getFeatures();
}
unsigned getATRegIndex() const { return ATReg; }
bool setATRegIndex(unsigned Reg) {
if (Reg > 31)
return false;
ATReg = Reg;
return true;
}
bool isReorder() const { return Reorder; }
void setReorder() { Reorder = true; }
void setNoReorder() { Reorder = false; }
bool isMacro() const { return Macro; }
void setMacro() { Macro = true; }
void setNoMacro() { Macro = false; }
const FeatureBitset &getFeatures() const { return Features; }
void setFeatures(const FeatureBitset &Features_) { Features = Features_; }
// Set of features that are either architecture features or referenced
// by them (e.g.: FeatureNaN2008 implied by FeatureMips32r6).
// The full table can be found in MipsGenSubtargetInfo.inc (MipsFeatureKV[]).
// The reason we need this mask is explained in the selectArch function.
// FIXME: Ideally we would like TableGen to generate this information.
static const FeatureBitset AllArchRelatedMask;
private:
unsigned ATReg;
bool Reorder;
bool Macro;
FeatureBitset Features;
};
}
const FeatureBitset MipsAssemblerOptions::AllArchRelatedMask = {
Mips::FeatureMips1, Mips::FeatureMips2, Mips::FeatureMips3,
Mips::FeatureMips3_32, Mips::FeatureMips3_32r2, Mips::FeatureMips4,
Mips::FeatureMips4_32, Mips::FeatureMips4_32r2, Mips::FeatureMips5,
Mips::FeatureMips5_32r2, Mips::FeatureMips32, Mips::FeatureMips32r2,
Mips::FeatureMips32r3, Mips::FeatureMips32r5, Mips::FeatureMips32r6,
Mips::FeatureMips64, Mips::FeatureMips64r2, Mips::FeatureMips64r3,
Mips::FeatureMips64r5, Mips::FeatureMips64r6, Mips::FeatureCnMips,
Mips::FeatureFP64Bit, Mips::FeatureGP64Bit, Mips::FeatureNaN2008
};
namespace {
class MipsAsmParser : public MCTargetAsmParser {
MipsTargetStreamer &getTargetStreamer() {
MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer();
return static_cast<MipsTargetStreamer &>(TS);
}
MCSubtargetInfo &STI;
MipsABIInfo ABI;
SmallVector<std::unique_ptr<MipsAssemblerOptions>, 2> AssemblerOptions;
MCSymbol *CurrentFn; // Pointer to the function being parsed. It may be a
// nullptr, which indicates that no function is currently
// selected. This usually happens after an '.end func'
// directive.
bool IsLittleEndian;
// Print a warning along with its fix-it message at the given range.
void printWarningWithFixIt(const Twine &Msg, const Twine &FixMsg,
SMRange Range, bool ShowColors = true);
#define GET_ASSEMBLER_HEADER
#include "MipsGenAsmMatcher.inc"
unsigned checkTargetMatchPredicate(MCInst &Inst) override;
bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands, MCStreamer &Out,
uint64_t &ErrorInfo,
bool MatchingInlineAsm) override;
/// Parse a register as used in CFI directives
bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override;
bool parseParenSuffix(StringRef Name, OperandVector &Operands);
bool parseBracketSuffix(StringRef Name, OperandVector &Operands);
bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
SMLoc NameLoc, OperandVector &Operands) override;
bool ParseDirective(AsmToken DirectiveID) override;
MipsAsmParser::OperandMatchResultTy parseMemOperand(OperandVector &Operands);
MipsAsmParser::OperandMatchResultTy
matchAnyRegisterNameWithoutDollar(OperandVector &Operands,
StringRef Identifier, SMLoc S);
MipsAsmParser::OperandMatchResultTy
matchAnyRegisterWithoutDollar(OperandVector &Operands, SMLoc S);
MipsAsmParser::OperandMatchResultTy parseAnyRegister(OperandVector &Operands);
MipsAsmParser::OperandMatchResultTy parseImm(OperandVector &Operands);
MipsAsmParser::OperandMatchResultTy parseJumpTarget(OperandVector &Operands);
MipsAsmParser::OperandMatchResultTy parseInvNum(OperandVector &Operands);
MipsAsmParser::OperandMatchResultTy parseLSAImm(OperandVector &Operands);
MipsAsmParser::OperandMatchResultTy
parseRegisterPair (OperandVector &Operands);
MipsAsmParser::OperandMatchResultTy
parseMovePRegPair(OperandVector &Operands);
MipsAsmParser::OperandMatchResultTy
parseRegisterList (OperandVector &Operands);
bool searchSymbolAlias(OperandVector &Operands);
bool parseOperand(OperandVector &, StringRef Mnemonic);
bool needsExpansion(MCInst &Inst);
// Expands assembly pseudo instructions.
// Returns false on success, true otherwise.
bool expandInstruction(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions);
bool expandJalWithRegs(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions);
bool loadImmediate(int64_t ImmValue, unsigned DstReg, unsigned SrcReg,
bool Is32BitImm, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions);
bool loadAndAddSymbolAddress(const MCExpr *SymExpr, unsigned DstReg,
unsigned SrcReg, bool Is32BitSym, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions);
bool expandLoadImm(MCInst &Inst, bool Is32BitImm, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions);
bool expandLoadAddressImm(MCInst &Inst, bool Is32BitImm, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions);
bool expandLoadAddressReg(MCInst &Inst, bool Is32BitImm, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions);
bool expandUncondBranchMMPseudo(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions);
void expandMemInst(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions, bool isLoad,
bool isImmOpnd);
bool expandLoadStoreMultiple(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions);
bool expandBranchImm(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions);
bool expandCondBranches(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions);
bool expandUlhu(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions);
bool expandUlw(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions);
void createNop(bool hasShortDelaySlot, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions);
void createAddu(unsigned DstReg, unsigned SrcReg, unsigned TrgReg,
bool Is64Bit, SmallVectorImpl<MCInst> &Instructions);
bool reportParseError(Twine ErrorMsg);
bool reportParseError(SMLoc Loc, Twine ErrorMsg);
bool parseMemOffset(const MCExpr *&Res, bool isParenExpr);
bool parseRelocOperand(const MCExpr *&Res);
const MCExpr *evaluateRelocExpr(const MCExpr *Expr, StringRef RelocStr);
bool isEvaluated(const MCExpr *Expr);
bool parseSetMips0Directive();
bool parseSetArchDirective();
bool parseSetFeature(uint64_t Feature);
bool parseDirectiveCpLoad(SMLoc Loc);
bool parseDirectiveCPSetup();
bool parseDirectiveNaN();
bool parseDirectiveSet();
bool parseDirectiveOption();
bool parseInsnDirective();
bool parseSetAtDirective();
bool parseSetNoAtDirective();
bool parseSetMacroDirective();
bool parseSetNoMacroDirective();
bool parseSetMsaDirective();
bool parseSetNoMsaDirective();
bool parseSetNoDspDirective();
bool parseSetReorderDirective();
bool parseSetNoReorderDirective();
bool parseSetMips16Directive();
bool parseSetNoMips16Directive();
bool parseSetFpDirective();
bool parseSetOddSPRegDirective();
bool parseSetNoOddSPRegDirective();
bool parseSetPopDirective();
bool parseSetPushDirective();
bool parseSetSoftFloatDirective();
bool parseSetHardFloatDirective();
bool parseSetAssignment();
bool parseDataDirective(unsigned Size, SMLoc L);
bool parseDirectiveGpWord();
bool parseDirectiveGpDWord();
bool parseDirectiveModule();
bool parseDirectiveModuleFP();
bool parseFpABIValue(MipsABIFlagsSection::FpABIKind &FpABI,
StringRef Directive);
bool parseInternalDirectiveReallowModule();
MCSymbolRefExpr::VariantKind getVariantKind(StringRef Symbol);
bool eatComma(StringRef ErrorStr);
int matchCPURegisterName(StringRef Symbol);
int matchHWRegsRegisterName(StringRef Symbol);
int matchRegisterByNumber(unsigned RegNum, unsigned RegClass);
int matchFPURegisterName(StringRef Name);
int matchFCCRegisterName(StringRef Name);
int matchACRegisterName(StringRef Name);
int matchMSA128RegisterName(StringRef Name);
int matchMSA128CtrlRegisterName(StringRef Name);
unsigned getReg(int RC, int RegNo);
unsigned getGPR(int RegNo);
/// Returns the internal register number for the current AT. Also checks if
/// the current AT is unavailable (set to $0) and gives an error if it is.
/// This should be used in pseudo-instruction expansions which need AT.
unsigned getATReg(SMLoc Loc);
bool processInstruction(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions);
// Helper function that checks if the value of a vector index is within the
// boundaries of accepted values for each RegisterKind
// Example: INSERT.B $w0[n], $1 => 16 > n >= 0
bool validateMSAIndex(int Val, int RegKind);
// Selects a new architecture by updating the FeatureBits with the necessary
// info including implied dependencies.
// Internally, it clears all the feature bits related to *any* architecture
// and selects the new one using the ToggleFeature functionality of the
// MCSubtargetInfo object that handles implied dependencies. The reason we
// clear all the arch related bits manually is because ToggleFeature only
// clears the features that imply the feature being cleared and not the
// features implied by the feature being cleared. This is easier to see
// with an example:
// --------------------------------------------------
// | Feature | Implies |
// | -------------------------------------------------|
// | FeatureMips1 | None |
// | FeatureMips2 | FeatureMips1 |
// | FeatureMips3 | FeatureMips2 | FeatureMipsGP64 |
// | FeatureMips4 | FeatureMips3 |
// | ... | |
// --------------------------------------------------
//
// Setting Mips3 is equivalent to set: (FeatureMips3 | FeatureMips2 |
// FeatureMipsGP64 | FeatureMips1)
// Clearing Mips3 is equivalent to clear (FeatureMips3 | FeatureMips4).
void selectArch(StringRef ArchFeature) {
FeatureBitset FeatureBits = STI.getFeatureBits();
FeatureBits &= ~MipsAssemblerOptions::AllArchRelatedMask;
STI.setFeatureBits(FeatureBits);
setAvailableFeatures(
ComputeAvailableFeatures(STI.ToggleFeature(ArchFeature)));
AssemblerOptions.back()->setFeatures(STI.getFeatureBits());
}
void setFeatureBits(uint64_t Feature, StringRef FeatureString) {
if (!(STI.getFeatureBits()[Feature])) {
setAvailableFeatures(
ComputeAvailableFeatures(STI.ToggleFeature(FeatureString)));
AssemblerOptions.back()->setFeatures(STI.getFeatureBits());
}
}
void clearFeatureBits(uint64_t Feature, StringRef FeatureString) {
if (STI.getFeatureBits()[Feature]) {
setAvailableFeatures(
ComputeAvailableFeatures(STI.ToggleFeature(FeatureString)));
AssemblerOptions.back()->setFeatures(STI.getFeatureBits());
}
}
void setModuleFeatureBits(uint64_t Feature, StringRef FeatureString) {
setFeatureBits(Feature, FeatureString);
AssemblerOptions.front()->setFeatures(STI.getFeatureBits());
}
void clearModuleFeatureBits(uint64_t Feature, StringRef FeatureString) {
clearFeatureBits(Feature, FeatureString);
AssemblerOptions.front()->setFeatures(STI.getFeatureBits());
}
public:
enum MipsMatchResultTy {
Match_RequiresDifferentSrcAndDst = FIRST_TARGET_MATCH_RESULT_TY
#define GET_OPERAND_DIAGNOSTIC_TYPES
#include "MipsGenAsmMatcher.inc"
#undef GET_OPERAND_DIAGNOSTIC_TYPES
};
MipsAsmParser(MCSubtargetInfo &sti, MCAsmParser &parser,
const MCInstrInfo &MII, const MCTargetOptions &Options)
: MCTargetAsmParser(), STI(sti),
ABI(MipsABIInfo::computeTargetABI(Triple(sti.getTargetTriple()),
sti.getCPU(), Options)) {
MCAsmParserExtension::Initialize(parser);
parser.addAliasForDirective(".asciiz", ".asciz");
// Initialize the set of available features.
setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
// Remember the initial assembler options. The user can not modify these.
AssemblerOptions.push_back(
llvm::make_unique<MipsAssemblerOptions>(STI.getFeatureBits()));
// Create an assembler options environment for the user to modify.
AssemblerOptions.push_back(
llvm::make_unique<MipsAssemblerOptions>(STI.getFeatureBits()));
getTargetStreamer().updateABIInfo(*this);
if (!isABI_O32() && !useOddSPReg() != 0)
report_fatal_error("-mno-odd-spreg requires the O32 ABI");
CurrentFn = nullptr;
Triple TheTriple(sti.getTargetTriple());
if ((TheTriple.getArch() == Triple::mips) ||
(TheTriple.getArch() == Triple::mips64))
IsLittleEndian = false;
else
IsLittleEndian = true;
}
/// True if all of $fcc0 - $fcc7 exist for the current ISA.
bool hasEightFccRegisters() const { return hasMips4() || hasMips32(); }
bool isGP64bit() const { return STI.getFeatureBits()[Mips::FeatureGP64Bit]; }
bool isFP64bit() const { return STI.getFeatureBits()[Mips::FeatureFP64Bit]; }
const MipsABIInfo &getABI() const { return ABI; }
bool isABI_N32() const { return ABI.IsN32(); }
bool isABI_N64() const { return ABI.IsN64(); }
bool isABI_O32() const { return ABI.IsO32(); }
bool isABI_FPXX() const { return STI.getFeatureBits()[Mips::FeatureFPXX]; }
bool useOddSPReg() const {
return !(STI.getFeatureBits()[Mips::FeatureNoOddSPReg]);
}
bool inMicroMipsMode() const {
return STI.getFeatureBits()[Mips::FeatureMicroMips];
}
bool hasMips1() const { return STI.getFeatureBits()[Mips::FeatureMips1]; }
bool hasMips2() const { return STI.getFeatureBits()[Mips::FeatureMips2]; }
bool hasMips3() const { return STI.getFeatureBits()[Mips::FeatureMips3]; }
bool hasMips4() const { return STI.getFeatureBits()[Mips::FeatureMips4]; }
bool hasMips5() const { return STI.getFeatureBits()[Mips::FeatureMips5]; }
bool hasMips32() const {
return STI.getFeatureBits()[Mips::FeatureMips32];
}
bool hasMips64() const {
return STI.getFeatureBits()[Mips::FeatureMips64];
}
bool hasMips32r2() const {
return STI.getFeatureBits()[Mips::FeatureMips32r2];
}
bool hasMips64r2() const {
return STI.getFeatureBits()[Mips::FeatureMips64r2];
}
bool hasMips32r3() const {
return (STI.getFeatureBits()[Mips::FeatureMips32r3]);
}
bool hasMips64r3() const {
return (STI.getFeatureBits()[Mips::FeatureMips64r3]);
}
bool hasMips32r5() const {
return (STI.getFeatureBits()[Mips::FeatureMips32r5]);
}
bool hasMips64r5() const {
return (STI.getFeatureBits()[Mips::FeatureMips64r5]);
}
bool hasMips32r6() const {
return STI.getFeatureBits()[Mips::FeatureMips32r6];
}
bool hasMips64r6() const {
return STI.getFeatureBits()[Mips::FeatureMips64r6];
}
bool hasDSP() const { return STI.getFeatureBits()[Mips::FeatureDSP]; }
bool hasDSPR2() const { return STI.getFeatureBits()[Mips::FeatureDSPR2]; }
bool hasMSA() const { return STI.getFeatureBits()[Mips::FeatureMSA]; }
bool hasCnMips() const {
return (STI.getFeatureBits()[Mips::FeatureCnMips]);
}
bool inMips16Mode() const {
return STI.getFeatureBits()[Mips::FeatureMips16];
}
bool useSoftFloat() const {
return STI.getFeatureBits()[Mips::FeatureSoftFloat];
}
/// Warn if RegIndex is the same as the current AT.
void warnIfRegIndexIsAT(unsigned RegIndex, SMLoc Loc);
void warnIfNoMacro(SMLoc Loc);
bool isLittle() const { return IsLittleEndian; }
};
}
namespace {
/// MipsOperand - Instances of this class represent a parsed Mips machine
/// instruction.
class MipsOperand : public MCParsedAsmOperand {
public:
/// Broad categories of register classes
/// The exact class is finalized by the render method.
enum RegKind {
RegKind_GPR = 1, /// GPR32 and GPR64 (depending on isGP64bit())
RegKind_FGR = 2, /// FGR32, FGR64, AFGR64 (depending on context and
/// isFP64bit())
RegKind_FCC = 4, /// FCC
RegKind_MSA128 = 8, /// MSA128[BHWD] (makes no difference which)
RegKind_MSACtrl = 16, /// MSA control registers
RegKind_COP2 = 32, /// COP2
RegKind_ACC = 64, /// HI32DSP, LO32DSP, and ACC64DSP (depending on
/// context).
RegKind_CCR = 128, /// CCR
RegKind_HWRegs = 256, /// HWRegs
RegKind_COP3 = 512, /// COP3
RegKind_COP0 = 1024, /// COP0
/// Potentially any (e.g. $1)
RegKind_Numeric = RegKind_GPR | RegKind_FGR | RegKind_FCC | RegKind_MSA128 |
RegKind_MSACtrl | RegKind_COP2 | RegKind_ACC |
RegKind_CCR | RegKind_HWRegs | RegKind_COP3 | RegKind_COP0
};
private:
enum KindTy {
k_Immediate, /// An immediate (possibly involving symbol references)
k_Memory, /// Base + Offset Memory Address
k_PhysRegister, /// A physical register from the Mips namespace
k_RegisterIndex, /// A register index in one or more RegKind.
k_Token, /// A simple token
k_RegList, /// A physical register list
k_RegPair /// A pair of physical register
} Kind;
public:
MipsOperand(KindTy K, MipsAsmParser &Parser)
: MCParsedAsmOperand(), Kind(K), AsmParser(Parser) {}
private:
/// For diagnostics, and checking the assembler temporary
MipsAsmParser &AsmParser;
struct Token {
const char *Data;
unsigned Length;
};
struct PhysRegOp {
unsigned Num; /// Register Number
};
struct RegIdxOp {
unsigned Index; /// Index into the register class
RegKind Kind; /// Bitfield of the kinds it could possibly be
const MCRegisterInfo *RegInfo;
};
struct ImmOp {
const MCExpr *Val;
};
struct MemOp {
MipsOperand *Base;
const MCExpr *Off;
};
struct RegListOp {
SmallVector<unsigned, 10> *List;
};
union {
struct Token Tok;
struct PhysRegOp PhysReg;
struct RegIdxOp RegIdx;
struct ImmOp Imm;
struct MemOp Mem;
struct RegListOp RegList;
};
SMLoc StartLoc, EndLoc;
/// Internal constructor for register kinds
static std::unique_ptr<MipsOperand> CreateReg(unsigned Index, RegKind RegKind,
const MCRegisterInfo *RegInfo,
SMLoc S, SMLoc E,
MipsAsmParser &Parser) {
auto Op = make_unique<MipsOperand>(k_RegisterIndex, Parser);
Op->RegIdx.Index = Index;
Op->RegIdx.RegInfo = RegInfo;
Op->RegIdx.Kind = RegKind;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
public:
/// Coerce the register to GPR32 and return the real register for the current
/// target.
unsigned getGPR32Reg() const {
assert(isRegIdx() && (RegIdx.Kind & RegKind_GPR) && "Invalid access!");
AsmParser.warnIfRegIndexIsAT(RegIdx.Index, StartLoc);
unsigned ClassID = Mips::GPR32RegClassID;
return RegIdx.RegInfo->getRegClass(ClassID).getRegister(RegIdx.Index);
}
/// Coerce the register to GPR32 and return the real register for the current
/// target.
unsigned getGPRMM16Reg() const {
assert(isRegIdx() && (RegIdx.Kind & RegKind_GPR) && "Invalid access!");
unsigned ClassID = Mips::GPR32RegClassID;
return RegIdx.RegInfo->getRegClass(ClassID).getRegister(RegIdx.Index);
}
/// Coerce the register to GPR64 and return the real register for the current
/// target.
unsigned getGPR64Reg() const {
assert(isRegIdx() && (RegIdx.Kind & RegKind_GPR) && "Invalid access!");
unsigned ClassID = Mips::GPR64RegClassID;
return RegIdx.RegInfo->getRegClass(ClassID).getRegister(RegIdx.Index);
}
private:
/// Coerce the register to AFGR64 and return the real register for the current
/// target.
unsigned getAFGR64Reg() const {
assert(isRegIdx() && (RegIdx.Kind & RegKind_FGR) && "Invalid access!");
if (RegIdx.Index % 2 != 0)
AsmParser.Warning(StartLoc, "Float register should be even.");
return RegIdx.RegInfo->getRegClass(Mips::AFGR64RegClassID)
.getRegister(RegIdx.Index / 2);
}
/// Coerce the register to FGR64 and return the real register for the current
/// target.
unsigned getFGR64Reg() const {
assert(isRegIdx() && (RegIdx.Kind & RegKind_FGR) && "Invalid access!");
return RegIdx.RegInfo->getRegClass(Mips::FGR64RegClassID)
.getRegister(RegIdx.Index);
}
/// Coerce the register to FGR32 and return the real register for the current
/// target.
unsigned getFGR32Reg() const {
assert(isRegIdx() && (RegIdx.Kind & RegKind_FGR) && "Invalid access!");
return RegIdx.RegInfo->getRegClass(Mips::FGR32RegClassID)
.getRegister(RegIdx.Index);
}
/// Coerce the register to FGRH32 and return the real register for the current
/// target.
unsigned getFGRH32Reg() const {
assert(isRegIdx() && (RegIdx.Kind & RegKind_FGR) && "Invalid access!");
return RegIdx.RegInfo->getRegClass(Mips::FGRH32RegClassID)
.getRegister(RegIdx.Index);
}
/// Coerce the register to FCC and return the real register for the current
/// target.
unsigned getFCCReg() const {
assert(isRegIdx() && (RegIdx.Kind & RegKind_FCC) && "Invalid access!");
return RegIdx.RegInfo->getRegClass(Mips::FCCRegClassID)
.getRegister(RegIdx.Index);
}
/// Coerce the register to MSA128 and return the real register for the current
/// target.
unsigned getMSA128Reg() const {
assert(isRegIdx() && (RegIdx.Kind & RegKind_MSA128) && "Invalid access!");
// It doesn't matter which of the MSA128[BHWD] classes we use. They are all
// identical
unsigned ClassID = Mips::MSA128BRegClassID;
return RegIdx.RegInfo->getRegClass(ClassID).getRegister(RegIdx.Index);
}
/// Coerce the register to MSACtrl and return the real register for the
/// current target.
unsigned getMSACtrlReg() const {
assert(isRegIdx() && (RegIdx.Kind & RegKind_MSACtrl) && "Invalid access!");
unsigned ClassID = Mips::MSACtrlRegClassID;
return RegIdx.RegInfo->getRegClass(ClassID).getRegister(RegIdx.Index);
}
/// Coerce the register to COP0 and return the real register for the
/// current target.
unsigned getCOP0Reg() const {
assert(isRegIdx() && (RegIdx.Kind & RegKind_COP0) && "Invalid access!");
unsigned ClassID = Mips::COP0RegClassID;
return RegIdx.RegInfo->getRegClass(ClassID).getRegister(RegIdx.Index);
}
/// Coerce the register to COP2 and return the real register for the
/// current target.
unsigned getCOP2Reg() const {
assert(isRegIdx() && (RegIdx.Kind & RegKind_COP2) && "Invalid access!");
unsigned ClassID = Mips::COP2RegClassID;
return RegIdx.RegInfo->getRegClass(ClassID).getRegister(RegIdx.Index);
}
/// Coerce the register to COP3 and return the real register for the
/// current target.
unsigned getCOP3Reg() const {
assert(isRegIdx() && (RegIdx.Kind & RegKind_COP3) && "Invalid access!");
unsigned ClassID = Mips::COP3RegClassID;
return RegIdx.RegInfo->getRegClass(ClassID).getRegister(RegIdx.Index);
}
/// Coerce the register to ACC64DSP and return the real register for the
/// current target.
unsigned getACC64DSPReg() const {
assert(isRegIdx() && (RegIdx.Kind & RegKind_ACC) && "Invalid access!");
unsigned ClassID = Mips::ACC64DSPRegClassID;
return RegIdx.RegInfo->getRegClass(ClassID).getRegister(RegIdx.Index);
}
/// Coerce the register to HI32DSP and return the real register for the
/// current target.
unsigned getHI32DSPReg() const {
assert(isRegIdx() && (RegIdx.Kind & RegKind_ACC) && "Invalid access!");
unsigned ClassID = Mips::HI32DSPRegClassID;
return RegIdx.RegInfo->getRegClass(ClassID).getRegister(RegIdx.Index);
}
/// Coerce the register to LO32DSP and return the real register for the
/// current target.
unsigned getLO32DSPReg() const {
assert(isRegIdx() && (RegIdx.Kind & RegKind_ACC) && "Invalid access!");
unsigned ClassID = Mips::LO32DSPRegClassID;
return RegIdx.RegInfo->getRegClass(ClassID).getRegister(RegIdx.Index);
}
/// Coerce the register to CCR and return the real register for the
/// current target.
unsigned getCCRReg() const {
assert(isRegIdx() && (RegIdx.Kind & RegKind_CCR) && "Invalid access!");
unsigned ClassID = Mips::CCRRegClassID;
return RegIdx.RegInfo->getRegClass(ClassID).getRegister(RegIdx.Index);
}
/// Coerce the register to HWRegs and return the real register for the
/// current target.
unsigned getHWRegsReg() const {
assert(isRegIdx() && (RegIdx.Kind & RegKind_HWRegs) && "Invalid access!");
unsigned ClassID = Mips::HWRegsRegClassID;
return RegIdx.RegInfo->getRegClass(ClassID).getRegister(RegIdx.Index);
}
public:
void addExpr(MCInst &Inst, const MCExpr *Expr) const {
// Add as immediate when possible. Null MCExpr = 0.
if (!Expr)
Inst.addOperand(MCOperand::createImm(0));
else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr))
Inst.addOperand(MCOperand::createImm(CE->getValue()));
else
Inst.addOperand(MCOperand::createExpr(Expr));
}
void addRegOperands(MCInst &Inst, unsigned N) const {
llvm_unreachable("Use a custom parser instead");
}
/// Render the operand to an MCInst as a GPR32
/// Asserts if the wrong number of operands are requested, or the operand
/// is not a k_RegisterIndex compatible with RegKind_GPR
void addGPR32AsmRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(getGPR32Reg()));
}
void addGPRMM16AsmRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(getGPRMM16Reg()));
}
void addGPRMM16AsmRegZeroOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(getGPRMM16Reg()));
}
void addGPRMM16AsmRegMovePOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(getGPRMM16Reg()));
}
/// Render the operand to an MCInst as a GPR64
/// Asserts if the wrong number of operands are requested, or the operand
/// is not a k_RegisterIndex compatible with RegKind_GPR
void addGPR64AsmRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(getGPR64Reg()));
}
void addAFGR64AsmRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(getAFGR64Reg()));
}
void addFGR64AsmRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(getFGR64Reg()));
}
void addFGR32AsmRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(getFGR32Reg()));
// FIXME: We ought to do this for -integrated-as without -via-file-asm too.
if (!AsmParser.useOddSPReg() && RegIdx.Index & 1)
AsmParser.Error(StartLoc, "-mno-odd-spreg prohibits the use of odd FPU "
"registers");
}
void addFGRH32AsmRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(getFGRH32Reg()));
}
void addFCCAsmRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(getFCCReg()));
}
void addMSA128AsmRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(getMSA128Reg()));
}
void addMSACtrlAsmRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(getMSACtrlReg()));
}
void addCOP0AsmRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(getCOP0Reg()));
}
void addCOP2AsmRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(getCOP2Reg()));
}
void addCOP3AsmRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(getCOP3Reg()));
}
void addACC64DSPAsmRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(getACC64DSPReg()));
}
void addHI32DSPAsmRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(getHI32DSPReg()));
}
void addLO32DSPAsmRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(getLO32DSPReg()));
}
void addCCRAsmRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(getCCRReg()));
}
void addHWRegsAsmRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(getHWRegsReg()));
}
void addImmOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCExpr *Expr = getImm();
addExpr(Inst, Expr);
}
void addMemOperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(getMemBase()->getGPR32Reg()));
const MCExpr *Expr = getMemOff();
addExpr(Inst, Expr);
}
void addMicroMipsMemOperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(getMemBase()->getGPRMM16Reg()));
const MCExpr *Expr = getMemOff();
addExpr(Inst, Expr);
}
void addRegListOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
for (auto RegNo : getRegList())
Inst.addOperand(MCOperand::createReg(RegNo));
}
void addRegPairOperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
unsigned RegNo = getRegPair();
Inst.addOperand(MCOperand::createReg(RegNo++));
Inst.addOperand(MCOperand::createReg(RegNo));
}
void addMovePRegPairOperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
for (auto RegNo : getRegList())
Inst.addOperand(MCOperand::createReg(RegNo));
}
bool isReg() const override {
// As a special case until we sort out the definition of div/divu, pretend
// that $0/$zero are k_PhysRegister so that MCK_ZERO works correctly.
if (isGPRAsmReg() && RegIdx.Index == 0)
return true;
return Kind == k_PhysRegister;
}
bool isRegIdx() const { return Kind == k_RegisterIndex; }
bool isImm() const override { return Kind == k_Immediate; }
bool isConstantImm() const {
return isImm() && dyn_cast<MCConstantExpr>(getImm());
}
template <unsigned Bits> bool isUImm() const {
return isImm() && isConstantImm() && isUInt<Bits>(getConstantImm());
}
bool isToken() const override {
// Note: It's not possible to pretend that other operand kinds are tokens.
// The matcher emitter checks tokens first.
return Kind == k_Token;
}
bool isMem() const override { return Kind == k_Memory; }
bool isConstantMemOff() const {
return isMem() && dyn_cast<MCConstantExpr>(getMemOff());
}
template <unsigned Bits> bool isMemWithSimmOffset() const {
return isMem() && isConstantMemOff() && isInt<Bits>(getConstantMemOff());
}
bool isMemWithGRPMM16Base() const {
return isMem() && getMemBase()->isMM16AsmReg();
}
template <unsigned Bits> bool isMemWithUimmOffsetSP() const {
return isMem() && isConstantMemOff() && isUInt<Bits>(getConstantMemOff())
&& getMemBase()->isRegIdx() && (getMemBase()->getGPR32Reg() == Mips::SP);
}
template <unsigned Bits> bool isMemWithUimmWordAlignedOffsetSP() const {
return isMem() && isConstantMemOff() && isUInt<Bits>(getConstantMemOff())
&& (getConstantMemOff() % 4 == 0) && getMemBase()->isRegIdx()
&& (getMemBase()->getGPR32Reg() == Mips::SP);
}
bool isRegList16() const {
if (!isRegList())
return false;
int Size = RegList.List->size();
if (Size < 2 || Size > 5 || *RegList.List->begin() != Mips::S0 ||
RegList.List->back() != Mips::RA)
return false;
int PrevReg = *RegList.List->begin();
for (int i = 1; i < Size - 1; i++) {
int Reg = (*(RegList.List))[i];
if ( Reg != PrevReg + 1)
return false;
PrevReg = Reg;
}
return true;
}
bool isInvNum() const { return Kind == k_Immediate; }
bool isLSAImm() const {
if (!isConstantImm())
return false;
int64_t Val = getConstantImm();
return 1 <= Val && Val <= 4;
}
bool isRegList() const { return Kind == k_RegList; }
bool isMovePRegPair() const {
if (Kind != k_RegList || RegList.List->size() != 2)
return false;
unsigned R0 = RegList.List->front();
unsigned R1 = RegList.List->back();
if ((R0 == Mips::A1 && R1 == Mips::A2) ||
(R0 == Mips::A1 && R1 == Mips::A3) ||
(R0 == Mips::A2 && R1 == Mips::A3) ||
(R0 == Mips::A0 && R1 == Mips::S5) ||
(R0 == Mips::A0 && R1 == Mips::S6) ||
(R0 == Mips::A0 && R1 == Mips::A1) ||
(R0 == Mips::A0 && R1 == Mips::A2) ||
(R0 == Mips::A0 && R1 == Mips::A3))
return true;
return false;
}
StringRef getToken() const {
assert(Kind == k_Token && "Invalid access!");
return StringRef(Tok.Data, Tok.Length);
}
bool isRegPair() const { return Kind == k_RegPair; }
unsigned getReg() const override {
// As a special case until we sort out the definition of div/divu, pretend
// that $0/$zero are k_PhysRegister so that MCK_ZERO works correctly.
if (Kind == k_RegisterIndex && RegIdx.Index == 0 &&
RegIdx.Kind & RegKind_GPR)
return getGPR32Reg(); // FIXME: GPR64 too
assert(Kind == k_PhysRegister && "Invalid access!");
return PhysReg.Num;
}
const MCExpr *getImm() const {
assert((Kind == k_Immediate) && "Invalid access!");
return Imm.Val;
}
int64_t getConstantImm() const {
const MCExpr *Val = getImm();
return static_cast<const MCConstantExpr *>(Val)->getValue();
}
MipsOperand *getMemBase() const {
assert((Kind == k_Memory) && "Invalid access!");
return Mem.Base;
}
const MCExpr *getMemOff() const {
assert((Kind == k_Memory) && "Invalid access!");
return Mem.Off;
}
int64_t getConstantMemOff() const {
return static_cast<const MCConstantExpr *>(getMemOff())->getValue();
}
const SmallVectorImpl<unsigned> &getRegList() const {
assert((Kind == k_RegList) && "Invalid access!");
return *(RegList.List);
}
unsigned getRegPair() const {
assert((Kind == k_RegPair) && "Invalid access!");
return RegIdx.Index;
}
static std::unique_ptr<MipsOperand> CreateToken(StringRef Str, SMLoc S,
MipsAsmParser &Parser) {
auto Op = make_unique<MipsOperand>(k_Token, Parser);
Op->Tok.Data = Str.data();
Op->Tok.Length = Str.size();
Op->StartLoc = S;
Op->EndLoc = S;
return Op;
}
/// Create a numeric register (e.g. $1). The exact register remains
/// unresolved until an instruction successfully matches
static std::unique_ptr<MipsOperand>
createNumericReg(unsigned Index, const MCRegisterInfo *RegInfo, SMLoc S,
SMLoc E, MipsAsmParser &Parser) {
DEBUG(dbgs() << "createNumericReg(" << Index << ", ...)\n");
return CreateReg(Index, RegKind_Numeric, RegInfo, S, E, Parser);
}
/// Create a register that is definitely a GPR.
/// This is typically only used for named registers such as $gp.
static std::unique_ptr<MipsOperand>
createGPRReg(unsigned Index, const MCRegisterInfo *RegInfo, SMLoc S, SMLoc E,
MipsAsmParser &Parser) {
return CreateReg(Index, RegKind_GPR, RegInfo, S, E, Parser);
}
/// Create a register that is definitely a FGR.
/// This is typically only used for named registers such as $f0.
static std::unique_ptr<MipsOperand>
createFGRReg(unsigned Index, const MCRegisterInfo *RegInfo, SMLoc S, SMLoc E,
MipsAsmParser &Parser) {
return CreateReg(Index, RegKind_FGR, RegInfo, S, E, Parser);
}
/// Create a register that is definitely a HWReg.
/// This is typically only used for named registers such as $hwr_cpunum.
static std::unique_ptr<MipsOperand>
createHWRegsReg(unsigned Index, const MCRegisterInfo *RegInfo,
SMLoc S, SMLoc E, MipsAsmParser &Parser) {
return CreateReg(Index, RegKind_HWRegs, RegInfo, S, E, Parser);
}
/// Create a register that is definitely an FCC.
/// This is typically only used for named registers such as $fcc0.
static std::unique_ptr<MipsOperand>
createFCCReg(unsigned Index, const MCRegisterInfo *RegInfo, SMLoc S, SMLoc E,
MipsAsmParser &Parser) {
return CreateReg(Index, RegKind_FCC, RegInfo, S, E, Parser);
}
/// Create a register that is definitely an ACC.
/// This is typically only used for named registers such as $ac0.
static std::unique_ptr<MipsOperand>
createACCReg(unsigned Index, const MCRegisterInfo *RegInfo, SMLoc S, SMLoc E,
MipsAsmParser &Parser) {
return CreateReg(Index, RegKind_ACC, RegInfo, S, E, Parser);
}
/// Create a register that is definitely an MSA128.
/// This is typically only used for named registers such as $w0.
static std::unique_ptr<MipsOperand>
createMSA128Reg(unsigned Index, const MCRegisterInfo *RegInfo, SMLoc S,
SMLoc E, MipsAsmParser &Parser) {
return CreateReg(Index, RegKind_MSA128, RegInfo, S, E, Parser);
}
/// Create a register that is definitely an MSACtrl.
/// This is typically only used for named registers such as $msaaccess.
static std::unique_ptr<MipsOperand>
createMSACtrlReg(unsigned Index, const MCRegisterInfo *RegInfo, SMLoc S,
SMLoc E, MipsAsmParser &Parser) {
return CreateReg(Index, RegKind_MSACtrl, RegInfo, S, E, Parser);
}
static std::unique_ptr<MipsOperand>
CreateImm(const MCExpr *Val, SMLoc S, SMLoc E, MipsAsmParser &Parser) {
auto Op = make_unique<MipsOperand>(k_Immediate, Parser);
Op->Imm.Val = Val;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static std::unique_ptr<MipsOperand>
CreateMem(std::unique_ptr<MipsOperand> Base, const MCExpr *Off, SMLoc S,
SMLoc E, MipsAsmParser &Parser) {
auto Op = make_unique<MipsOperand>(k_Memory, Parser);
Op->Mem.Base = Base.release();
Op->Mem.Off = Off;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static std::unique_ptr<MipsOperand>
CreateRegList(SmallVectorImpl<unsigned> &Regs, SMLoc StartLoc, SMLoc EndLoc,
MipsAsmParser &Parser) {
assert (Regs.size() > 0 && "Empty list not allowed");
auto Op = make_unique<MipsOperand>(k_RegList, Parser);
Op->RegList.List = new SmallVector<unsigned, 10>(Regs.begin(), Regs.end());
Op->StartLoc = StartLoc;
Op->EndLoc = EndLoc;
return Op;
}
static std::unique_ptr<MipsOperand>
CreateRegPair(unsigned RegNo, SMLoc S, SMLoc E, MipsAsmParser &Parser) {
auto Op = make_unique<MipsOperand>(k_RegPair, Parser);
Op->RegIdx.Index = RegNo;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
bool isGPRAsmReg() const {
return isRegIdx() && RegIdx.Kind & RegKind_GPR && RegIdx.Index <= 31;
}
bool isMM16AsmReg() const {
if (!(isRegIdx() && RegIdx.Kind))
return false;
return ((RegIdx.Index >= 2 && RegIdx.Index <= 7)
|| RegIdx.Index == 16 || RegIdx.Index == 17);
}
bool isMM16AsmRegZero() const {
if (!(isRegIdx() && RegIdx.Kind))
return false;
return (RegIdx.Index == 0 ||
(RegIdx.Index >= 2 && RegIdx.Index <= 7) ||
RegIdx.Index == 17);
}
bool isMM16AsmRegMoveP() const {
if (!(isRegIdx() && RegIdx.Kind))
return false;
return (RegIdx.Index == 0 || (RegIdx.Index >= 2 && RegIdx.Index <= 3) ||
(RegIdx.Index >= 16 && RegIdx.Index <= 20));
}
bool isFGRAsmReg() const {
// AFGR64 is $0-$15 but we handle this in getAFGR64()
return isRegIdx() && RegIdx.Kind & RegKind_FGR && RegIdx.Index <= 31;
}
bool isHWRegsAsmReg() const {
return isRegIdx() && RegIdx.Kind & RegKind_HWRegs && RegIdx.Index <= 31;
}
bool isCCRAsmReg() const {
return isRegIdx() && RegIdx.Kind & RegKind_CCR && RegIdx.Index <= 31;
}
bool isFCCAsmReg() const {
if (!(isRegIdx() && RegIdx.Kind & RegKind_FCC))
return false;
if (!AsmParser.hasEightFccRegisters())
return RegIdx.Index == 0;
return RegIdx.Index <= 7;
}
bool isACCAsmReg() const {
return isRegIdx() && RegIdx.Kind & RegKind_ACC && RegIdx.Index <= 3;
}
bool isCOP0AsmReg() const {
return isRegIdx() && RegIdx.Kind & RegKind_COP0 && RegIdx.Index <= 31;
}
bool isCOP2AsmReg() const {
return isRegIdx() && RegIdx.Kind & RegKind_COP2 && RegIdx.Index <= 31;
}
bool isCOP3AsmReg() const {
return isRegIdx() && RegIdx.Kind & RegKind_COP3 && RegIdx.Index <= 31;
}
bool isMSA128AsmReg() const {
return isRegIdx() && RegIdx.Kind & RegKind_MSA128 && RegIdx.Index <= 31;
}
bool isMSACtrlAsmReg() const {
return isRegIdx() && RegIdx.Kind & RegKind_MSACtrl && RegIdx.Index <= 7;
}
/// getStartLoc - Get the location of the first token of this operand.
SMLoc getStartLoc() const override { return StartLoc; }
/// getEndLoc - Get the location of the last token of this operand.
SMLoc getEndLoc() const override { return EndLoc; }
virtual ~MipsOperand() {
switch (Kind) {
case k_Immediate:
break;
case k_Memory:
delete Mem.Base;
break;
case k_RegList:
delete RegList.List;
case k_PhysRegister:
case k_RegisterIndex:
case k_Token:
case k_RegPair:
break;
}
}
void print(raw_ostream &OS) const override {
switch (Kind) {
case k_Immediate:
OS << "Imm<";
OS << *Imm.Val;
OS << ">";
break;
case k_Memory:
OS << "Mem<";
Mem.Base->print(OS);
OS << ", ";
OS << *Mem.Off;
OS << ">";
break;
case k_PhysRegister:
OS << "PhysReg<" << PhysReg.Num << ">";
break;
case k_RegisterIndex:
OS << "RegIdx<" << RegIdx.Index << ":" << RegIdx.Kind << ">";
break;
case k_Token:
OS << Tok.Data;
break;
case k_RegList:
OS << "RegList< ";
for (auto Reg : (*RegList.List))
OS << Reg << " ";
OS << ">";
break;
case k_RegPair:
OS << "RegPair<" << RegIdx.Index << "," << RegIdx.Index + 1 << ">";
break;
}
}
}; // class MipsOperand
} // namespace
namespace llvm {
extern const MCInstrDesc MipsInsts[];
}
static const MCInstrDesc &getInstDesc(unsigned Opcode) {
return MipsInsts[Opcode];
}
static bool hasShortDelaySlot(unsigned Opcode) {
switch (Opcode) {
case Mips::JALS_MM:
case Mips::JALRS_MM:
case Mips::JALRS16_MM:
case Mips::BGEZALS_MM:
case Mips::BLTZALS_MM:
return true;
default:
return false;
}
}
bool MipsAsmParser::processInstruction(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions) {
const MCInstrDesc &MCID = getInstDesc(Inst.getOpcode());
Inst.setLoc(IDLoc);
if (MCID.isBranch() || MCID.isCall()) {
const unsigned Opcode = Inst.getOpcode();
MCOperand Offset;
switch (Opcode) {
default:
break;
case Mips::BBIT0:
case Mips::BBIT032:
case Mips::BBIT1:
case Mips::BBIT132:
assert(hasCnMips() && "instruction only valid for octeon cpus");
// Fall through
case Mips::BEQ:
case Mips::BNE:
case Mips::BEQ_MM:
case Mips::BNE_MM:
assert(MCID.getNumOperands() == 3 && "unexpected number of operands");
Offset = Inst.getOperand(2);
if (!Offset.isImm())
break; // We'll deal with this situation later on when applying fixups.
if (!isIntN(inMicroMipsMode() ? 17 : 18, Offset.getImm()))
return Error(IDLoc, "branch target out of range");
if (OffsetToAlignment(Offset.getImm(),
1LL << (inMicroMipsMode() ? 1 : 2)))
return Error(IDLoc, "branch to misaligned address");
break;
case Mips::BGEZ:
case Mips::BGTZ:
case Mips::BLEZ:
case Mips::BLTZ:
case Mips::BGEZAL:
case Mips::BLTZAL:
case Mips::BC1F:
case Mips::BC1T:
case Mips::BGEZ_MM:
case Mips::BGTZ_MM:
case Mips::BLEZ_MM:
case Mips::BLTZ_MM:
case Mips::BGEZAL_MM:
case Mips::BLTZAL_MM:
case Mips::BC1F_MM:
case Mips::BC1T_MM:
assert(MCID.getNumOperands() == 2 && "unexpected number of operands");
Offset = Inst.getOperand(1);
if (!Offset.isImm())
break; // We'll deal with this situation later on when applying fixups.
if (!isIntN(inMicroMipsMode() ? 17 : 18, Offset.getImm()))
return Error(IDLoc, "branch target out of range");
if (OffsetToAlignment(Offset.getImm(),
1LL << (inMicroMipsMode() ? 1 : 2)))
return Error(IDLoc, "branch to misaligned address");
break;
case Mips::BEQZ16_MM:
case Mips::BNEZ16_MM:
assert(MCID.getNumOperands() == 2 && "unexpected number of operands");
Offset = Inst.getOperand(1);
if (!Offset.isImm())
break; // We'll deal with this situation later on when applying fixups.
if (!isIntN(8, Offset.getImm()))
return Error(IDLoc, "branch target out of range");
if (OffsetToAlignment(Offset.getImm(), 2LL))
return Error(IDLoc, "branch to misaligned address");
break;
}
}
// SSNOP is deprecated on MIPS32r6/MIPS64r6
// We still accept it but it is a normal nop.
if (hasMips32r6() && Inst.getOpcode() == Mips::SSNOP) {
std::string ISA = hasMips64r6() ? "MIPS64r6" : "MIPS32r6";
Warning(IDLoc, "ssnop is deprecated for " + ISA + " and is equivalent to a "
"nop instruction");
}
if (hasCnMips()) {
const unsigned Opcode = Inst.getOpcode();
MCOperand Opnd;
int Imm;
switch (Opcode) {
default:
break;
case Mips::BBIT0:
case Mips::BBIT032:
case Mips::BBIT1:
case Mips::BBIT132:
assert(MCID.getNumOperands() == 3 && "unexpected number of operands");
// The offset is handled above
Opnd = Inst.getOperand(1);
if (!Opnd.isImm())
return Error(IDLoc, "expected immediate operand kind");
Imm = Opnd.getImm();
if (Imm < 0 || Imm > (Opcode == Mips::BBIT0 ||
Opcode == Mips::BBIT1 ? 63 : 31))
return Error(IDLoc, "immediate operand value out of range");
if (Imm > 31) {
Inst.setOpcode(Opcode == Mips::BBIT0 ? Mips::BBIT032
: Mips::BBIT132);
Inst.getOperand(1).setImm(Imm - 32);
}
break;
case Mips::CINS:
case Mips::CINS32:
case Mips::EXTS:
case Mips::EXTS32:
assert(MCID.getNumOperands() == 4 && "unexpected number of operands");
// Check length
Opnd = Inst.getOperand(3);
if (!Opnd.isImm())
return Error(IDLoc, "expected immediate operand kind");
Imm = Opnd.getImm();
if (Imm < 0 || Imm > 31)
return Error(IDLoc, "immediate operand value out of range");
// Check position
Opnd = Inst.getOperand(2);
if (!Opnd.isImm())
return Error(IDLoc, "expected immediate operand kind");
Imm = Opnd.getImm();
if (Imm < 0 || Imm > (Opcode == Mips::CINS ||
Opcode == Mips::EXTS ? 63 : 31))
return Error(IDLoc, "immediate operand value out of range");
if (Imm > 31) {
Inst.setOpcode(Opcode == Mips::CINS ? Mips::CINS32 : Mips::EXTS32);
Inst.getOperand(2).setImm(Imm - 32);
}
break;
case Mips::SEQi:
case Mips::SNEi:
assert(MCID.getNumOperands() == 3 && "unexpected number of operands");
Opnd = Inst.getOperand(2);
if (!Opnd.isImm())
return Error(IDLoc, "expected immediate operand kind");
Imm = Opnd.getImm();
if (!isInt<10>(Imm))
return Error(IDLoc, "immediate operand value out of range");
break;
}
}
if (MCID.mayLoad() || MCID.mayStore()) {
// Check the offset of memory operand, if it is a symbol
// reference or immediate we may have to expand instructions.
for (unsigned i = 0; i < MCID.getNumOperands(); i++) {
const MCOperandInfo &OpInfo = MCID.OpInfo[i];
if ((OpInfo.OperandType == MCOI::OPERAND_MEMORY) ||
(OpInfo.OperandType == MCOI::OPERAND_UNKNOWN)) {
MCOperand &Op = Inst.getOperand(i);
if (Op.isImm()) {
int MemOffset = Op.getImm();
if (MemOffset < -32768 || MemOffset > 32767) {
// Offset can't exceed 16bit value.
expandMemInst(Inst, IDLoc, Instructions, MCID.mayLoad(), true);
return false;
}
} else if (Op.isExpr()) {
const MCExpr *Expr = Op.getExpr();
if (Expr->getKind() == MCExpr::SymbolRef) {
const MCSymbolRefExpr *SR =
static_cast<const MCSymbolRefExpr *>(Expr);
if (SR->getKind() == MCSymbolRefExpr::VK_None) {
// Expand symbol.
expandMemInst(Inst, IDLoc, Instructions, MCID.mayLoad(), false);
return false;
}
} else if (!isEvaluated(Expr)) {
expandMemInst(Inst, IDLoc, Instructions, MCID.mayLoad(), false);
return false;
}
}
}
} // for
} // if load/store
if (inMicroMipsMode()) {
if (MCID.mayLoad()) {
// Try to create 16-bit GP relative load instruction.
for (unsigned i = 0; i < MCID.getNumOperands(); i++) {
const MCOperandInfo &OpInfo = MCID.OpInfo[i];
if ((OpInfo.OperandType == MCOI::OPERAND_MEMORY) ||
(OpInfo.OperandType == MCOI::OPERAND_UNKNOWN)) {
MCOperand &Op = Inst.getOperand(i);
if (Op.isImm()) {
int MemOffset = Op.getImm();
MCOperand &DstReg = Inst.getOperand(0);
MCOperand &BaseReg = Inst.getOperand(1);
if (isIntN(9, MemOffset) && (MemOffset % 4 == 0) &&
getContext().getRegisterInfo()->getRegClass(
Mips::GPRMM16RegClassID).contains(DstReg.getReg()) &&
BaseReg.getReg() == Mips::GP) {
MCInst TmpInst;
TmpInst.setLoc(IDLoc);
TmpInst.setOpcode(Mips::LWGP_MM);
TmpInst.addOperand(MCOperand::createReg(DstReg.getReg()));
TmpInst.addOperand(MCOperand::createReg(Mips::GP));
TmpInst.addOperand(MCOperand::createImm(MemOffset));
Instructions.push_back(TmpInst);
return false;
}
}
}
} // for
} // if load
// TODO: Handle this with the AsmOperandClass.PredicateMethod.
MCOperand Opnd;
int Imm;
switch (Inst.getOpcode()) {
default:
break;
case Mips::ADDIUS5_MM:
Opnd = Inst.getOperand(2);
if (!Opnd.isImm())
return Error(IDLoc, "expected immediate operand kind");
Imm = Opnd.getImm();
if (Imm < -8 || Imm > 7)
return Error(IDLoc, "immediate operand value out of range");
break;
case Mips::ADDIUSP_MM:
Opnd = Inst.getOperand(0);
if (!Opnd.isImm())
return Error(IDLoc, "expected immediate operand kind");
Imm = Opnd.getImm();
if (Imm < -1032 || Imm > 1028 || (Imm < 8 && Imm > -12) ||
Imm % 4 != 0)
return Error(IDLoc, "immediate operand value out of range");
break;
case Mips::SLL16_MM:
case Mips::SRL16_MM:
Opnd = Inst.getOperand(2);
if (!Opnd.isImm())
return Error(IDLoc, "expected immediate operand kind");
Imm = Opnd.getImm();
if (Imm < 1 || Imm > 8)
return Error(IDLoc, "immediate operand value out of range");
break;
case Mips::LI16_MM:
Opnd = Inst.getOperand(1);
if (!Opnd.isImm())
return Error(IDLoc, "expected immediate operand kind");
Imm = Opnd.getImm();
if (Imm < -1 || Imm > 126)
return Error(IDLoc, "immediate operand value out of range");
break;
case Mips::ADDIUR2_MM:
Opnd = Inst.getOperand(2);
if (!Opnd.isImm())
return Error(IDLoc, "expected immediate operand kind");
Imm = Opnd.getImm();
if (!(Imm == 1 || Imm == -1 ||
((Imm % 4 == 0) && Imm < 28 && Imm > 0)))
return Error(IDLoc, "immediate operand value out of range");
break;
case Mips::ADDIUR1SP_MM:
Opnd = Inst.getOperand(1);
if (!Opnd.isImm())
return Error(IDLoc, "expected immediate operand kind");
Imm = Opnd.getImm();
if (OffsetToAlignment(Imm, 4LL))
return Error(IDLoc, "misaligned immediate operand value");
if (Imm < 0 || Imm > 255)
return Error(IDLoc, "immediate operand value out of range");
break;
case Mips::ANDI16_MM:
Opnd = Inst.getOperand(2);
if (!Opnd.isImm())
return Error(IDLoc, "expected immediate operand kind");
Imm = Opnd.getImm();
if (!(Imm == 128 || (Imm >= 1 && Imm <= 4) || Imm == 7 || Imm == 8 ||
Imm == 15 || Imm == 16 || Imm == 31 || Imm == 32 || Imm == 63 ||
Imm == 64 || Imm == 255 || Imm == 32768 || Imm == 65535))
return Error(IDLoc, "immediate operand value out of range");
break;
case Mips::LBU16_MM:
Opnd = Inst.getOperand(2);
if (!Opnd.isImm())
return Error(IDLoc, "expected immediate operand kind");
Imm = Opnd.getImm();
if (Imm < -1 || Imm > 14)
return Error(IDLoc, "immediate operand value out of range");
break;
case Mips::SB16_MM:
Opnd = Inst.getOperand(2);
if (!Opnd.isImm())
return Error(IDLoc, "expected immediate operand kind");
Imm = Opnd.getImm();
if (Imm < 0 || Imm > 15)
return Error(IDLoc, "immediate operand value out of range");
break;
case Mips::LHU16_MM:
case Mips::SH16_MM:
Opnd = Inst.getOperand(2);
if (!Opnd.isImm())
return Error(IDLoc, "expected immediate operand kind");
Imm = Opnd.getImm();
if (Imm < 0 || Imm > 30 || (Imm % 2 != 0))
return Error(IDLoc, "immediate operand value out of range");
break;
case Mips::LW16_MM:
case Mips::SW16_MM:
Opnd = Inst.getOperand(2);
if (!Opnd.isImm())
return Error(IDLoc, "expected immediate operand kind");
Imm = Opnd.getImm();
if (Imm < 0 || Imm > 60 || (Imm % 4 != 0))
return Error(IDLoc, "immediate operand value out of range");
break;
case Mips::CACHE:
case Mips::PREF:
Opnd = Inst.getOperand(2);
if (!Opnd.isImm())
return Error(IDLoc, "expected immediate operand kind");
Imm = Opnd.getImm();
if (!isUInt<5>(Imm))
return Error(IDLoc, "immediate operand value out of range");
break;
case Mips::ADDIUPC_MM:
MCOperand Opnd = Inst.getOperand(1);
if (!Opnd.isImm())
return Error(IDLoc, "expected immediate operand kind");
int Imm = Opnd.getImm();
if ((Imm % 4 != 0) || !isIntN(25, Imm))
return Error(IDLoc, "immediate operand value out of range");
break;
}
}
if (needsExpansion(Inst)) {
if (expandInstruction(Inst, IDLoc, Instructions))
return true;
} else
Instructions.push_back(Inst);
// If this instruction has a delay slot and .set reorder is active,
// emit a NOP after it.
if (MCID.hasDelaySlot() && AssemblerOptions.back()->isReorder())
createNop(hasShortDelaySlot(Inst.getOpcode()), IDLoc, Instructions);
return false;
}
bool MipsAsmParser::needsExpansion(MCInst &Inst) {
switch (Inst.getOpcode()) {
case Mips::LoadImm32:
case Mips::LoadImm64:
case Mips::LoadAddrImm32:
case Mips::LoadAddrReg32:
case Mips::B_MM_Pseudo:
case Mips::LWM_MM:
case Mips::SWM_MM:
case Mips::JalOneReg:
case Mips::JalTwoReg:
case Mips::BneImm:
case Mips::BeqImm:
case Mips::BLT:
case Mips::BLE:
case Mips::BGE:
case Mips::BGT:
case Mips::BLTU:
case Mips::BLEU:
case Mips::BGEU:
case Mips::BGTU:
case Mips::Ulhu:
case Mips::Ulw:
return true;
default:
return false;
}
}
bool MipsAsmParser::expandInstruction(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions) {
switch (Inst.getOpcode()) {
default: llvm_unreachable("unimplemented expansion");
case Mips::LoadImm32:
return expandLoadImm(Inst, true, IDLoc, Instructions);
case Mips::LoadImm64:
return expandLoadImm(Inst, false, IDLoc, Instructions);
case Mips::LoadAddrImm32:
return expandLoadAddressImm(Inst, true, IDLoc, Instructions);
case Mips::LoadAddrReg32:
return expandLoadAddressReg(Inst, true, IDLoc, Instructions);
case Mips::B_MM_Pseudo:
return expandUncondBranchMMPseudo(Inst, IDLoc, Instructions);
case Mips::SWM_MM:
case Mips::LWM_MM:
return expandLoadStoreMultiple(Inst, IDLoc, Instructions);
case Mips::JalOneReg:
case Mips::JalTwoReg:
return expandJalWithRegs(Inst, IDLoc, Instructions);
case Mips::BneImm:
case Mips::BeqImm:
return expandBranchImm(Inst, IDLoc, Instructions);
case Mips::BLT:
case Mips::BLE:
case Mips::BGE:
case Mips::BGT:
case Mips::BLTU:
case Mips::BLEU:
case Mips::BGEU:
case Mips::BGTU:
return expandCondBranches(Inst, IDLoc, Instructions);
case Mips::Ulhu:
return expandUlhu(Inst, IDLoc, Instructions);
case Mips::Ulw:
return expandUlw(Inst, IDLoc, Instructions);
}
}
namespace {
template <unsigned ShiftAmount>
void createLShiftOri(MCOperand Operand, unsigned RegNo, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions) {
MCInst tmpInst;
if (ShiftAmount >= 32) {
tmpInst.setOpcode(Mips::DSLL32);
tmpInst.addOperand(MCOperand::createReg(RegNo));
tmpInst.addOperand(MCOperand::createReg(RegNo));
tmpInst.addOperand(MCOperand::createImm(ShiftAmount - 32));
tmpInst.setLoc(IDLoc);
Instructions.push_back(tmpInst);
tmpInst.clear();
} else if (ShiftAmount > 0) {
tmpInst.setOpcode(Mips::DSLL);
tmpInst.addOperand(MCOperand::createReg(RegNo));
tmpInst.addOperand(MCOperand::createReg(RegNo));
tmpInst.addOperand(MCOperand::createImm(ShiftAmount));
tmpInst.setLoc(IDLoc);
Instructions.push_back(tmpInst);
tmpInst.clear();
}
// There's no need for an ORi if the immediate is 0.
if (Operand.isImm() && Operand.getImm() == 0)
return;
tmpInst.setOpcode(Mips::ORi);
tmpInst.addOperand(MCOperand::createReg(RegNo));
tmpInst.addOperand(MCOperand::createReg(RegNo));
tmpInst.addOperand(Operand);
tmpInst.setLoc(IDLoc);
Instructions.push_back(tmpInst);
}
template <unsigned ShiftAmount>
void createLShiftOri(int64_t Value, unsigned RegNo, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions) {
createLShiftOri<ShiftAmount>(MCOperand::createImm(Value), RegNo, IDLoc,
Instructions);
}
}
bool MipsAsmParser::expandJalWithRegs(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions) {
// Create a JALR instruction which is going to replace the pseudo-JAL.
MCInst JalrInst;
JalrInst.setLoc(IDLoc);
const MCOperand FirstRegOp = Inst.getOperand(0);
const unsigned Opcode = Inst.getOpcode();
if (Opcode == Mips::JalOneReg) {
// jal $rs => jalr $rs
if (inMicroMipsMode()) {
JalrInst.setOpcode(Mips::JALR16_MM);
JalrInst.addOperand(FirstRegOp);
} else {
JalrInst.setOpcode(Mips::JALR);
JalrInst.addOperand(MCOperand::createReg(Mips::RA));
JalrInst.addOperand(FirstRegOp);
}
} else if (Opcode == Mips::JalTwoReg) {
// jal $rd, $rs => jalr $rd, $rs
JalrInst.setOpcode(inMicroMipsMode() ? Mips::JALR_MM : Mips::JALR);
JalrInst.addOperand(FirstRegOp);
const MCOperand SecondRegOp = Inst.getOperand(1);
JalrInst.addOperand(SecondRegOp);
}
Instructions.push_back(JalrInst);
// If .set reorder is active, emit a NOP after it.
if (AssemblerOptions.back()->isReorder()) {
// This is a 32-bit NOP because these 2 pseudo-instructions
// do not have a short delay slot.
MCInst NopInst;
NopInst.setOpcode(Mips::SLL);
NopInst.addOperand(MCOperand::createReg(Mips::ZERO));
NopInst.addOperand(MCOperand::createReg(Mips::ZERO));
NopInst.addOperand(MCOperand::createImm(0));
Instructions.push_back(NopInst);
}
return false;
}
bool MipsAsmParser::loadImmediate(int64_t ImmValue, unsigned DstReg,
unsigned SrcReg, bool Is32BitImm, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions) {
if (!Is32BitImm && !isGP64bit()) {
Error(IDLoc, "instruction requires a 64-bit architecture");
return true;
}
bool UseSrcReg = false;
if (SrcReg != Mips::NoRegister)
UseSrcReg = true;
MCInst tmpInst;
unsigned TmpReg = DstReg;
if (UseSrcReg && (DstReg == SrcReg)) {
// At this point we need AT to perform the expansions and we exit if it is
// not available.
unsigned ATReg = getATReg(IDLoc);
if (!ATReg)
return true;
TmpReg = ATReg;
}
tmpInst.setLoc(IDLoc);
// FIXME: gas has a special case for values that are 000...1111, which
// becomes a li -1 and then a dsrl
if (0 <= ImmValue && ImmValue <= 65535) {
// For unsigned and positive signed 16-bit values (0 <= j <= 65535):
// li d,j => ori d,$zero,j
if (!UseSrcReg)
SrcReg = isGP64bit() ? Mips::ZERO_64 : Mips::ZERO;
tmpInst.setOpcode(Mips::ORi);
tmpInst.addOperand(MCOperand::createReg(DstReg));
tmpInst.addOperand(MCOperand::createReg(SrcReg));
tmpInst.addOperand(MCOperand::createImm(ImmValue));
Instructions.push_back(tmpInst);
} else if (ImmValue < 0 && ImmValue >= -32768) {
// For negative signed 16-bit values (-32768 <= j < 0):
// li d,j => addiu d,$zero,j
if (!UseSrcReg)
SrcReg = Mips::ZERO;
tmpInst.setOpcode(Mips::ADDiu);
tmpInst.addOperand(MCOperand::createReg(DstReg));
tmpInst.addOperand(MCOperand::createReg(SrcReg));
tmpInst.addOperand(MCOperand::createImm(ImmValue));
Instructions.push_back(tmpInst);
} else if (isInt<32>(ImmValue) || isUInt<32>(ImmValue)) {
warnIfNoMacro(IDLoc);
// For all other values which are representable as a 32-bit integer:
// li d,j => lui d,hi16(j)
// ori d,d,lo16(j)
uint16_t Bits31To16 = (ImmValue >> 16) & 0xffff;
uint16_t Bits15To0 = ImmValue & 0xffff;
if (!Is32BitImm && !isInt<32>(ImmValue)) {
// For DLI, expand to an ORi instead of a LUi to avoid sign-extending the
// upper 32 bits.
tmpInst.setOpcode(Mips::ORi);
tmpInst.addOperand(MCOperand::createReg(TmpReg));
tmpInst.addOperand(MCOperand::createReg(Mips::ZERO));
tmpInst.addOperand(MCOperand::createImm(Bits31To16));
tmpInst.setLoc(IDLoc);
Instructions.push_back(tmpInst);
// Move the value to the upper 16 bits by doing a 16-bit left shift.
createLShiftOri<16>(0, TmpReg, IDLoc, Instructions);
} else {
tmpInst.setOpcode(Mips::LUi);
tmpInst.addOperand(MCOperand::createReg(TmpReg));
tmpInst.addOperand(MCOperand::createImm(Bits31To16));
Instructions.push_back(tmpInst);
}
createLShiftOri<0>(Bits15To0, TmpReg, IDLoc, Instructions);
if (UseSrcReg)
createAddu(DstReg, TmpReg, SrcReg, !Is32BitImm, Instructions);
} else if ((ImmValue & (0xffffLL << 48)) == 0) {
if (Is32BitImm) {
Error(IDLoc, "instruction requires a 32-bit immediate");
return true;
}
warnIfNoMacro(IDLoc);
// <------- lo32 ------>
// <------- hi32 ------>
// <- hi16 -> <- lo16 ->
// _________________________________
// | | | |
// | 16-bits | 16-bits | 16-bits |
// |__________|__________|__________|
//
// For any 64-bit value that is representable as a 48-bit integer:
// li d,j => lui d,hi16(j)
// ori d,d,hi16(lo32(j))
// dsll d,d,16
// ori d,d,lo16(lo32(j))
uint16_t Bits47To32 = (ImmValue >> 32) & 0xffff;
uint16_t Bits31To16 = (ImmValue >> 16) & 0xffff;
uint16_t Bits15To0 = ImmValue & 0xffff;
tmpInst.setOpcode(Mips::LUi);
tmpInst.addOperand(MCOperand::createReg(TmpReg));
tmpInst.addOperand(MCOperand::createImm(Bits47To32));
Instructions.push_back(tmpInst);
createLShiftOri<0>(Bits31To16, TmpReg, IDLoc, Instructions);
createLShiftOri<16>(Bits15To0, TmpReg, IDLoc, Instructions);
if (UseSrcReg)
createAddu(DstReg, TmpReg, SrcReg, !Is32BitImm, Instructions);
} else {
if (Is32BitImm) {
Error(IDLoc, "instruction requires a 32-bit immediate");
return true;
}
warnIfNoMacro(IDLoc);
// <------- hi32 ------> <------- lo32 ------>
// <- hi16 -> <- lo16 ->
// ___________________________________________
// | | | | |
// | 16-bits | 16-bits | 16-bits | 16-bits |
// |__________|__________|__________|__________|
//
// For all other values which are representable as a 64-bit integer:
// li d,j => lui d,hi16(j)
// ori d,d,lo16(hi32(j))
// dsll d,d,16
// ori d,d,hi16(lo32(j))
// dsll d,d,16
// ori d,d,lo16(lo32(j))
uint16_t Bits63To48 = (ImmValue >> 48) & 0xffff;
uint16_t Bits47To32 = (ImmValue >> 32) & 0xffff;
uint16_t Bits31To16 = (ImmValue >> 16) & 0xffff;
uint16_t Bits15To0 = ImmValue & 0xffff;
tmpInst.setOpcode(Mips::LUi);
tmpInst.addOperand(MCOperand::createReg(TmpReg));
tmpInst.addOperand(MCOperand::createImm(Bits63To48));
Instructions.push_back(tmpInst);
createLShiftOri<0>(Bits47To32, TmpReg, IDLoc, Instructions);
// When Bits31To16 is 0, do a left shift of 32 bits instead of doing
// two left shifts of 16 bits.
if (Bits31To16 == 0) {
createLShiftOri<32>(Bits15To0, TmpReg, IDLoc, Instructions);
} else {
createLShiftOri<16>(Bits31To16, TmpReg, IDLoc, Instructions);
createLShiftOri<16>(Bits15To0, TmpReg, IDLoc, Instructions);
}
if (UseSrcReg)
createAddu(DstReg, TmpReg, SrcReg, !Is32BitImm, Instructions);
}
return false;
}
bool MipsAsmParser::expandLoadImm(MCInst &Inst, bool Is32BitImm, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions) {
const MCOperand &ImmOp = Inst.getOperand(1);
assert(ImmOp.isImm() && "expected immediate operand kind");
const MCOperand &DstRegOp = Inst.getOperand(0);
assert(DstRegOp.isReg() && "expected register operand kind");
if (loadImmediate(ImmOp.getImm(), DstRegOp.getReg(), Mips::NoRegister,
Is32BitImm, IDLoc, Instructions))
return true;
return false;
}
bool
MipsAsmParser::expandLoadAddressReg(MCInst &Inst, bool Is32BitImm, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions) {
const MCOperand &DstRegOp = Inst.getOperand(0);
assert(DstRegOp.isReg() && "expected register operand kind");
const MCOperand &SrcRegOp = Inst.getOperand(1);
assert(SrcRegOp.isReg() && "expected register operand kind");
const MCOperand &ImmOp = Inst.getOperand(2);
assert((ImmOp.isImm() || ImmOp.isExpr()) &&
"expected immediate operand kind");
if (!ImmOp.isImm()) {
if (loadAndAddSymbolAddress(ImmOp.getExpr(), DstRegOp.getReg(),
SrcRegOp.getReg(), Is32BitImm, IDLoc,
Instructions))
return true;
return false;
}
if (loadImmediate(ImmOp.getImm(), DstRegOp.getReg(), SrcRegOp.getReg(),
Is32BitImm, IDLoc, Instructions))
return true;
return false;
}
bool
MipsAsmParser::expandLoadAddressImm(MCInst &Inst, bool Is32BitImm, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions) {
const MCOperand &DstRegOp = Inst.getOperand(0);
assert(DstRegOp.isReg() && "expected register operand kind");
const MCOperand &ImmOp = Inst.getOperand(1);
assert((ImmOp.isImm() || ImmOp.isExpr()) &&
"expected immediate operand kind");
if (!ImmOp.isImm()) {
if (loadAndAddSymbolAddress(ImmOp.getExpr(), DstRegOp.getReg(),
Mips::NoRegister, Is32BitImm, IDLoc,
Instructions))
return true;
return false;
}
if (loadImmediate(ImmOp.getImm(), DstRegOp.getReg(), Mips::NoRegister,
Is32BitImm, IDLoc, Instructions))
return true;
return false;
}
bool MipsAsmParser::loadAndAddSymbolAddress(
const MCExpr *SymExpr, unsigned DstReg, unsigned SrcReg, bool Is32BitSym,
SMLoc IDLoc, SmallVectorImpl<MCInst> &Instructions) {
warnIfNoMacro(IDLoc);
if (Is32BitSym && isABI_N64())
Warning(IDLoc, "instruction loads the 32-bit address of a 64-bit symbol");
MCInst tmpInst;
const MCSymbolRefExpr *Symbol = cast<MCSymbolRefExpr>(SymExpr);
const MCSymbolRefExpr *HiExpr = MCSymbolRefExpr::create(
&Symbol->getSymbol(), MCSymbolRefExpr::VK_Mips_ABS_HI, getContext());
const MCSymbolRefExpr *LoExpr = MCSymbolRefExpr::create(
&Symbol->getSymbol(), MCSymbolRefExpr::VK_Mips_ABS_LO, getContext());
bool UseSrcReg = SrcReg != Mips::NoRegister;
unsigned TmpReg = DstReg;
if (UseSrcReg && (DstReg == SrcReg)) {
// At this point we need AT to perform the expansions and we exit if it is
// not available.
unsigned ATReg = getATReg(IDLoc);
if (!ATReg)
return true;
TmpReg = ATReg;
}
if (!Is32BitSym) {
// If it's a 64-bit architecture, expand to:
// la d,sym => lui d,highest(sym)
// ori d,d,higher(sym)
// dsll d,d,16
// ori d,d,hi16(sym)
// dsll d,d,16
// ori d,d,lo16(sym)
const MCSymbolRefExpr *HighestExpr = MCSymbolRefExpr::create(
&Symbol->getSymbol(), MCSymbolRefExpr::VK_Mips_HIGHEST, getContext());
const MCSymbolRefExpr *HigherExpr = MCSymbolRefExpr::create(
&Symbol->getSymbol(), MCSymbolRefExpr::VK_Mips_HIGHER, getContext());
tmpInst.setOpcode(Mips::LUi);
tmpInst.addOperand(MCOperand::createReg(TmpReg));
tmpInst.addOperand(MCOperand::createExpr(HighestExpr));
Instructions.push_back(tmpInst);
createLShiftOri<0>(MCOperand::createExpr(HigherExpr), TmpReg, SMLoc(),
Instructions);
createLShiftOri<16>(MCOperand::createExpr(HiExpr), TmpReg, SMLoc(),
Instructions);
createLShiftOri<16>(MCOperand::createExpr(LoExpr), TmpReg, SMLoc(),
Instructions);
} else {
// Otherwise, expand to:
// la d,sym => lui d,hi16(sym)
// ori d,d,lo16(sym)
tmpInst.setOpcode(Mips::LUi);
tmpInst.addOperand(MCOperand::createReg(TmpReg));
tmpInst.addOperand(MCOperand::createExpr(HiExpr));
Instructions.push_back(tmpInst);
createLShiftOri<0>(MCOperand::createExpr(LoExpr), TmpReg, SMLoc(),
Instructions);
}
if (UseSrcReg)
createAddu(DstReg, TmpReg, SrcReg, !Is32BitSym, Instructions);
return false;
}
bool MipsAsmParser::expandUncondBranchMMPseudo(
MCInst &Inst, SMLoc IDLoc, SmallVectorImpl<MCInst> &Instructions) {
assert(getInstDesc(Inst.getOpcode()).getNumOperands() == 1 &&
"unexpected number of operands");
MCOperand Offset = Inst.getOperand(0);
if (Offset.isExpr()) {
Inst.clear();
Inst.setOpcode(Mips::BEQ_MM);
Inst.addOperand(MCOperand::createReg(Mips::ZERO));
Inst.addOperand(MCOperand::createReg(Mips::ZERO));
Inst.addOperand(MCOperand::createExpr(Offset.getExpr()));
} else {
assert(Offset.isImm() && "expected immediate operand kind");
if (isIntN(11, Offset.getImm())) {
// If offset fits into 11 bits then this instruction becomes microMIPS
// 16-bit unconditional branch instruction.
Inst.setOpcode(Mips::B16_MM);
} else {
if (!isIntN(17, Offset.getImm()))
Error(IDLoc, "branch target out of range");
if (OffsetToAlignment(Offset.getImm(), 1LL << 1))
Error(IDLoc, "branch to misaligned address");
Inst.clear();
Inst.setOpcode(Mips::BEQ_MM);
Inst.addOperand(MCOperand::createReg(Mips::ZERO));
Inst.addOperand(MCOperand::createReg(Mips::ZERO));
Inst.addOperand(MCOperand::createImm(Offset.getImm()));
}
}
Instructions.push_back(Inst);
// If .set reorder is active, emit a NOP after the branch instruction.
if (AssemblerOptions.back()->isReorder())
createNop(true, IDLoc, Instructions);
return false;
}
bool MipsAsmParser::expandBranchImm(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions) {
const MCOperand &DstRegOp = Inst.getOperand(0);
assert(DstRegOp.isReg() && "expected register operand kind");
const MCOperand &ImmOp = Inst.getOperand(1);
assert(ImmOp.isImm() && "expected immediate operand kind");
const MCOperand &MemOffsetOp = Inst.getOperand(2);
assert(MemOffsetOp.isImm() && "expected immediate operand kind");
unsigned OpCode = 0;
switch(Inst.getOpcode()) {
case Mips::BneImm:
OpCode = Mips::BNE;
break;
case Mips::BeqImm:
OpCode = Mips::BEQ;
break;
default:
llvm_unreachable("Unknown immediate branch pseudo-instruction.");
break;
}
int64_t ImmValue = ImmOp.getImm();
if (ImmValue == 0) {
MCInst BranchInst;
BranchInst.setOpcode(OpCode);
BranchInst.addOperand(DstRegOp);
BranchInst.addOperand(MCOperand::createReg(Mips::ZERO));
BranchInst.addOperand(MemOffsetOp);
Instructions.push_back(BranchInst);
} else {
warnIfNoMacro(IDLoc);
unsigned ATReg = getATReg(IDLoc);
if (!ATReg)
return true;
if (loadImmediate(ImmValue, ATReg, Mips::NoRegister, !isGP64bit(), IDLoc,
Instructions))
return true;
MCInst BranchInst;
BranchInst.setOpcode(OpCode);
BranchInst.addOperand(DstRegOp);
BranchInst.addOperand(MCOperand::createReg(ATReg));
BranchInst.addOperand(MemOffsetOp);
Instructions.push_back(BranchInst);
}
return false;
}
void MipsAsmParser::expandMemInst(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions,
bool isLoad, bool isImmOpnd) {
MCInst TempInst;
unsigned ImmOffset, HiOffset, LoOffset;
const MCExpr *ExprOffset;
unsigned TmpRegNum;
// 1st operand is either the source or destination register.
assert(Inst.getOperand(0).isReg() && "expected register operand kind");
unsigned RegOpNum = Inst.getOperand(0).getReg();
// 2nd operand is the base register.
assert(Inst.getOperand(1).isReg() && "expected register operand kind");
unsigned BaseRegNum = Inst.getOperand(1).getReg();
// 3rd operand is either an immediate or expression.
if (isImmOpnd) {
assert(Inst.getOperand(2).isImm() && "expected immediate operand kind");
ImmOffset = Inst.getOperand(2).getImm();
LoOffset = ImmOffset & 0x0000ffff;
HiOffset = (ImmOffset & 0xffff0000) >> 16;
// If msb of LoOffset is 1(negative number) we must increment HiOffset.
if (LoOffset & 0x8000)
HiOffset++;
} else
ExprOffset = Inst.getOperand(2).getExpr();
// All instructions will have the same location.
TempInst.setLoc(IDLoc);
// These are some of the types of expansions we perform here:
// 1) lw $8, sym => lui $8, %hi(sym)
// lw $8, %lo(sym)($8)
// 2) lw $8, offset($9) => lui $8, %hi(offset)
// add $8, $8, $9
// lw $8, %lo(offset)($9)
// 3) lw $8, offset($8) => lui $at, %hi(offset)
// add $at, $at, $8
// lw $8, %lo(offset)($at)
// 4) sw $8, sym => lui $at, %hi(sym)
// sw $8, %lo(sym)($at)
// 5) sw $8, offset($8) => lui $at, %hi(offset)
// add $at, $at, $8
// sw $8, %lo(offset)($at)
// 6) ldc1 $f0, sym => lui $at, %hi(sym)
// ldc1 $f0, %lo(sym)($at)
//
// For load instructions we can use the destination register as a temporary
// if base and dst are different (examples 1 and 2) and if the base register
// is general purpose otherwise we must use $at (example 6) and error if it's
// not available. For stores we must use $at (examples 4 and 5) because we
// must not clobber the source register setting up the offset.
const MCInstrDesc &Desc = getInstDesc(Inst.getOpcode());
int16_t RegClassOp0 = Desc.OpInfo[0].RegClass;
unsigned RegClassIDOp0 =
getContext().getRegisterInfo()->getRegClass(RegClassOp0).getID();
bool IsGPR = (RegClassIDOp0 == Mips::GPR32RegClassID) ||
(RegClassIDOp0 == Mips::GPR64RegClassID);
if (isLoad && IsGPR && (BaseRegNum != RegOpNum))
TmpRegNum = RegOpNum;
else {
// At this point we need AT to perform the expansions and we exit if it is
// not available.
TmpRegNum = getATReg(IDLoc);
if (!TmpRegNum)
return;
}
TempInst.setOpcode(Mips::LUi);
TempInst.addOperand(MCOperand::createReg(TmpRegNum));
if (isImmOpnd)
TempInst.addOperand(MCOperand::createImm(HiOffset));
else {
const MCExpr *HiExpr = evaluateRelocExpr(ExprOffset, "hi");
TempInst.addOperand(MCOperand::createExpr(HiExpr));
}
// Add the instruction to the list.
Instructions.push_back(TempInst);
// Prepare TempInst for next instruction.
TempInst.clear();
// Add temp register to base.
if (BaseRegNum != Mips::ZERO) {
TempInst.setOpcode(Mips::ADDu);
TempInst.addOperand(MCOperand::createReg(TmpRegNum));
TempInst.addOperand(MCOperand::createReg(TmpRegNum));
TempInst.addOperand(MCOperand::createReg(BaseRegNum));
Instructions.push_back(TempInst);
TempInst.clear();
}
// And finally, create original instruction with low part
// of offset and new base.
TempInst.setOpcode(Inst.getOpcode());
TempInst.addOperand(MCOperand::createReg(RegOpNum));
TempInst.addOperand(MCOperand::createReg(TmpRegNum));
if (isImmOpnd)
TempInst.addOperand(MCOperand::createImm(LoOffset));
else {
const MCExpr *LoExpr = evaluateRelocExpr(ExprOffset, "lo");
TempInst.addOperand(MCOperand::createExpr(LoExpr));
}
Instructions.push_back(TempInst);
TempInst.clear();
}
bool
MipsAsmParser::expandLoadStoreMultiple(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions) {
unsigned OpNum = Inst.getNumOperands();
unsigned Opcode = Inst.getOpcode();
unsigned NewOpcode = Opcode == Mips::SWM_MM ? Mips::SWM32_MM : Mips::LWM32_MM;
assert (Inst.getOperand(OpNum - 1).isImm() &&
Inst.getOperand(OpNum - 2).isReg() &&
Inst.getOperand(OpNum - 3).isReg() && "Invalid instruction operand.");
if (OpNum < 8 && Inst.getOperand(OpNum - 1).getImm() <= 60 &&
Inst.getOperand(OpNum - 1).getImm() >= 0 &&
Inst.getOperand(OpNum - 2).getReg() == Mips::SP &&
Inst.getOperand(OpNum - 3).getReg() == Mips::RA)
// It can be implemented as SWM16 or LWM16 instruction.
NewOpcode = Opcode == Mips::SWM_MM ? Mips::SWM16_MM : Mips::LWM16_MM;
Inst.setOpcode(NewOpcode);
Instructions.push_back(Inst);
return false;
}
bool MipsAsmParser::expandCondBranches(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions) {
unsigned PseudoOpcode = Inst.getOpcode();
unsigned SrcReg = Inst.getOperand(0).getReg();
unsigned TrgReg = Inst.getOperand(1).getReg();
const MCExpr *OffsetExpr = Inst.getOperand(2).getExpr();
unsigned ZeroSrcOpcode, ZeroTrgOpcode;
bool ReverseOrderSLT, IsUnsigned, AcceptsEquality;
switch (PseudoOpcode) {
case Mips::BLT:
case Mips::BLTU:
AcceptsEquality = false;
ReverseOrderSLT = false;
IsUnsigned = (PseudoOpcode == Mips::BLTU);
ZeroSrcOpcode = Mips::BGTZ;
ZeroTrgOpcode = Mips::BLTZ;
break;
case Mips::BLE:
case Mips::BLEU:
AcceptsEquality = true;
ReverseOrderSLT = true;
IsUnsigned = (PseudoOpcode == Mips::BLEU);
ZeroSrcOpcode = Mips::BGEZ;
ZeroTrgOpcode = Mips::BLEZ;
break;
case Mips::BGE:
case Mips::BGEU:
AcceptsEquality = true;
ReverseOrderSLT = false;
IsUnsigned = (PseudoOpcode == Mips::BGEU);
ZeroSrcOpcode = Mips::BLEZ;
ZeroTrgOpcode = Mips::BGEZ;
break;
case Mips::BGT:
case Mips::BGTU:
AcceptsEquality = false;
ReverseOrderSLT = true;
IsUnsigned = (PseudoOpcode == Mips::BGTU);
ZeroSrcOpcode = Mips::BLTZ;
ZeroTrgOpcode = Mips::BGTZ;
break;
default:
llvm_unreachable("unknown opcode for branch pseudo-instruction");
}
MCInst BranchInst;
bool IsTrgRegZero = (TrgReg == Mips::ZERO);
bool IsSrcRegZero = (SrcReg == Mips::ZERO);
if (IsSrcRegZero && IsTrgRegZero) {
// FIXME: All of these Opcode-specific if's are needed for compatibility
// with GAS' behaviour. However, they may not generate the most efficient
// code in some circumstances.
if (PseudoOpcode == Mips::BLT) {
BranchInst.setOpcode(Mips::BLTZ);
BranchInst.addOperand(MCOperand::createReg(Mips::ZERO));
BranchInst.addOperand(MCOperand::createExpr(OffsetExpr));
Instructions.push_back(BranchInst);
return false;
}
if (PseudoOpcode == Mips::BLE) {
BranchInst.setOpcode(Mips::BLEZ);
BranchInst.addOperand(MCOperand::createReg(Mips::ZERO));
BranchInst.addOperand(MCOperand::createExpr(OffsetExpr));
Instructions.push_back(BranchInst);
Warning(IDLoc, "branch is always taken");
return false;
}
if (PseudoOpcode == Mips::BGE) {
BranchInst.setOpcode(Mips::BGEZ);
BranchInst.addOperand(MCOperand::createReg(Mips::ZERO));
BranchInst.addOperand(MCOperand::createExpr(OffsetExpr));
Instructions.push_back(BranchInst);
Warning(IDLoc, "branch is always taken");
return false;
}
if (PseudoOpcode == Mips::BGT) {
BranchInst.setOpcode(Mips::BGTZ);
BranchInst.addOperand(MCOperand::createReg(Mips::ZERO));
BranchInst.addOperand(MCOperand::createExpr(OffsetExpr));
Instructions.push_back(BranchInst);
return false;
}
if (PseudoOpcode == Mips::BGTU) {
BranchInst.setOpcode(Mips::BNE);
BranchInst.addOperand(MCOperand::createReg(Mips::ZERO));
BranchInst.addOperand(MCOperand::createReg(Mips::ZERO));
BranchInst.addOperand(MCOperand::createExpr(OffsetExpr));
Instructions.push_back(BranchInst);
return false;
}
if (AcceptsEquality) {
// If both registers are $0 and the pseudo-branch accepts equality, it
// will always be taken, so we emit an unconditional branch.
BranchInst.setOpcode(Mips::BEQ);
BranchInst.addOperand(MCOperand::createReg(Mips::ZERO));
BranchInst.addOperand(MCOperand::createReg(Mips::ZERO));
BranchInst.addOperand(MCOperand::createExpr(OffsetExpr));
Instructions.push_back(BranchInst);
Warning(IDLoc, "branch is always taken");
return false;
}
// If both registers are $0 and the pseudo-branch does not accept
// equality, it will never be taken, so we don't have to emit anything.
return false;
}
if (IsSrcRegZero || IsTrgRegZero) {
if ((IsSrcRegZero && PseudoOpcode == Mips::BGTU) ||
(IsTrgRegZero && PseudoOpcode == Mips::BLTU)) {
// If the $rs is $0 and the pseudo-branch is BGTU (0 > x) or
// if the $rt is $0 and the pseudo-branch is BLTU (x < 0),
// the pseudo-branch will never be taken, so we don't emit anything.
// This only applies to unsigned pseudo-branches.
return false;
}
if ((IsSrcRegZero && PseudoOpcode == Mips::BLEU) ||
(IsTrgRegZero && PseudoOpcode == Mips::BGEU)) {
// If the $rs is $0 and the pseudo-branch is BLEU (0 <= x) or
// if the $rt is $0 and the pseudo-branch is BGEU (x >= 0),
// the pseudo-branch will always be taken, so we emit an unconditional
// branch.
// This only applies to unsigned pseudo-branches.
BranchInst.setOpcode(Mips::BEQ);
BranchInst.addOperand(MCOperand::createReg(Mips::ZERO));
BranchInst.addOperand(MCOperand::createReg(Mips::ZERO));
BranchInst.addOperand(MCOperand::createExpr(OffsetExpr));
Instructions.push_back(BranchInst);
Warning(IDLoc, "branch is always taken");
return false;
}
if (IsUnsigned) {
// If the $rs is $0 and the pseudo-branch is BLTU (0 < x) or
// if the $rt is $0 and the pseudo-branch is BGTU (x > 0),
// the pseudo-branch will be taken only when the non-zero register is
// different from 0, so we emit a BNEZ.
//
// If the $rs is $0 and the pseudo-branch is BGEU (0 >= x) or
// if the $rt is $0 and the pseudo-branch is BLEU (x <= 0),
// the pseudo-branch will be taken only when the non-zero register is
// equal to 0, so we emit a BEQZ.
//
// Because only BLEU and BGEU branch on equality, we can use the
// AcceptsEquality variable to decide when to emit the BEQZ.
BranchInst.setOpcode(AcceptsEquality ? Mips::BEQ : Mips::BNE);
BranchInst.addOperand(
MCOperand::createReg(IsSrcRegZero ? TrgReg : SrcReg));
BranchInst.addOperand(MCOperand::createReg(Mips::ZERO));
BranchInst.addOperand(MCOperand::createExpr(OffsetExpr));
Instructions.push_back(BranchInst);
return false;
}
// If we have a signed pseudo-branch and one of the registers is $0,
// we can use an appropriate compare-to-zero branch. We select which one
// to use in the switch statement above.
BranchInst.setOpcode(IsSrcRegZero ? ZeroSrcOpcode : ZeroTrgOpcode);
BranchInst.addOperand(MCOperand::createReg(IsSrcRegZero ? TrgReg : SrcReg));
BranchInst.addOperand(MCOperand::createExpr(OffsetExpr));
Instructions.push_back(BranchInst);
return false;
}
// If neither the SrcReg nor the TrgReg are $0, we need AT to perform the
// expansions. If it is not available, we return.
unsigned ATRegNum = getATReg(IDLoc);
if (!ATRegNum)
return true;
warnIfNoMacro(IDLoc);
// SLT fits well with 2 of our 4 pseudo-branches:
// BLT, where $rs < $rt, translates into "slt $at, $rs, $rt" and
// BGT, where $rs > $rt, translates into "slt $at, $rt, $rs".
// If the result of the SLT is 1, we branch, and if it's 0, we don't.
// This is accomplished by using a BNEZ with the result of the SLT.
//
// The other 2 pseudo-branches are opposites of the above 2 (BGE with BLT
// and BLE with BGT), so we change the BNEZ into a a BEQZ.
// Because only BGE and BLE branch on equality, we can use the
// AcceptsEquality variable to decide when to emit the BEQZ.
// Note that the order of the SLT arguments doesn't change between
// opposites.
//
// The same applies to the unsigned variants, except that SLTu is used
// instead of SLT.
MCInst SetInst;
SetInst.setOpcode(IsUnsigned ? Mips::SLTu : Mips::SLT);
SetInst.addOperand(MCOperand::createReg(ATRegNum));
SetInst.addOperand(MCOperand::createReg(ReverseOrderSLT ? TrgReg : SrcReg));
SetInst.addOperand(MCOperand::createReg(ReverseOrderSLT ? SrcReg : TrgReg));
Instructions.push_back(SetInst);
BranchInst.setOpcode(AcceptsEquality ? Mips::BEQ : Mips::BNE);
BranchInst.addOperand(MCOperand::createReg(ATRegNum));
BranchInst.addOperand(MCOperand::createReg(Mips::ZERO));
BranchInst.addOperand(MCOperand::createExpr(OffsetExpr));
Instructions.push_back(BranchInst);
return false;
}
bool MipsAsmParser::expandUlhu(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions) {
if (hasMips32r6() || hasMips64r6()) {
Error(IDLoc, "instruction not supported on mips32r6 or mips64r6");
return false;
}
warnIfNoMacro(IDLoc);
const MCOperand &DstRegOp = Inst.getOperand(0);
assert(DstRegOp.isReg() && "expected register operand kind");
const MCOperand &SrcRegOp = Inst.getOperand(1);
assert(SrcRegOp.isReg() && "expected register operand kind");
const MCOperand &OffsetImmOp = Inst.getOperand(2);
assert(OffsetImmOp.isImm() && "expected immediate operand kind");
unsigned DstReg = DstRegOp.getReg();
unsigned SrcReg = SrcRegOp.getReg();
int64_t OffsetValue = OffsetImmOp.getImm();
// NOTE: We always need AT for ULHU, as it is always used as the source
// register for one of the LBu's.
unsigned ATReg = getATReg(IDLoc);
if (!ATReg)
return true;
// When the value of offset+1 does not fit in 16 bits, we have to load the
// offset in AT, (D)ADDu the original source register (if there was one), and
// then use AT as the source register for the 2 generated LBu's.
bool LoadedOffsetInAT = false;
if (!isInt<16>(OffsetValue + 1) || !isInt<16>(OffsetValue)) {
LoadedOffsetInAT = true;
if (loadImmediate(OffsetValue, ATReg, Mips::NoRegister, !ABI.ArePtrs64bit(),
IDLoc, Instructions))
return true;
// NOTE: We do this (D)ADDu here instead of doing it in loadImmediate()
// because it will make our output more similar to GAS'. For example,
// generating an "ori $1, $zero, 32768" followed by an "addu $1, $1, $9",
// instead of just an "ori $1, $9, 32768".
// NOTE: If there is no source register specified in the ULHU, the parser
// will interpret it as $0.
if (SrcReg != Mips::ZERO && SrcReg != Mips::ZERO_64)
createAddu(ATReg, ATReg, SrcReg, ABI.ArePtrs64bit(), Instructions);
}
unsigned FirstLbuDstReg = LoadedOffsetInAT ? DstReg : ATReg;
unsigned SecondLbuDstReg = LoadedOffsetInAT ? ATReg : DstReg;
unsigned LbuSrcReg = LoadedOffsetInAT ? ATReg : SrcReg;
int64_t FirstLbuOffset = 0, SecondLbuOffset = 0;
if (isLittle()) {
FirstLbuOffset = LoadedOffsetInAT ? 1 : (OffsetValue + 1);
SecondLbuOffset = LoadedOffsetInAT ? 0 : OffsetValue;
} else {
FirstLbuOffset = LoadedOffsetInAT ? 0 : OffsetValue;
SecondLbuOffset = LoadedOffsetInAT ? 1 : (OffsetValue + 1);
}
unsigned SllReg = LoadedOffsetInAT ? DstReg : ATReg;
MCInst TmpInst;
TmpInst.setOpcode(Mips::LBu);
TmpInst.addOperand(MCOperand::createReg(FirstLbuDstReg));
TmpInst.addOperand(MCOperand::createReg(LbuSrcReg));
TmpInst.addOperand(MCOperand::createImm(FirstLbuOffset));
Instructions.push_back(TmpInst);
TmpInst.clear();
TmpInst.setOpcode(Mips::LBu);
TmpInst.addOperand(MCOperand::createReg(SecondLbuDstReg));
TmpInst.addOperand(MCOperand::createReg(LbuSrcReg));
TmpInst.addOperand(MCOperand::createImm(SecondLbuOffset));
Instructions.push_back(TmpInst);
TmpInst.clear();
TmpInst.setOpcode(Mips::SLL);
TmpInst.addOperand(MCOperand::createReg(SllReg));
TmpInst.addOperand(MCOperand::createReg(SllReg));
TmpInst.addOperand(MCOperand::createImm(8));
Instructions.push_back(TmpInst);
TmpInst.clear();
TmpInst.setOpcode(Mips::OR);
TmpInst.addOperand(MCOperand::createReg(DstReg));
TmpInst.addOperand(MCOperand::createReg(DstReg));
TmpInst.addOperand(MCOperand::createReg(ATReg));
Instructions.push_back(TmpInst);
return false;
}
bool MipsAsmParser::expandUlw(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions) {
if (hasMips32r6() || hasMips64r6()) {
Error(IDLoc, "instruction not supported on mips32r6 or mips64r6");
return false;
}
const MCOperand &DstRegOp = Inst.getOperand(0);
assert(DstRegOp.isReg() && "expected register operand kind");
const MCOperand &SrcRegOp = Inst.getOperand(1);
assert(SrcRegOp.isReg() && "expected register operand kind");
const MCOperand &OffsetImmOp = Inst.getOperand(2);
assert(OffsetImmOp.isImm() && "expected immediate operand kind");
unsigned SrcReg = SrcRegOp.getReg();
int64_t OffsetValue = OffsetImmOp.getImm();
unsigned ATReg = 0;
// When the value of offset+3 does not fit in 16 bits, we have to load the
// offset in AT, (D)ADDu the original source register (if there was one), and
// then use AT as the source register for the generated LWL and LWR.
bool LoadedOffsetInAT = false;
if (!isInt<16>(OffsetValue + 3) || !isInt<16>(OffsetValue)) {
ATReg = getATReg(IDLoc);
if (!ATReg)
return true;
LoadedOffsetInAT = true;
warnIfNoMacro(IDLoc);
if (loadImmediate(OffsetValue, ATReg, Mips::NoRegister, !ABI.ArePtrs64bit(),
IDLoc, Instructions))
return true;
// NOTE: We do this (D)ADDu here instead of doing it in loadImmediate()
// because it will make our output more similar to GAS'. For example,
// generating an "ori $1, $zero, 32768" followed by an "addu $1, $1, $9",
// instead of just an "ori $1, $9, 32768".
// NOTE: If there is no source register specified in the ULW, the parser
// will interpret it as $0.
if (SrcReg != Mips::ZERO && SrcReg != Mips::ZERO_64)
createAddu(ATReg, ATReg, SrcReg, ABI.ArePtrs64bit(), Instructions);
}
unsigned FinalSrcReg = LoadedOffsetInAT ? ATReg : SrcReg;
int64_t LeftLoadOffset = 0, RightLoadOffset = 0;
if (isLittle()) {
LeftLoadOffset = LoadedOffsetInAT ? 3 : (OffsetValue + 3);
RightLoadOffset = LoadedOffsetInAT ? 0 : OffsetValue;
} else {
LeftLoadOffset = LoadedOffsetInAT ? 0 : OffsetValue;
RightLoadOffset = LoadedOffsetInAT ? 3 : (OffsetValue + 3);
}
MCInst LeftLoadInst;
LeftLoadInst.setOpcode(Mips::LWL);
LeftLoadInst.addOperand(DstRegOp);
LeftLoadInst.addOperand(MCOperand::createReg(FinalSrcReg));
LeftLoadInst.addOperand(MCOperand::createImm(LeftLoadOffset));
Instructions.push_back(LeftLoadInst);
MCInst RightLoadInst;
RightLoadInst.setOpcode(Mips::LWR);
RightLoadInst.addOperand(DstRegOp);
RightLoadInst.addOperand(MCOperand::createReg(FinalSrcReg));
RightLoadInst.addOperand(MCOperand::createImm(RightLoadOffset ));
Instructions.push_back(RightLoadInst);
return false;
}
void MipsAsmParser::createNop(bool hasShortDelaySlot, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions) {
MCInst NopInst;
if (hasShortDelaySlot) {
NopInst.setOpcode(Mips::MOVE16_MM);
NopInst.addOperand(MCOperand::createReg(Mips::ZERO));
NopInst.addOperand(MCOperand::createReg(Mips::ZERO));
} else {
NopInst.setOpcode(Mips::SLL);
NopInst.addOperand(MCOperand::createReg(Mips::ZERO));
NopInst.addOperand(MCOperand::createReg(Mips::ZERO));
NopInst.addOperand(MCOperand::createImm(0));
}
Instructions.push_back(NopInst);
}
void MipsAsmParser::createAddu(unsigned DstReg, unsigned SrcReg,
unsigned TrgReg, bool Is64Bit,
SmallVectorImpl<MCInst> &Instructions) {
MCInst AdduInst;
AdduInst.setOpcode(Is64Bit ? Mips::DADDu : Mips::ADDu);
AdduInst.addOperand(MCOperand::createReg(DstReg));
AdduInst.addOperand(MCOperand::createReg(SrcReg));
AdduInst.addOperand(MCOperand::createReg(TrgReg));
Instructions.push_back(AdduInst);
}
unsigned MipsAsmParser::checkTargetMatchPredicate(MCInst &Inst) {
// As described by the Mips32r2 spec, the registers Rd and Rs for
// jalr.hb must be different.
unsigned Opcode = Inst.getOpcode();
if (Opcode == Mips::JALR_HB &&
(Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()))
return Match_RequiresDifferentSrcAndDst;
return Match_Success;
}
bool MipsAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands,
MCStreamer &Out,
uint64_t &ErrorInfo,
bool MatchingInlineAsm) {
MCInst Inst;
SmallVector<MCInst, 8> Instructions;
unsigned MatchResult =
MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm);
switch (MatchResult) {
case Match_Success: {
if (processInstruction(Inst, IDLoc, Instructions))
return true;
for (unsigned i = 0; i < Instructions.size(); i++)
Out.EmitInstruction(Instructions[i], STI);
return false;
}
case Match_MissingFeature:
Error(IDLoc, "instruction requires a CPU feature not currently enabled");
return true;
case Match_InvalidOperand: {
SMLoc ErrorLoc = IDLoc;
if (ErrorInfo != ~0ULL) {
if (ErrorInfo >= Operands.size())
return Error(IDLoc, "too few operands for instruction");
ErrorLoc = ((MipsOperand &)*Operands[ErrorInfo]).getStartLoc();
if (ErrorLoc == SMLoc())
ErrorLoc = IDLoc;
}
return Error(ErrorLoc, "invalid operand for instruction");
}
case Match_MnemonicFail:
return Error(IDLoc, "invalid instruction");
case Match_RequiresDifferentSrcAndDst:
return Error(IDLoc, "source and destination must be different");
}
llvm_unreachable("Implement any new match types added!");
}
void MipsAsmParser::warnIfRegIndexIsAT(unsigned RegIndex, SMLoc Loc) {
if (RegIndex != 0 && AssemblerOptions.back()->getATRegIndex() == RegIndex)
Warning(Loc, "used $at (currently $" + Twine(RegIndex) +
") without \".set noat\"");
}
void MipsAsmParser::warnIfNoMacro(SMLoc Loc) {
if (!AssemblerOptions.back()->isMacro())
Warning(Loc, "macro instruction expanded into multiple instructions");
}
void
MipsAsmParser::printWarningWithFixIt(const Twine &Msg, const Twine &FixMsg,
SMRange Range, bool ShowColors) {
getSourceManager().PrintMessage(Range.Start, SourceMgr::DK_Warning, Msg,
Range, SMFixIt(Range, FixMsg),
ShowColors);
}
int MipsAsmParser::matchCPURegisterName(StringRef Name) {
int CC;
CC = StringSwitch<unsigned>(Name)
.Case("zero", 0)
.Case("at", 1)
.Case("a0", 4)
.Case("a1", 5)
.Case("a2", 6)
.Case("a3", 7)
.Case("v0", 2)
.Case("v1", 3)
.Case("s0", 16)
.Case("s1", 17)
.Case("s2", 18)
.Case("s3", 19)
.Case("s4", 20)
.Case("s5", 21)
.Case("s6", 22)
.Case("s7", 23)
.Case("k0", 26)
.Case("k1", 27)
.Case("gp", 28)
.Case("sp", 29)
.Case("fp", 30)
.Case("s8", 30)
.Case("ra", 31)
.Case("t0", 8)
.Case("t1", 9)
.Case("t2", 10)
.Case("t3", 11)
.Case("t4", 12)
.Case("t5", 13)
.Case("t6", 14)
.Case("t7", 15)
.Case("t8", 24)
.Case("t9", 25)
.Default(-1);
if (!(isABI_N32() || isABI_N64()))
return CC;
if (12 <= CC && CC <= 15) {
// Name is one of t4-t7
AsmToken RegTok = getLexer().peekTok();
SMRange RegRange = RegTok.getLocRange();
StringRef FixedName = StringSwitch<StringRef>(Name)
.Case("t4", "t0")
.Case("t5", "t1")
.Case("t6", "t2")
.Case("t7", "t3")
.Default("");
assert(FixedName != "" && "Register name is not one of t4-t7.");
printWarningWithFixIt("register names $t4-$t7 are only available in O32.",
"Did you mean $" + FixedName + "?", RegRange);
}
// Although SGI documentation just cuts out t0-t3 for n32/n64,
// GNU pushes the values of t0-t3 to override the o32/o64 values for t4-t7
// We are supporting both cases, so for t0-t3 we'll just push them to t4-t7.
if (8 <= CC && CC <= 11)
CC += 4;
if (CC == -1)
CC = StringSwitch<unsigned>(Name)
.Case("a4", 8)
.Case("a5", 9)
.Case("a6", 10)
.Case("a7", 11)
.Case("kt0", 26)
.Case("kt1", 27)
.Default(-1);
return CC;
}
int MipsAsmParser::matchHWRegsRegisterName(StringRef Name) {
int CC;
CC = StringSwitch<unsigned>(Name)
.Case("hwr_cpunum", 0)
.Case("hwr_synci_step", 1)
.Case("hwr_cc", 2)
.Case("hwr_ccres", 3)
.Case("hwr_ulr", 29)
.Default(-1);
return CC;
}
int MipsAsmParser::matchFPURegisterName(StringRef Name) {
if (Name[0] == 'f') {
StringRef NumString = Name.substr(1);
unsigned IntVal;
if (NumString.getAsInteger(10, IntVal))
return -1; // This is not an integer.
if (IntVal > 31) // Maximum index for fpu register.
return -1;
return IntVal;
}
return -1;
}
int MipsAsmParser::matchFCCRegisterName(StringRef Name) {
if (Name.startswith("fcc")) {
StringRef NumString = Name.substr(3);
unsigned IntVal;
if (NumString.getAsInteger(10, IntVal))
return -1; // This is not an integer.
if (IntVal > 7) // There are only 8 fcc registers.
return -1;
return IntVal;
}
return -1;
}
int MipsAsmParser::matchACRegisterName(StringRef Name) {
if (Name.startswith("ac")) {
StringRef NumString = Name.substr(2);
unsigned IntVal;
if (NumString.getAsInteger(10, IntVal))
return -1; // This is not an integer.
if (IntVal > 3) // There are only 3 acc registers.
return -1;
return IntVal;
}
return -1;
}
int MipsAsmParser::matchMSA128RegisterName(StringRef Name) {
unsigned IntVal;
if (Name.front() != 'w' || Name.drop_front(1).getAsInteger(10, IntVal))
return -1;
if (IntVal > 31)
return -1;
return IntVal;
}
int MipsAsmParser::matchMSA128CtrlRegisterName(StringRef Name) {
int CC;
CC = StringSwitch<unsigned>(Name)
.Case("msair", 0)
.Case("msacsr", 1)
.Case("msaaccess", 2)
.Case("msasave", 3)
.Case("msamodify", 4)
.Case("msarequest", 5)
.Case("msamap", 6)
.Case("msaunmap", 7)
.Default(-1);
return CC;
}
unsigned MipsAsmParser::getATReg(SMLoc Loc) {
unsigned ATIndex = AssemblerOptions.back()->getATRegIndex();
if (ATIndex == 0) {
reportParseError(Loc,
"pseudo-instruction requires $at, which is not available");
return 0;
}
unsigned AT = getReg(
(isGP64bit()) ? Mips::GPR64RegClassID : Mips::GPR32RegClassID, ATIndex);
return AT;
}
unsigned MipsAsmParser::getReg(int RC, int RegNo) {
return *(getContext().getRegisterInfo()->getRegClass(RC).begin() + RegNo);
}
unsigned MipsAsmParser::getGPR(int RegNo) {
return getReg(isGP64bit() ? Mips::GPR64RegClassID : Mips::GPR32RegClassID,
RegNo);
}
int MipsAsmParser::matchRegisterByNumber(unsigned RegNum, unsigned RegClass) {
if (RegNum >
getContext().getRegisterInfo()->getRegClass(RegClass).getNumRegs() - 1)
return -1;
return getReg(RegClass, RegNum);
}
bool MipsAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) {
MCAsmParser &Parser = getParser();
DEBUG(dbgs() << "parseOperand\n");
// Check if the current operand has a custom associated parser, if so, try to
// custom parse the operand, or fallback to the general approach.
OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic);
if (ResTy == MatchOperand_Success)
return false;
// If there wasn't a custom match, try the generic matcher below. Otherwise,
// there was a match, but an error occurred, in which case, just return that
// the operand parsing failed.
if (ResTy == MatchOperand_ParseFail)
return true;
DEBUG(dbgs() << ".. Generic Parser\n");
switch (getLexer().getKind()) {
default:
Error(Parser.getTok().getLoc(), "unexpected token in operand");
return true;
case AsmToken::Dollar: {
// Parse the register.
SMLoc S = Parser.getTok().getLoc();
// Almost all registers have been parsed by custom parsers. There is only
// one exception to this. $zero (and it's alias $0) will reach this point
// for div, divu, and similar instructions because it is not an operand
// to the instruction definition but an explicit register. Special case
// this situation for now.
if (parseAnyRegister(Operands) != MatchOperand_NoMatch)
return false;
// Maybe it is a symbol reference.
StringRef Identifier;
if (Parser.parseIdentifier(Identifier))
return true;
SMLoc E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
MCSymbol *Sym = getContext().getOrCreateSymbol("$" + Identifier);
// Otherwise create a symbol reference.
const MCExpr *Res =
MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None, getContext());
Operands.push_back(MipsOperand::CreateImm(Res, S, E, *this));
return false;
}
// Else drop to expression parsing.
case AsmToken::LParen:
case AsmToken::Minus:
case AsmToken::Plus:
case AsmToken::Integer:
case AsmToken::Tilde:
case AsmToken::String: {
DEBUG(dbgs() << ".. generic integer\n");
OperandMatchResultTy ResTy = parseImm(Operands);
return ResTy != MatchOperand_Success;
}
case AsmToken::Percent: {
// It is a symbol reference or constant expression.
const MCExpr *IdVal;
SMLoc S = Parser.getTok().getLoc(); // Start location of the operand.
if (parseRelocOperand(IdVal))
return true;
SMLoc E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
Operands.push_back(MipsOperand::CreateImm(IdVal, S, E, *this));
return false;
} // case AsmToken::Percent
} // switch(getLexer().getKind())
return true;
}
const MCExpr *MipsAsmParser::evaluateRelocExpr(const MCExpr *Expr,
StringRef RelocStr) {
const MCExpr *Res;
// Check the type of the expression.
if (const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(Expr)) {
// It's a constant, evaluate reloc value.
int16_t Val;
switch (getVariantKind(RelocStr)) {
case MCSymbolRefExpr::VK_Mips_ABS_LO:
// Get the 1st 16-bits.
Val = MCE->getValue() & 0xffff;
break;
case MCSymbolRefExpr::VK_Mips_ABS_HI:
// Get the 2nd 16-bits. Also add 1 if bit 15 is 1, to compensate for low
// 16 bits being negative.
Val = ((MCE->getValue() + 0x8000) >> 16) & 0xffff;
break;
case MCSymbolRefExpr::VK_Mips_HIGHER:
// Get the 3rd 16-bits.
Val = ((MCE->getValue() + 0x80008000LL) >> 32) & 0xffff;
break;
case MCSymbolRefExpr::VK_Mips_HIGHEST:
// Get the 4th 16-bits.
Val = ((MCE->getValue() + 0x800080008000LL) >> 48) & 0xffff;
break;
default:
report_fatal_error("unsupported reloc value");
}
return MCConstantExpr::create(Val, getContext());
}
if (const MCSymbolRefExpr *MSRE = dyn_cast<MCSymbolRefExpr>(Expr)) {
// It's a symbol, create a symbolic expression from the symbol.
const MCSymbol *Symbol = &MSRE->getSymbol();
MCSymbolRefExpr::VariantKind VK = getVariantKind(RelocStr);
Res = MCSymbolRefExpr::create(Symbol, VK, getContext());
return Res;
}
if (const MCBinaryExpr *BE = dyn_cast<MCBinaryExpr>(Expr)) {
MCSymbolRefExpr::VariantKind VK = getVariantKind(RelocStr);
// Try to create target expression.
if (MipsMCExpr::isSupportedBinaryExpr(VK, BE))
return MipsMCExpr::create(VK, Expr, getContext());
const MCExpr *LExp = evaluateRelocExpr(BE->getLHS(), RelocStr);
const MCExpr *RExp = evaluateRelocExpr(BE->getRHS(), RelocStr);
Res = MCBinaryExpr::create(BE->getOpcode(), LExp, RExp, getContext());
return Res;
}
if (const MCUnaryExpr *UN = dyn_cast<MCUnaryExpr>(Expr)) {
const MCExpr *UnExp = evaluateRelocExpr(UN->getSubExpr(), RelocStr);
Res = MCUnaryExpr::create(UN->getOpcode(), UnExp, getContext());
return Res;
}
// Just return the original expression.
return Expr;
}
bool MipsAsmParser::isEvaluated(const MCExpr *Expr) {
switch (Expr->getKind()) {
case MCExpr::Constant:
return true;
case MCExpr::SymbolRef:
return (cast<MCSymbolRefExpr>(Expr)->getKind() != MCSymbolRefExpr::VK_None);
case MCExpr::Binary:
if (const MCBinaryExpr *BE = dyn_cast<MCBinaryExpr>(Expr)) {
if (!isEvaluated(BE->getLHS()))
return false;
return isEvaluated(BE->getRHS());
}
case MCExpr::Unary:
return isEvaluated(cast<MCUnaryExpr>(Expr)->getSubExpr());
case MCExpr::Target:
return true;
}
return false;
}
bool MipsAsmParser::parseRelocOperand(const MCExpr *&Res) {
MCAsmParser &Parser = getParser();
Parser.Lex(); // Eat the % token.
const AsmToken &Tok = Parser.getTok(); // Get next token, operation.
if (Tok.isNot(AsmToken::Identifier))
return true;
std::string Str = Tok.getIdentifier();
Parser.Lex(); // Eat the identifier.
// Now make an expression from the rest of the operand.
const MCExpr *IdVal;
SMLoc EndLoc;
if (getLexer().getKind() == AsmToken::LParen) {
while (1) {
Parser.Lex(); // Eat the '(' token.
if (getLexer().getKind() == AsmToken::Percent) {
Parser.Lex(); // Eat the % token.
const AsmToken &nextTok = Parser.getTok();
if (nextTok.isNot(AsmToken::Identifier))
return true;
Str += "(%";
Str += nextTok.getIdentifier();
Parser.Lex(); // Eat the identifier.
if (getLexer().getKind() != AsmToken::LParen)
return true;
} else
break;
}
if (getParser().parseParenExpression(IdVal, EndLoc))
return true;
while (getLexer().getKind() == AsmToken::RParen)
Parser.Lex(); // Eat the ')' token.
} else
return true; // Parenthesis must follow the relocation operand.
Res = evaluateRelocExpr(IdVal, Str);
return false;
}
bool MipsAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc,
SMLoc &EndLoc) {
SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Operands;
OperandMatchResultTy ResTy = parseAnyRegister(Operands);
if (ResTy == MatchOperand_Success) {
assert(Operands.size() == 1);
MipsOperand &Operand = static_cast<MipsOperand &>(*Operands.front());
StartLoc = Operand.getStartLoc();
EndLoc = Operand.getEndLoc();
// AFAIK, we only support numeric registers and named GPR's in CFI
// directives.
// Don't worry about eating tokens before failing. Using an unrecognised
// register is a parse error.
if (Operand.isGPRAsmReg()) {
// Resolve to GPR32 or GPR64 appropriately.
RegNo = isGP64bit() ? Operand.getGPR64Reg() : Operand.getGPR32Reg();
}
return (RegNo == (unsigned)-1);
}
assert(Operands.size() == 0);
return (RegNo == (unsigned)-1);
}
bool MipsAsmParser::parseMemOffset(const MCExpr *&Res, bool isParenExpr) {
MCAsmParser &Parser = getParser();
SMLoc S;
bool Result = true;
unsigned NumOfLParen = 0;
while (getLexer().getKind() == AsmToken::LParen) {
Parser.Lex();
++NumOfLParen;
}
switch (getLexer().getKind()) {
default:
return true;
case AsmToken::Identifier:
case AsmToken::LParen:
case AsmToken::Integer:
case AsmToken::Minus:
case AsmToken::Plus:
if (isParenExpr)
Result = getParser().parseParenExprOfDepth(NumOfLParen, Res, S);
else
Result = (getParser().parseExpression(Res));
while (getLexer().getKind() == AsmToken::RParen)
Parser.Lex();
break;
case AsmToken::Percent:
Result = parseRelocOperand(Res);
}
return Result;
}
MipsAsmParser::OperandMatchResultTy
MipsAsmParser::parseMemOperand(OperandVector &Operands) {
MCAsmParser &Parser = getParser();
DEBUG(dbgs() << "parseMemOperand\n");
const MCExpr *IdVal = nullptr;
SMLoc S;
bool isParenExpr = false;
MipsAsmParser::OperandMatchResultTy Res = MatchOperand_NoMatch;
// First operand is the offset.
S = Parser.getTok().getLoc();
if (getLexer().getKind() == AsmToken::LParen) {
Parser.Lex();
isParenExpr = true;
}
if (getLexer().getKind() != AsmToken::Dollar) {
if (parseMemOffset(IdVal, isParenExpr))
return MatchOperand_ParseFail;
const AsmToken &Tok = Parser.getTok(); // Get the next token.
if (Tok.isNot(AsmToken::LParen)) {
MipsOperand &Mnemonic = static_cast<MipsOperand &>(*Operands[0]);
if (Mnemonic.getToken() == "la") {
SMLoc E =
SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
Operands.push_back(MipsOperand::CreateImm(IdVal, S, E, *this));
return MatchOperand_Success;
}
if (Tok.is(AsmToken::EndOfStatement)) {
SMLoc E =
SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
// Zero register assumed, add a memory operand with ZERO as its base.
// "Base" will be managed by k_Memory.
auto Base = MipsOperand::createGPRReg(0, getContext().getRegisterInfo(),
S, E, *this);
Operands.push_back(
MipsOperand::CreateMem(std::move(Base), IdVal, S, E, *this));
return MatchOperand_Success;
}
Error(Parser.getTok().getLoc(), "'(' expected");
return MatchOperand_ParseFail;
}
Parser.Lex(); // Eat the '(' token.
}
Res = parseAnyRegister(Operands);
if (Res != MatchOperand_Success)
return Res;
if (Parser.getTok().isNot(AsmToken::RParen)) {
Error(Parser.getTok().getLoc(), "')' expected");
return MatchOperand_ParseFail;
}
SMLoc E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
Parser.Lex(); // Eat the ')' token.
if (!IdVal)
IdVal = MCConstantExpr::create(0, getContext());
// Replace the register operand with the memory operand.
std::unique_ptr<MipsOperand> op(
static_cast<MipsOperand *>(Operands.back().release()));
// Remove the register from the operands.
// "op" will be managed by k_Memory.
Operands.pop_back();
// Add the memory operand.
if (const MCBinaryExpr *BE = dyn_cast<MCBinaryExpr>(IdVal)) {
int64_t Imm;
if (IdVal->evaluateAsAbsolute(Imm))
IdVal = MCConstantExpr::create(Imm, getContext());
else if (BE->getLHS()->getKind() != MCExpr::SymbolRef)
IdVal = MCBinaryExpr::create(BE->getOpcode(), BE->getRHS(), BE->getLHS(),
getContext());
}
Operands.push_back(MipsOperand::CreateMem(std::move(op), IdVal, S, E, *this));
return MatchOperand_Success;
}
bool MipsAsmParser::searchSymbolAlias(OperandVector &Operands) {
MCAsmParser &Parser = getParser();
MCSymbol *Sym = getContext().lookupSymbol(Parser.getTok().getIdentifier());
if (Sym) {
SMLoc S = Parser.getTok().getLoc();
const MCExpr *Expr;
if (Sym->isVariable())
Expr = Sym->getVariableValue();
else
return false;
if (Expr->getKind() == MCExpr::SymbolRef) {
const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr *>(Expr);
StringRef DefSymbol = Ref->getSymbol().getName();
if (DefSymbol.startswith("$")) {
OperandMatchResultTy ResTy =
matchAnyRegisterNameWithoutDollar(Operands, DefSymbol.substr(1), S);
if (ResTy == MatchOperand_Success) {
Parser.Lex();
return true;
} else if (ResTy == MatchOperand_ParseFail)
llvm_unreachable("Should never ParseFail");
return false;
}
} else if (Expr->getKind() == MCExpr::Constant) {
Parser.Lex();
const MCConstantExpr *Const = static_cast<const MCConstantExpr *>(Expr);
Operands.push_back(
MipsOperand::CreateImm(Const, S, Parser.getTok().getLoc(), *this));
return true;
}
}
return false;
}
MipsAsmParser::OperandMatchResultTy
MipsAsmParser::matchAnyRegisterNameWithoutDollar(OperandVector &Operands,
StringRef Identifier,
SMLoc S) {
int Index = matchCPURegisterName(Identifier);
if (Index != -1) {
Operands.push_back(MipsOperand::createGPRReg(
Index, getContext().getRegisterInfo(), S, getLexer().getLoc(), *this));
return MatchOperand_Success;
}
Index = matchHWRegsRegisterName(Identifier);
if (Index != -1) {
Operands.push_back(MipsOperand::createHWRegsReg(
Index, getContext().getRegisterInfo(), S, getLexer().getLoc(), *this));
return MatchOperand_Success;
}
Index = matchFPURegisterName(Identifier);
if (Index != -1) {
Operands.push_back(MipsOperand::createFGRReg(
Index, getContext().getRegisterInfo(), S, getLexer().getLoc(), *this));
return MatchOperand_Success;
}
Index = matchFCCRegisterName(Identifier);
if (Index != -1) {
Operands.push_back(MipsOperand::createFCCReg(
Index, getContext().getRegisterInfo(), S, getLexer().getLoc(), *this));
return MatchOperand_Success;
}
Index = matchACRegisterName(Identifier);
if (Index != -1) {
Operands.push_back(MipsOperand::createACCReg(
Index, getContext().getRegisterInfo(), S, getLexer().getLoc(), *this));
return MatchOperand_Success;
}
Index = matchMSA128RegisterName(Identifier);
if (Index != -1) {
Operands.push_back(MipsOperand::createMSA128Reg(
Index, getContext().getRegisterInfo(), S, getLexer().getLoc(), *this));
return MatchOperand_Success;
}
Index = matchMSA128CtrlRegisterName(Identifier);
if (Index != -1) {
Operands.push_back(MipsOperand::createMSACtrlReg(
Index, getContext().getRegisterInfo(), S, getLexer().getLoc(), *this));
return MatchOperand_Success;
}
return MatchOperand_NoMatch;
}
MipsAsmParser::OperandMatchResultTy
MipsAsmParser::matchAnyRegisterWithoutDollar(OperandVector &Operands, SMLoc S) {
MCAsmParser &Parser = getParser();
auto Token = Parser.getLexer().peekTok(false);
if (Token.is(AsmToken::Identifier)) {
DEBUG(dbgs() << ".. identifier\n");
StringRef Identifier = Token.getIdentifier();
OperandMatchResultTy ResTy =
matchAnyRegisterNameWithoutDollar(Operands, Identifier, S);
return ResTy;
} else if (Token.is(AsmToken::Integer)) {
DEBUG(dbgs() << ".. integer\n");
Operands.push_back(MipsOperand::createNumericReg(
Token.getIntVal(), getContext().getRegisterInfo(), S, Token.getLoc(),
*this));
return MatchOperand_Success;
}
DEBUG(dbgs() << Parser.getTok().getKind() << "\n");
return MatchOperand_NoMatch;
}
MipsAsmParser::OperandMatchResultTy
MipsAsmParser::parseAnyRegister(OperandVector &Operands) {
MCAsmParser &Parser = getParser();
DEBUG(dbgs() << "parseAnyRegister\n");
auto Token = Parser.getTok();
SMLoc S = Token.getLoc();
if (Token.isNot(AsmToken::Dollar)) {
DEBUG(dbgs() << ".. !$ -> try sym aliasing\n");
if (Token.is(AsmToken::Identifier)) {
if (searchSymbolAlias(Operands))
return MatchOperand_Success;
}
DEBUG(dbgs() << ".. !symalias -> NoMatch\n");
return MatchOperand_NoMatch;
}
DEBUG(dbgs() << ".. $\n");
OperandMatchResultTy ResTy = matchAnyRegisterWithoutDollar(Operands, S);
if (ResTy == MatchOperand_Success) {
Parser.Lex(); // $
Parser.Lex(); // identifier
}
return ResTy;
}
MipsAsmParser::OperandMatchResultTy
MipsAsmParser::parseImm(OperandVector &Operands) {
MCAsmParser &Parser = getParser();
switch (getLexer().getKind()) {
default:
return MatchOperand_NoMatch;
case AsmToken::LParen:
case AsmToken::Minus:
case AsmToken::Plus:
case AsmToken::Integer:
case AsmToken::Tilde:
case AsmToken::String:
break;
}
const MCExpr *IdVal;
SMLoc S = Parser.getTok().getLoc();
if (getParser().parseExpression(IdVal))
return MatchOperand_ParseFail;
SMLoc E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
Operands.push_back(MipsOperand::CreateImm(IdVal, S, E, *this));
return MatchOperand_Success;
}
MipsAsmParser::OperandMatchResultTy
MipsAsmParser::parseJumpTarget(OperandVector &Operands) {
MCAsmParser &Parser = getParser();
DEBUG(dbgs() << "parseJumpTarget\n");
SMLoc S = getLexer().getLoc();
// Integers and expressions are acceptable
OperandMatchResultTy ResTy = parseImm(Operands);
if (ResTy != MatchOperand_NoMatch)
return ResTy;
// Registers are a valid target and have priority over symbols.
ResTy = parseAnyRegister(Operands);
if (ResTy != MatchOperand_NoMatch)
return ResTy;
const MCExpr *Expr = nullptr;
if (Parser.parseExpression(Expr)) {
// We have no way of knowing if a symbol was consumed so we must ParseFail
return MatchOperand_ParseFail;
}
Operands.push_back(
MipsOperand::CreateImm(Expr, S, getLexer().getLoc(), *this));
return MatchOperand_Success;
}
MipsAsmParser::OperandMatchResultTy
MipsAsmParser::parseInvNum(OperandVector &Operands) {
MCAsmParser &Parser = getParser();
const MCExpr *IdVal;
// If the first token is '$' we may have register operand.
if (Parser.getTok().is(AsmToken::Dollar))
return MatchOperand_NoMatch;
SMLoc S = Parser.getTok().getLoc();
if (getParser().parseExpression(IdVal))
return MatchOperand_ParseFail;
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(IdVal);
assert(MCE && "Unexpected MCExpr type.");
int64_t Val = MCE->getValue();
SMLoc E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
Operands.push_back(MipsOperand::CreateImm(
MCConstantExpr::create(0 - Val, getContext()), S, E, *this));
return MatchOperand_Success;
}
MipsAsmParser::OperandMatchResultTy
MipsAsmParser::parseLSAImm(OperandVector &Operands) {
MCAsmParser &Parser = getParser();
switch (getLexer().getKind()) {
default:
return MatchOperand_NoMatch;
case AsmToken::LParen:
case AsmToken::Plus:
case AsmToken::Minus:
case AsmToken::Integer:
break;
}
const MCExpr *Expr;
SMLoc S = Parser.getTok().getLoc();
if (getParser().parseExpression(Expr))
return MatchOperand_ParseFail;
int64_t Val;
if (!Expr->evaluateAsAbsolute(Val)) {
Error(S, "expected immediate value");
return MatchOperand_ParseFail;
}
// The LSA instruction allows a 2-bit unsigned immediate. For this reason
// and because the CPU always adds one to the immediate field, the allowed
// range becomes 1..4. We'll only check the range here and will deal
// with the addition/subtraction when actually decoding/encoding
// the instruction.
if (Val < 1 || Val > 4) {
Error(S, "immediate not in range (1..4)");
return MatchOperand_ParseFail;
}
Operands.push_back(
MipsOperand::CreateImm(Expr, S, Parser.getTok().getLoc(), *this));
return MatchOperand_Success;
}
MipsAsmParser::OperandMatchResultTy
MipsAsmParser::parseRegisterList(OperandVector &Operands) {
MCAsmParser &Parser = getParser();
SmallVector<unsigned, 10> Regs;
unsigned RegNo;
unsigned PrevReg = Mips::NoRegister;
bool RegRange = false;
SmallVector<std::unique_ptr<MCParsedAsmOperand>, 8> TmpOperands;
if (Parser.getTok().isNot(AsmToken::Dollar))
return MatchOperand_ParseFail;
SMLoc S = Parser.getTok().getLoc();
while (parseAnyRegister(TmpOperands) == MatchOperand_Success) {
SMLoc E = getLexer().getLoc();
MipsOperand &Reg = static_cast<MipsOperand &>(*TmpOperands.back());
RegNo = isGP64bit() ? Reg.getGPR64Reg() : Reg.getGPR32Reg();
if (RegRange) {
// Remove last register operand because registers from register range
// should be inserted first.
if (RegNo == Mips::RA) {
Regs.push_back(RegNo);
} else {
unsigned TmpReg = PrevReg + 1;
while (TmpReg <= RegNo) {
if ((TmpReg < Mips::S0) || (TmpReg > Mips::S7)) {
Error(E, "invalid register operand");
return MatchOperand_ParseFail;
}
PrevReg = TmpReg;
Regs.push_back(TmpReg++);
}
}
RegRange = false;
} else {
if ((PrevReg == Mips::NoRegister) && (RegNo != Mips::S0) &&
(RegNo != Mips::RA)) {
Error(E, "$16 or $31 expected");
return MatchOperand_ParseFail;
} else if (((RegNo < Mips::S0) || (RegNo > Mips::S7)) &&
(RegNo != Mips::FP) && (RegNo != Mips::RA)) {
Error(E, "invalid register operand");
return MatchOperand_ParseFail;
} else if ((PrevReg != Mips::NoRegister) && (RegNo != PrevReg + 1) &&
(RegNo != Mips::FP) && (RegNo != Mips::RA)) {
Error(E, "consecutive register numbers expected");
return MatchOperand_ParseFail;
}
Regs.push_back(RegNo);
}
if (Parser.getTok().is(AsmToken::Minus))
RegRange = true;
if (!Parser.getTok().isNot(AsmToken::Minus) &&
!Parser.getTok().isNot(AsmToken::Comma)) {
Error(E, "',' or '-' expected");
return MatchOperand_ParseFail;
}
Lex(); // Consume comma or minus
if (Parser.getTok().isNot(AsmToken::Dollar))
break;
PrevReg = RegNo;
}
SMLoc E = Parser.getTok().getLoc();
Operands.push_back(MipsOperand::CreateRegList(Regs, S, E, *this));
parseMemOperand(Operands);
return MatchOperand_Success;
}
MipsAsmParser::OperandMatchResultTy
MipsAsmParser::parseRegisterPair(OperandVector &Operands) {
MCAsmParser &Parser = getParser();
SMLoc S = Parser.getTok().getLoc();
if (parseAnyRegister(Operands) != MatchOperand_Success)
return MatchOperand_ParseFail;
SMLoc E = Parser.getTok().getLoc();
MipsOperand &Op = static_cast<MipsOperand &>(*Operands.back());
unsigned Reg = Op.getGPR32Reg();
Operands.pop_back();
Operands.push_back(MipsOperand::CreateRegPair(Reg, S, E, *this));
return MatchOperand_Success;
}
MipsAsmParser::OperandMatchResultTy
MipsAsmParser::parseMovePRegPair(OperandVector &Operands) {
MCAsmParser &Parser = getParser();
SmallVector<std::unique_ptr<MCParsedAsmOperand>, 8> TmpOperands;
SmallVector<unsigned, 10> Regs;
if (Parser.getTok().isNot(AsmToken::Dollar))
return MatchOperand_ParseFail;
SMLoc S = Parser.getTok().getLoc();
if (parseAnyRegister(TmpOperands) != MatchOperand_Success)
return MatchOperand_ParseFail;
MipsOperand *Reg = &static_cast<MipsOperand &>(*TmpOperands.back());
unsigned RegNo = isGP64bit() ? Reg->getGPR64Reg() : Reg->getGPR32Reg();
Regs.push_back(RegNo);
SMLoc E = Parser.getTok().getLoc();
if (Parser.getTok().isNot(AsmToken::Comma)) {
Error(E, "',' expected");
return MatchOperand_ParseFail;
}
// Remove comma.
Parser.Lex();
if (parseAnyRegister(TmpOperands) != MatchOperand_Success)
return MatchOperand_ParseFail;
Reg = &static_cast<MipsOperand &>(*TmpOperands.back());
RegNo = isGP64bit() ? Reg->getGPR64Reg() : Reg->getGPR32Reg();
Regs.push_back(RegNo);
Operands.push_back(MipsOperand::CreateRegList(Regs, S, E, *this));
return MatchOperand_Success;
}
MCSymbolRefExpr::VariantKind MipsAsmParser::getVariantKind(StringRef Symbol) {
MCSymbolRefExpr::VariantKind VK =
StringSwitch<MCSymbolRefExpr::VariantKind>(Symbol)
.Case("hi", MCSymbolRefExpr::VK_Mips_ABS_HI)
.Case("lo", MCSymbolRefExpr::VK_Mips_ABS_LO)
.Case("gp_rel", MCSymbolRefExpr::VK_Mips_GPREL)
.Case("call16", MCSymbolRefExpr::VK_Mips_GOT_CALL)
.Case("got", MCSymbolRefExpr::VK_Mips_GOT)
.Case("tlsgd", MCSymbolRefExpr::VK_Mips_TLSGD)
.Case("tlsldm", MCSymbolRefExpr::VK_Mips_TLSLDM)
.Case("dtprel_hi", MCSymbolRefExpr::VK_Mips_DTPREL_HI)
.Case("dtprel_lo", MCSymbolRefExpr::VK_Mips_DTPREL_LO)
.Case("gottprel", MCSymbolRefExpr::VK_Mips_GOTTPREL)
.Case("tprel_hi", MCSymbolRefExpr::VK_Mips_TPREL_HI)
.Case("tprel_lo", MCSymbolRefExpr::VK_Mips_TPREL_LO)
.Case("got_disp", MCSymbolRefExpr::VK_Mips_GOT_DISP)
.Case("got_page", MCSymbolRefExpr::VK_Mips_GOT_PAGE)
.Case("got_ofst", MCSymbolRefExpr::VK_Mips_GOT_OFST)
.Case("hi(%neg(%gp_rel", MCSymbolRefExpr::VK_Mips_GPOFF_HI)
.Case("lo(%neg(%gp_rel", MCSymbolRefExpr::VK_Mips_GPOFF_LO)
.Case("got_hi", MCSymbolRefExpr::VK_Mips_GOT_HI16)
.Case("got_lo", MCSymbolRefExpr::VK_Mips_GOT_LO16)
.Case("call_hi", MCSymbolRefExpr::VK_Mips_CALL_HI16)
.Case("call_lo", MCSymbolRefExpr::VK_Mips_CALL_LO16)
.Case("higher", MCSymbolRefExpr::VK_Mips_HIGHER)
.Case("highest", MCSymbolRefExpr::VK_Mips_HIGHEST)
.Case("pcrel_hi", MCSymbolRefExpr::VK_Mips_PCREL_HI16)
.Case("pcrel_lo", MCSymbolRefExpr::VK_Mips_PCREL_LO16)
.Default(MCSymbolRefExpr::VK_None);
assert(VK != MCSymbolRefExpr::VK_None);
return VK;
}
/// Sometimes (i.e. load/stores) the operand may be followed immediately by
/// either this.
/// ::= '(', register, ')'
/// handle it before we iterate so we don't get tripped up by the lack of
/// a comma.
bool MipsAsmParser::parseParenSuffix(StringRef Name, OperandVector &Operands) {
MCAsmParser &Parser = getParser();
if (getLexer().is(AsmToken::LParen)) {
Operands.push_back(
MipsOperand::CreateToken("(", getLexer().getLoc(), *this));
Parser.Lex();
if (parseOperand(Operands, Name)) {
SMLoc Loc = getLexer().getLoc();
Parser.eatToEndOfStatement();
return Error(Loc, "unexpected token in argument list");
}
if (Parser.getTok().isNot(AsmToken::RParen)) {
SMLoc Loc = getLexer().getLoc();
Parser.eatToEndOfStatement();
return Error(Loc, "unexpected token, expected ')'");
}
Operands.push_back(
MipsOperand::CreateToken(")", getLexer().getLoc(), *this));
Parser.Lex();
}
return false;
}
/// Sometimes (i.e. in MSA) the operand may be followed immediately by
/// either one of these.
/// ::= '[', register, ']'
/// ::= '[', integer, ']'
/// handle it before we iterate so we don't get tripped up by the lack of
/// a comma.
bool MipsAsmParser::parseBracketSuffix(StringRef Name,
OperandVector &Operands) {
MCAsmParser &Parser = getParser();
if (getLexer().is(AsmToken::LBrac)) {
Operands.push_back(
MipsOperand::CreateToken("[", getLexer().getLoc(), *this));
Parser.Lex();
if (parseOperand(Operands, Name)) {
SMLoc Loc = getLexer().getLoc();
Parser.eatToEndOfStatement();
return Error(Loc, "unexpected token in argument list");
}
if (Parser.getTok().isNot(AsmToken::RBrac)) {
SMLoc Loc = getLexer().getLoc();
Parser.eatToEndOfStatement();
return Error(Loc, "unexpected token, expected ']'");
}
Operands.push_back(
MipsOperand::CreateToken("]", getLexer().getLoc(), *this));
Parser.Lex();
}
return false;
}
bool MipsAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
SMLoc NameLoc, OperandVector &Operands) {
MCAsmParser &Parser = getParser();
DEBUG(dbgs() << "ParseInstruction\n");
// We have reached first instruction, module directive are now forbidden.
getTargetStreamer().forbidModuleDirective();
// Check if we have valid mnemonic
if (!mnemonicIsValid(Name, 0)) {
Parser.eatToEndOfStatement();
return Error(NameLoc, "unknown instruction");
}
// First operand in MCInst is instruction mnemonic.
Operands.push_back(MipsOperand::CreateToken(Name, NameLoc, *this));
// Read the remaining operands.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
// Read the first operand.
if (parseOperand(Operands, Name)) {
SMLoc Loc = getLexer().getLoc();
Parser.eatToEndOfStatement();
return Error(Loc, "unexpected token in argument list");
}
if (getLexer().is(AsmToken::LBrac) && parseBracketSuffix(Name, Operands))
return true;
// AFAIK, parenthesis suffixes are never on the first operand
while (getLexer().is(AsmToken::Comma)) {
Parser.Lex(); // Eat the comma.
// Parse and remember the operand.
if (parseOperand(Operands, Name)) {
SMLoc Loc = getLexer().getLoc();
Parser.eatToEndOfStatement();
return Error(Loc, "unexpected token in argument list");
}
// Parse bracket and parenthesis suffixes before we iterate
if (getLexer().is(AsmToken::LBrac)) {
if (parseBracketSuffix(Name, Operands))
return true;
} else if (getLexer().is(AsmToken::LParen) &&
parseParenSuffix(Name, Operands))
return true;
}
}
if (getLexer().isNot(AsmToken::EndOfStatement)) {
SMLoc Loc = getLexer().getLoc();
Parser.eatToEndOfStatement();
return Error(Loc, "unexpected token in argument list");
}
Parser.Lex(); // Consume the EndOfStatement.
return false;
}
bool MipsAsmParser::reportParseError(Twine ErrorMsg) {
MCAsmParser &Parser = getParser();
SMLoc Loc = getLexer().getLoc();
Parser.eatToEndOfStatement();
return Error(Loc, ErrorMsg);
}
bool MipsAsmParser::reportParseError(SMLoc Loc, Twine ErrorMsg) {
return Error(Loc, ErrorMsg);
}
bool MipsAsmParser::parseSetNoAtDirective() {
MCAsmParser &Parser = getParser();
// Line should look like: ".set noat".
// Set the $at register to $0.
AssemblerOptions.back()->setATRegIndex(0);
Parser.Lex(); // Eat "noat".
// If this is not the end of the statement, report an error.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
reportParseError("unexpected token, expected end of statement");
return false;
}
getTargetStreamer().emitDirectiveSetNoAt();
Parser.Lex(); // Consume the EndOfStatement.
return false;
}
bool MipsAsmParser::parseSetAtDirective() {
// Line can be: ".set at", which sets $at to $1
// or ".set at=$reg", which sets $at to $reg.
MCAsmParser &Parser = getParser();
Parser.Lex(); // Eat "at".
if (getLexer().is(AsmToken::EndOfStatement)) {
// No register was specified, so we set $at to $1.
AssemblerOptions.back()->setATRegIndex(1);
getTargetStreamer().emitDirectiveSetAt();
Parser.Lex(); // Consume the EndOfStatement.
return false;
}
if (getLexer().isNot(AsmToken::Equal)) {
reportParseError("unexpected token, expected equals sign");
return false;
}
Parser.Lex(); // Eat "=".
if (getLexer().isNot(AsmToken::Dollar)) {
if (getLexer().is(AsmToken::EndOfStatement)) {
reportParseError("no register specified");
return false;
} else {
reportParseError("unexpected token, expected dollar sign '$'");
return false;
}
}
Parser.Lex(); // Eat "$".
// Find out what "reg" is.
unsigned AtRegNo;
const AsmToken &Reg = Parser.getTok();
if (Reg.is(AsmToken::Identifier)) {
AtRegNo = matchCPURegisterName(Reg.getIdentifier());
} else if (Reg.is(AsmToken::Integer)) {
AtRegNo = Reg.getIntVal();
} else {
reportParseError("unexpected token, expected identifier or integer");
return false;
}
// Check if $reg is a valid register. If it is, set $at to $reg.
if (!AssemblerOptions.back()->setATRegIndex(AtRegNo)) {
reportParseError("invalid register");
return false;
}
Parser.Lex(); // Eat "reg".
// If this is not the end of the statement, report an error.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
reportParseError("unexpected token, expected end of statement");
return false;
}
getTargetStreamer().emitDirectiveSetAtWithArg(AtRegNo);
Parser.Lex(); // Consume the EndOfStatement.
return false;
}
bool MipsAsmParser::parseSetReorderDirective() {
MCAsmParser &Parser = getParser();
Parser.Lex();
// If this is not the end of the statement, report an error.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
reportParseError("unexpected token, expected end of statement");
return false;
}
AssemblerOptions.back()->setReorder();
getTargetStreamer().emitDirectiveSetReorder();
Parser.Lex(); // Consume the EndOfStatement.
return false;
}
bool MipsAsmParser::parseSetNoReorderDirective() {
MCAsmParser &Parser = getParser();
Parser.Lex();
// If this is not the end of the statement, report an error.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
reportParseError("unexpected token, expected end of statement");
return false;
}
AssemblerOptions.back()->setNoReorder();
getTargetStreamer().emitDirectiveSetNoReorder();
Parser.Lex(); // Consume the EndOfStatement.
return false;
}
bool MipsAsmParser::parseSetMacroDirective() {
MCAsmParser &Parser = getParser();
Parser.Lex();
// If this is not the end of the statement, report an error.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
reportParseError("unexpected token, expected end of statement");
return false;
}
AssemblerOptions.back()->setMacro();
getTargetStreamer().emitDirectiveSetMacro();
Parser.Lex(); // Consume the EndOfStatement.
return false;
}
bool MipsAsmParser::parseSetNoMacroDirective() {
MCAsmParser &Parser = getParser();
Parser.Lex();
// If this is not the end of the statement, report an error.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
reportParseError("unexpected token, expected end of statement");
return false;
}
if (AssemblerOptions.back()->isReorder()) {
reportParseError("`noreorder' must be set before `nomacro'");
return false;
}
AssemblerOptions.back()->setNoMacro();
getTargetStreamer().emitDirectiveSetNoMacro();
Parser.Lex(); // Consume the EndOfStatement.
return false;
}
bool MipsAsmParser::parseSetMsaDirective() {
MCAsmParser &Parser = getParser();
Parser.Lex();
// If this is not the end of the statement, report an error.
if (getLexer().isNot(AsmToken::EndOfStatement))
return reportParseError("unexpected token, expected end of statement");
setFeatureBits(Mips::FeatureMSA, "msa");
getTargetStreamer().emitDirectiveSetMsa();
return false;
}
bool MipsAsmParser::parseSetNoMsaDirective() {
MCAsmParser &Parser = getParser();
Parser.Lex();
// If this is not the end of the statement, report an error.
if (getLexer().isNot(AsmToken::EndOfStatement))
return reportParseError("unexpected token, expected end of statement");
clearFeatureBits(Mips::FeatureMSA, "msa");
getTargetStreamer().emitDirectiveSetNoMsa();
return false;
}
bool MipsAsmParser::parseSetNoDspDirective() {
MCAsmParser &Parser = getParser();
Parser.Lex(); // Eat "nodsp".
// If this is not the end of the statement, report an error.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
reportParseError("unexpected token, expected end of statement");
return false;
}
clearFeatureBits(Mips::FeatureDSP, "dsp");
getTargetStreamer().emitDirectiveSetNoDsp();
return false;
}
bool MipsAsmParser::parseSetMips16Directive() {
MCAsmParser &Parser = getParser();
Parser.Lex(); // Eat "mips16".
// If this is not the end of the statement, report an error.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
reportParseError("unexpected token, expected end of statement");
return false;
}
setFeatureBits(Mips::FeatureMips16, "mips16");
getTargetStreamer().emitDirectiveSetMips16();
Parser.Lex(); // Consume the EndOfStatement.
return false;
}
bool MipsAsmParser::parseSetNoMips16Directive() {
MCAsmParser &Parser = getParser();
Parser.Lex(); // Eat "nomips16".
// If this is not the end of the statement, report an error.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
reportParseError("unexpected token, expected end of statement");
return false;
}
clearFeatureBits(Mips::FeatureMips16, "mips16");
getTargetStreamer().emitDirectiveSetNoMips16();
Parser.Lex(); // Consume the EndOfStatement.
return false;
}
bool MipsAsmParser::parseSetFpDirective() {
MCAsmParser &Parser = getParser();
MipsABIFlagsSection::FpABIKind FpAbiVal;
// Line can be: .set fp=32
// .set fp=xx
// .set fp=64
Parser.Lex(); // Eat fp token
AsmToken Tok = Parser.getTok();
if (Tok.isNot(AsmToken::Equal)) {
reportParseError("unexpected token, expected equals sign '='");
return false;
}
Parser.Lex(); // Eat '=' token.
Tok = Parser.getTok();
if (!parseFpABIValue(FpAbiVal, ".set"))
return false;
if (getLexer().isNot(AsmToken::EndOfStatement)) {
reportParseError("unexpected token, expected end of statement");
return false;
}
getTargetStreamer().emitDirectiveSetFp(FpAbiVal);
Parser.Lex(); // Consume the EndOfStatement.
return false;
}
bool MipsAsmParser::parseSetOddSPRegDirective() {
MCAsmParser &Parser = getParser();
Parser.Lex(); // Eat "oddspreg".
if (getLexer().isNot(AsmToken::EndOfStatement)) {
reportParseError("unexpected token, expected end of statement");
return false;
}
clearFeatureBits(Mips::FeatureNoOddSPReg, "nooddspreg");
getTargetStreamer().emitDirectiveSetOddSPReg();
return false;
}
bool MipsAsmParser::parseSetNoOddSPRegDirective() {
MCAsmParser &Parser = getParser();
Parser.Lex(); // Eat "nooddspreg".
if (getLexer().isNot(AsmToken::EndOfStatement)) {
reportParseError("unexpected token, expected end of statement");
return false;
}
setFeatureBits(Mips::FeatureNoOddSPReg, "nooddspreg");
getTargetStreamer().emitDirectiveSetNoOddSPReg();
return false;
}
bool MipsAsmParser::parseSetPopDirective() {
MCAsmParser &Parser = getParser();
SMLoc Loc = getLexer().getLoc();
Parser.Lex();
if (getLexer().isNot(AsmToken::EndOfStatement))
return reportParseError("unexpected token, expected end of statement");
// Always keep an element on the options "stack" to prevent the user
// from changing the initial options. This is how we remember them.
if (AssemblerOptions.size() == 2)
return reportParseError(Loc, ".set pop with no .set push");
AssemblerOptions.pop_back();
setAvailableFeatures(
ComputeAvailableFeatures(AssemblerOptions.back()->getFeatures()));
STI.setFeatureBits(AssemblerOptions.back()->getFeatures());
getTargetStreamer().emitDirectiveSetPop();
return false;
}
bool MipsAsmParser::parseSetPushDirective() {
MCAsmParser &Parser = getParser();
Parser.Lex();
if (getLexer().isNot(AsmToken::EndOfStatement))
return reportParseError("unexpected token, expected end of statement");
// Create a copy of the current assembler options environment and push it.
AssemblerOptions.push_back(
make_unique<MipsAssemblerOptions>(AssemblerOptions.back().get()));
getTargetStreamer().emitDirectiveSetPush();
return false;
}
bool MipsAsmParser::parseSetSoftFloatDirective() {
MCAsmParser &Parser = getParser();
Parser.Lex();
if (getLexer().isNot(AsmToken::EndOfStatement))
return reportParseError("unexpected token, expected end of statement");
setFeatureBits(Mips::FeatureSoftFloat, "soft-float");
getTargetStreamer().emitDirectiveSetSoftFloat();
return false;
}
bool MipsAsmParser::parseSetHardFloatDirective() {
MCAsmParser &Parser = getParser();
Parser.Lex();
if (getLexer().isNot(AsmToken::EndOfStatement))
return reportParseError("unexpected token, expected end of statement");
clearFeatureBits(Mips::FeatureSoftFloat, "soft-float");
getTargetStreamer().emitDirectiveSetHardFloat();
return false;
}
bool MipsAsmParser::parseSetAssignment() {
StringRef Name;
const MCExpr *Value;
MCAsmParser &Parser = getParser();
if (Parser.parseIdentifier(Name))
reportParseError("expected identifier after .set");
if (getLexer().isNot(AsmToken::Comma))
return reportParseError("unexpected token, expected comma");
Lex(); // Eat comma
if (Parser.parseExpression(Value))
return reportParseError("expected valid expression after comma");
MCSymbol *Sym = getContext().getOrCreateSymbol(Name);
Sym->setVariableValue(Value);
return false;
}
bool MipsAsmParser::parseSetMips0Directive() {
MCAsmParser &Parser = getParser();
Parser.Lex();
if (getLexer().isNot(AsmToken::EndOfStatement))
return reportParseError("unexpected token, expected end of statement");
// Reset assembler options to their initial values.
setAvailableFeatures(
ComputeAvailableFeatures(AssemblerOptions.front()->getFeatures()));
STI.setFeatureBits(AssemblerOptions.front()->getFeatures());
AssemblerOptions.back()->setFeatures(AssemblerOptions.front()->getFeatures());
getTargetStreamer().emitDirectiveSetMips0();
return false;
}
bool MipsAsmParser::parseSetArchDirective() {
MCAsmParser &Parser = getParser();
Parser.Lex();
if (getLexer().isNot(AsmToken::Equal))
return reportParseError("unexpected token, expected equals sign");
Parser.Lex();
StringRef Arch;
if (Parser.parseIdentifier(Arch))
return reportParseError("expected arch identifier");
StringRef ArchFeatureName =
StringSwitch<StringRef>(Arch)
.Case("mips1", "mips1")
.Case("mips2", "mips2")
.Case("mips3", "mips3")
.Case("mips4", "mips4")
.Case("mips5", "mips5")
.Case("mips32", "mips32")
.Case("mips32r2", "mips32r2")
.Case("mips32r3", "mips32r3")
.Case("mips32r5", "mips32r5")
.Case("mips32r6", "mips32r6")
.Case("mips64", "mips64")
.Case("mips64r2", "mips64r2")
.Case("mips64r3", "mips64r3")
.Case("mips64r5", "mips64r5")
.Case("mips64r6", "mips64r6")
.Case("cnmips", "cnmips")
.Case("r4000", "mips3") // This is an implementation of Mips3.
.Default("");
if (ArchFeatureName.empty())
return reportParseError("unsupported architecture");
selectArch(ArchFeatureName);
getTargetStreamer().emitDirectiveSetArch(Arch);
return false;
}
bool MipsAsmParser::parseSetFeature(uint64_t Feature) {
MCAsmParser &Parser = getParser();
Parser.Lex();
if (getLexer().isNot(AsmToken::EndOfStatement))
return reportParseError("unexpected token, expected end of statement");
switch (Feature) {
default:
llvm_unreachable("Unimplemented feature");
case Mips::FeatureDSP:
setFeatureBits(Mips::FeatureDSP, "dsp");
getTargetStreamer().emitDirectiveSetDsp();
break;
case Mips::FeatureMicroMips:
getTargetStreamer().emitDirectiveSetMicroMips();
break;
case Mips::FeatureMips1:
selectArch("mips1");
getTargetStreamer().emitDirectiveSetMips1();
break;
case Mips::FeatureMips2:
selectArch("mips2");
getTargetStreamer().emitDirectiveSetMips2();
break;
case Mips::FeatureMips3:
selectArch("mips3");
getTargetStreamer().emitDirectiveSetMips3();
break;
case Mips::FeatureMips4:
selectArch("mips4");
getTargetStreamer().emitDirectiveSetMips4();
break;
case Mips::FeatureMips5:
selectArch("mips5");
getTargetStreamer().emitDirectiveSetMips5();
break;
case Mips::FeatureMips32:
selectArch("mips32");
getTargetStreamer().emitDirectiveSetMips32();
break;
case Mips::FeatureMips32r2:
selectArch("mips32r2");
getTargetStreamer().emitDirectiveSetMips32R2();
break;
case Mips::FeatureMips32r3:
selectArch("mips32r3");
getTargetStreamer().emitDirectiveSetMips32R3();
break;
case Mips::FeatureMips32r5:
selectArch("mips32r5");
getTargetStreamer().emitDirectiveSetMips32R5();
break;
case Mips::FeatureMips32r6:
selectArch("mips32r6");
getTargetStreamer().emitDirectiveSetMips32R6();
break;
case Mips::FeatureMips64:
selectArch("mips64");
getTargetStreamer().emitDirectiveSetMips64();
break;
case Mips::FeatureMips64r2:
selectArch("mips64r2");
getTargetStreamer().emitDirectiveSetMips64R2();
break;
case Mips::FeatureMips64r3:
selectArch("mips64r3");
getTargetStreamer().emitDirectiveSetMips64R3();
break;
case Mips::FeatureMips64r5:
selectArch("mips64r5");
getTargetStreamer().emitDirectiveSetMips64R5();
break;
case Mips::FeatureMips64r6:
selectArch("mips64r6");
getTargetStreamer().emitDirectiveSetMips64R6();
break;
}
return false;
}
bool MipsAsmParser::eatComma(StringRef ErrorStr) {
MCAsmParser &Parser = getParser();
if (getLexer().isNot(AsmToken::Comma)) {
SMLoc Loc = getLexer().getLoc();
Parser.eatToEndOfStatement();
return Error(Loc, ErrorStr);
}
Parser.Lex(); // Eat the comma.
return true;
}
bool MipsAsmParser::parseDirectiveCpLoad(SMLoc Loc) {
if (AssemblerOptions.back()->isReorder())
Warning(Loc, ".cpload should be inside a noreorder section");
if (inMips16Mode()) {
reportParseError(".cpload is not supported in Mips16 mode");
return false;
}
SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Reg;
OperandMatchResultTy ResTy = parseAnyRegister(Reg);
if (ResTy == MatchOperand_NoMatch || ResTy == MatchOperand_ParseFail) {
reportParseError("expected register containing function address");
return false;
}
MipsOperand &RegOpnd = static_cast<MipsOperand &>(*Reg[0]);
if (!RegOpnd.isGPRAsmReg()) {
reportParseError(RegOpnd.getStartLoc(), "invalid register");
return false;
}
// If this is not the end of the statement, report an error.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
reportParseError("unexpected token, expected end of statement");
return false;
}
getTargetStreamer().emitDirectiveCpLoad(RegOpnd.getGPR32Reg());
return false;
}
bool MipsAsmParser::parseDirectiveCPSetup() {
MCAsmParser &Parser = getParser();
unsigned FuncReg;
unsigned Save;
bool SaveIsReg = true;
SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> TmpReg;
OperandMatchResultTy ResTy = parseAnyRegister(TmpReg);
if (ResTy == MatchOperand_NoMatch) {
reportParseError("expected register containing function address");
Parser.eatToEndOfStatement();
return false;
}
MipsOperand &FuncRegOpnd = static_cast<MipsOperand &>(*TmpReg[0]);
if (!FuncRegOpnd.isGPRAsmReg()) {
reportParseError(FuncRegOpnd.getStartLoc(), "invalid register");
Parser.eatToEndOfStatement();
return false;
}
FuncReg = FuncRegOpnd.getGPR32Reg();
TmpReg.clear();
if (!eatComma("unexpected token, expected comma"))
return true;
ResTy = parseAnyRegister(TmpReg);
if (ResTy == MatchOperand_NoMatch) {
const AsmToken &Tok = Parser.getTok();
if (Tok.is(AsmToken::Integer)) {
Save = Tok.getIntVal();
SaveIsReg = false;
Parser.Lex();
} else {
reportParseError("expected save register or stack offset");
Parser.eatToEndOfStatement();
return false;
}
} else {
MipsOperand &SaveOpnd = static_cast<MipsOperand &>(*TmpReg[0]);
if (!SaveOpnd.isGPRAsmReg()) {
reportParseError(SaveOpnd.getStartLoc(), "invalid register");
Parser.eatToEndOfStatement();
return false;
}
Save = SaveOpnd.getGPR32Reg();
}
if (!eatComma("unexpected token, expected comma"))
return true;
const MCExpr *Expr;
if (Parser.parseExpression(Expr)) {
reportParseError("expected expression");
return false;
}
if (Expr->getKind() != MCExpr::SymbolRef) {
reportParseError("expected symbol");
return false;
}
const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr *>(Expr);
getTargetStreamer().emitDirectiveCpsetup(FuncReg, Save, Ref->getSymbol(),
SaveIsReg);
return false;
}
bool MipsAsmParser::parseDirectiveNaN() {
MCAsmParser &Parser = getParser();
if (getLexer().isNot(AsmToken::EndOfStatement)) {
const AsmToken &Tok = Parser.getTok();
if (Tok.getString() == "2008") {
Parser.Lex();
getTargetStreamer().emitDirectiveNaN2008();
return false;
} else if (Tok.getString() == "legacy") {
Parser.Lex();
getTargetStreamer().emitDirectiveNaNLegacy();
return false;
}
}
// If we don't recognize the option passed to the .nan
// directive (e.g. no option or unknown option), emit an error.
reportParseError("invalid option in .nan directive");
return false;
}
bool MipsAsmParser::parseDirectiveSet() {
MCAsmParser &Parser = getParser();
// Get the next token.
const AsmToken &Tok = Parser.getTok();
if (Tok.getString() == "noat") {
return parseSetNoAtDirective();
} else if (Tok.getString() == "at") {
return parseSetAtDirective();
} else if (Tok.getString() == "arch") {
return parseSetArchDirective();
} else if (Tok.getString() == "fp") {
return parseSetFpDirective();
} else if (Tok.getString() == "oddspreg") {
return parseSetOddSPRegDirective();
} else if (Tok.getString() == "nooddspreg") {
return parseSetNoOddSPRegDirective();
} else if (Tok.getString() == "pop") {
return parseSetPopDirective();
} else if (Tok.getString() == "push") {
return parseSetPushDirective();
} else if (Tok.getString() == "reorder") {
return parseSetReorderDirective();
} else if (Tok.getString() == "noreorder") {
return parseSetNoReorderDirective();
} else if (Tok.getString() == "macro") {
return parseSetMacroDirective();
} else if (Tok.getString() == "nomacro") {
return parseSetNoMacroDirective();
} else if (Tok.getString() == "mips16") {
return parseSetMips16Directive();
} else if (Tok.getString() == "nomips16") {
return parseSetNoMips16Directive();
} else if (Tok.getString() == "nomicromips") {
getTargetStreamer().emitDirectiveSetNoMicroMips();
Parser.eatToEndOfStatement();
return false;
} else if (Tok.getString() == "micromips") {
return parseSetFeature(Mips::FeatureMicroMips);
} else if (Tok.getString() == "mips0") {
return parseSetMips0Directive();
} else if (Tok.getString() == "mips1") {
return parseSetFeature(Mips::FeatureMips1);
} else if (Tok.getString() == "mips2") {
return parseSetFeature(Mips::FeatureMips2);
} else if (Tok.getString() == "mips3") {
return parseSetFeature(Mips::FeatureMips3);
} else if (Tok.getString() == "mips4") {
return parseSetFeature(Mips::FeatureMips4);
} else if (Tok.getString() == "mips5") {
return parseSetFeature(Mips::FeatureMips5);
} else if (Tok.getString() == "mips32") {
return parseSetFeature(Mips::FeatureMips32);
} else if (Tok.getString() == "mips32r2") {
return parseSetFeature(Mips::FeatureMips32r2);
} else if (Tok.getString() == "mips32r3") {
return parseSetFeature(Mips::FeatureMips32r3);
} else if (Tok.getString() == "mips32r5") {
return parseSetFeature(Mips::FeatureMips32r5);
} else if (Tok.getString() == "mips32r6") {
return parseSetFeature(Mips::FeatureMips32r6);
} else if (Tok.getString() == "mips64") {
return parseSetFeature(Mips::FeatureMips64);
} else if (Tok.getString() == "mips64r2") {
return parseSetFeature(Mips::FeatureMips64r2);
} else if (Tok.getString() == "mips64r3") {
return parseSetFeature(Mips::FeatureMips64r3);
} else if (Tok.getString() == "mips64r5") {
return parseSetFeature(Mips::FeatureMips64r5);
} else if (Tok.getString() == "mips64r6") {
return parseSetFeature(Mips::FeatureMips64r6);
} else if (Tok.getString() == "dsp") {
return parseSetFeature(Mips::FeatureDSP);
} else if (Tok.getString() == "nodsp") {
return parseSetNoDspDirective();
} else if (Tok.getString() == "msa") {
return parseSetMsaDirective();
} else if (Tok.getString() == "nomsa") {
return parseSetNoMsaDirective();
} else if (Tok.getString() == "softfloat") {
return parseSetSoftFloatDirective();
} else if (Tok.getString() == "hardfloat") {
return parseSetHardFloatDirective();
} else {
// It is just an identifier, look for an assignment.
parseSetAssignment();
return false;
}
return true;
}
/// parseDataDirective
/// ::= .word [ expression (, expression)* ]
bool MipsAsmParser::parseDataDirective(unsigned Size, SMLoc L) {
MCAsmParser &Parser = getParser();
if (getLexer().isNot(AsmToken::EndOfStatement)) {
for (;;) {
const MCExpr *Value;
if (getParser().parseExpression(Value))
return true;
getParser().getStreamer().EmitValue(Value, Size);
if (getLexer().is(AsmToken::EndOfStatement))
break;
if (getLexer().isNot(AsmToken::Comma))
return Error(L, "unexpected token, expected comma");
Parser.Lex();
}
}
Parser.Lex();
return false;
}
/// parseDirectiveGpWord
/// ::= .gpword local_sym
bool MipsAsmParser::parseDirectiveGpWord() {
MCAsmParser &Parser = getParser();
const MCExpr *Value;
// EmitGPRel32Value requires an expression, so we are using base class
// method to evaluate the expression.
if (getParser().parseExpression(Value))
return true;
getParser().getStreamer().EmitGPRel32Value(Value);
if (getLexer().isNot(AsmToken::EndOfStatement))
return Error(getLexer().getLoc(),
"unexpected token, expected end of statement");
Parser.Lex(); // Eat EndOfStatement token.
return false;
}
/// parseDirectiveGpDWord
/// ::= .gpdword local_sym
bool MipsAsmParser::parseDirectiveGpDWord() {
MCAsmParser &Parser = getParser();
const MCExpr *Value;
// EmitGPRel64Value requires an expression, so we are using base class
// method to evaluate the expression.
if (getParser().parseExpression(Value))
return true;
getParser().getStreamer().EmitGPRel64Value(Value);
if (getLexer().isNot(AsmToken::EndOfStatement))
return Error(getLexer().getLoc(),
"unexpected token, expected end of statement");
Parser.Lex(); // Eat EndOfStatement token.
return false;
}
bool MipsAsmParser::parseDirectiveOption() {
MCAsmParser &Parser = getParser();
// Get the option token.
AsmToken Tok = Parser.getTok();
// At the moment only identifiers are supported.
if (Tok.isNot(AsmToken::Identifier)) {
Error(Parser.getTok().getLoc(), "unexpected token, expected identifier");
Parser.eatToEndOfStatement();
return false;
}
StringRef Option = Tok.getIdentifier();
if (Option == "pic0") {
getTargetStreamer().emitDirectiveOptionPic0();
Parser.Lex();
if (Parser.getTok().isNot(AsmToken::EndOfStatement)) {
Error(Parser.getTok().getLoc(),
"unexpected token, expected end of statement");
Parser.eatToEndOfStatement();
}
return false;
}
if (Option == "pic2") {
getTargetStreamer().emitDirectiveOptionPic2();
Parser.Lex();
if (Parser.getTok().isNot(AsmToken::EndOfStatement)) {
Error(Parser.getTok().getLoc(),
"unexpected token, expected end of statement");
Parser.eatToEndOfStatement();
}
return false;
}
// Unknown option.
Warning(Parser.getTok().getLoc(),
"unknown option, expected 'pic0' or 'pic2'");
Parser.eatToEndOfStatement();
return false;
}
/// parseInsnDirective
/// ::= .insn
bool MipsAsmParser::parseInsnDirective() {
// If this is not the end of the statement, report an error.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
reportParseError("unexpected token, expected end of statement");
return false;
}
// The actual label marking happens in
// MipsELFStreamer::createPendingLabelRelocs().
getTargetStreamer().emitDirectiveInsn();
getParser().Lex(); // Eat EndOfStatement token.
return false;
}
/// parseDirectiveModule
/// ::= .module oddspreg
/// ::= .module nooddspreg
/// ::= .module fp=value
/// ::= .module softfloat
/// ::= .module hardfloat
bool MipsAsmParser::parseDirectiveModule() {
MCAsmParser &Parser = getParser();
MCAsmLexer &Lexer = getLexer();
SMLoc L = Lexer.getLoc();
if (!getTargetStreamer().isModuleDirectiveAllowed()) {
// TODO : get a better message.
reportParseError(".module directive must appear before any code");
return false;
}
StringRef Option;
if (Parser.parseIdentifier(Option)) {
reportParseError("expected .module option identifier");
return false;
}
if (Option == "oddspreg") {
clearModuleFeatureBits(Mips::FeatureNoOddSPReg, "nooddspreg");
// Synchronize the abiflags information with the FeatureBits information we
// changed above.
getTargetStreamer().updateABIInfo(*this);
// If printing assembly, use the recently updated abiflags information.
// If generating ELF, don't do anything (the .MIPS.abiflags section gets
// emitted at the end).
getTargetStreamer().emitDirectiveModuleOddSPReg();
// If this is not the end of the statement, report an error.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
reportParseError("unexpected token, expected end of statement");
return false;
}
return false; // parseDirectiveModule has finished successfully.
} else if (Option == "nooddspreg") {
if (!isABI_O32()) {
Error(L, "'.module nooddspreg' requires the O32 ABI");
return false;
}
setModuleFeatureBits(Mips::FeatureNoOddSPReg, "nooddspreg");
// Synchronize the abiflags information with the FeatureBits information we
// changed above.
getTargetStreamer().updateABIInfo(*this);
// If printing assembly, use the recently updated abiflags information.
// If generating ELF, don't do anything (the .MIPS.abiflags section gets
// emitted at the end).
getTargetStreamer().emitDirectiveModuleOddSPReg();
// If this is not the end of the statement, report an error.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
reportParseError("unexpected token, expected end of statement");
return false;
}
return false; // parseDirectiveModule has finished successfully.
} else if (Option == "fp") {
return parseDirectiveModuleFP();
} else if (Option == "softfloat") {
setModuleFeatureBits(Mips::FeatureSoftFloat, "soft-float");
// Synchronize the ABI Flags information with the FeatureBits information we
// updated above.
getTargetStreamer().updateABIInfo(*this);
// If printing assembly, use the recently updated ABI Flags information.
// If generating ELF, don't do anything (the .MIPS.abiflags section gets
// emitted later).
getTargetStreamer().emitDirectiveModuleSoftFloat();
// If this is not the end of the statement, report an error.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
reportParseError("unexpected token, expected end of statement");
return false;
}
return false; // parseDirectiveModule has finished successfully.
} else if (Option == "hardfloat") {
clearModuleFeatureBits(Mips::FeatureSoftFloat, "soft-float");
// Synchronize the ABI Flags information with the FeatureBits information we
// updated above.
getTargetStreamer().updateABIInfo(*this);
// If printing assembly, use the recently updated ABI Flags information.
// If generating ELF, don't do anything (the .MIPS.abiflags section gets
// emitted later).
getTargetStreamer().emitDirectiveModuleHardFloat();
// If this is not the end of the statement, report an error.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
reportParseError("unexpected token, expected end of statement");
return false;
}
return false; // parseDirectiveModule has finished successfully.
} else {
return Error(L, "'" + Twine(Option) + "' is not a valid .module option.");
}
}
/// parseDirectiveModuleFP
/// ::= =32
/// ::= =xx
/// ::= =64
bool MipsAsmParser::parseDirectiveModuleFP() {
MCAsmParser &Parser = getParser();
MCAsmLexer &Lexer = getLexer();
if (Lexer.isNot(AsmToken::Equal)) {
reportParseError("unexpected token, expected equals sign '='");
return false;
}
Parser.Lex(); // Eat '=' token.
MipsABIFlagsSection::FpABIKind FpABI;
if (!parseFpABIValue(FpABI, ".module"))
return false;
if (getLexer().isNot(AsmToken::EndOfStatement)) {
reportParseError("unexpected token, expected end of statement");
return false;
}
// Synchronize the abiflags information with the FeatureBits information we
// changed above.
getTargetStreamer().updateABIInfo(*this);
// If printing assembly, use the recently updated abiflags information.
// If generating ELF, don't do anything (the .MIPS.abiflags section gets
// emitted at the end).
getTargetStreamer().emitDirectiveModuleFP();
Parser.Lex(); // Consume the EndOfStatement.
return false;
}
bool MipsAsmParser::parseFpABIValue(MipsABIFlagsSection::FpABIKind &FpABI,
StringRef Directive) {
MCAsmParser &Parser = getParser();
MCAsmLexer &Lexer = getLexer();
bool ModuleLevelOptions = Directive == ".module";
if (Lexer.is(AsmToken::Identifier)) {
StringRef Value = Parser.getTok().getString();
Parser.Lex();
if (Value != "xx") {
reportParseError("unsupported value, expected 'xx', '32' or '64'");
return false;
}
if (!isABI_O32()) {
reportParseError("'" + Directive + " fp=xx' requires the O32 ABI");
return false;
}
FpABI = MipsABIFlagsSection::FpABIKind::XX;
if (ModuleLevelOptions) {
setModuleFeatureBits(Mips::FeatureFPXX, "fpxx");
clearModuleFeatureBits(Mips::FeatureFP64Bit, "fp64");
} else {
setFeatureBits(Mips::FeatureFPXX, "fpxx");
clearFeatureBits(Mips::FeatureFP64Bit, "fp64");
}
return true;
}
if (Lexer.is(AsmToken::Integer)) {
unsigned Value = Parser.getTok().getIntVal();
Parser.Lex();
if (Value != 32 && Value != 64) {
reportParseError("unsupported value, expected 'xx', '32' or '64'");
return false;
}
if (Value == 32) {
if (!isABI_O32()) {
reportParseError("'" + Directive + " fp=32' requires the O32 ABI");
return false;
}
FpABI = MipsABIFlagsSection::FpABIKind::S32;
if (ModuleLevelOptions) {
clearModuleFeatureBits(Mips::FeatureFPXX, "fpxx");
clearModuleFeatureBits(Mips::FeatureFP64Bit, "fp64");
} else {
clearFeatureBits(Mips::FeatureFPXX, "fpxx");
clearFeatureBits(Mips::FeatureFP64Bit, "fp64");
}
} else {
FpABI = MipsABIFlagsSection::FpABIKind::S64;
if (ModuleLevelOptions) {
clearModuleFeatureBits(Mips::FeatureFPXX, "fpxx");
setModuleFeatureBits(Mips::FeatureFP64Bit, "fp64");
} else {
clearFeatureBits(Mips::FeatureFPXX, "fpxx");
setFeatureBits(Mips::FeatureFP64Bit, "fp64");
}
}
return true;
}
return false;
}
bool MipsAsmParser::ParseDirective(AsmToken DirectiveID) {
MCAsmParser &Parser = getParser();
StringRef IDVal = DirectiveID.getString();
if (IDVal == ".cpload")
return parseDirectiveCpLoad(DirectiveID.getLoc());
if (IDVal == ".dword") {
parseDataDirective(8, DirectiveID.getLoc());
return false;
}
if (IDVal == ".ent") {
StringRef SymbolName;
if (Parser.parseIdentifier(SymbolName)) {
reportParseError("expected identifier after .ent");
return false;
}
// There's an undocumented extension that allows an integer to
// follow the name of the procedure which AFAICS is ignored by GAS.
// Example: .ent foo,2
if (getLexer().isNot(AsmToken::EndOfStatement)) {
if (getLexer().isNot(AsmToken::Comma)) {
// Even though we accept this undocumented extension for compatibility
// reasons, the additional integer argument does not actually change
// the behaviour of the '.ent' directive, so we would like to discourage
// its use. We do this by not referring to the extended version in
// error messages which are not directly related to its use.
reportParseError("unexpected token, expected end of statement");
return false;
}
Parser.Lex(); // Eat the comma.
const MCExpr *DummyNumber;
int64_t DummyNumberVal;
// If the user was explicitly trying to use the extended version,
// we still give helpful extension-related error messages.
if (Parser.parseExpression(DummyNumber)) {
reportParseError("expected number after comma");
return false;
}
if (!DummyNumber->evaluateAsAbsolute(DummyNumberVal)) {
reportParseError("expected an absolute expression after comma");
return false;
}
}
// If this is not the end of the statement, report an error.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
reportParseError("unexpected token, expected end of statement");
return false;
}
MCSymbol *Sym = getContext().getOrCreateSymbol(SymbolName);
getTargetStreamer().emitDirectiveEnt(*Sym);
CurrentFn = Sym;
return false;
}
if (IDVal == ".end") {
StringRef SymbolName;
if (Parser.parseIdentifier(SymbolName)) {
reportParseError("expected identifier after .end");
return false;
}
if (getLexer().isNot(AsmToken::EndOfStatement)) {
reportParseError("unexpected token, expected end of statement");
return false;
}
if (CurrentFn == nullptr) {
reportParseError(".end used without .ent");
return false;
}
if ((SymbolName != CurrentFn->getName())) {
reportParseError(".end symbol does not match .ent symbol");
return false;
}
getTargetStreamer().emitDirectiveEnd(SymbolName);
CurrentFn = nullptr;
return false;
}
if (IDVal == ".frame") {
// .frame $stack_reg, frame_size_in_bytes, $return_reg
SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> TmpReg;
OperandMatchResultTy ResTy = parseAnyRegister(TmpReg);
if (ResTy == MatchOperand_NoMatch || ResTy == MatchOperand_ParseFail) {
reportParseError("expected stack register");
return false;
}
MipsOperand &StackRegOpnd = static_cast<MipsOperand &>(*TmpReg[0]);
if (!StackRegOpnd.isGPRAsmReg()) {
reportParseError(StackRegOpnd.getStartLoc(),
"expected general purpose register");
return false;
}
unsigned StackReg = StackRegOpnd.getGPR32Reg();
if (Parser.getTok().is(AsmToken::Comma))
Parser.Lex();
else {
reportParseError("unexpected token, expected comma");
return false;
}
// Parse the frame size.
const MCExpr *FrameSize;
int64_t FrameSizeVal;
if (Parser.parseExpression(FrameSize)) {
reportParseError("expected frame size value");
return false;
}
if (!FrameSize->evaluateAsAbsolute(FrameSizeVal)) {
reportParseError("frame size not an absolute expression");
return false;
}
if (Parser.getTok().is(AsmToken::Comma))
Parser.Lex();
else {
reportParseError("unexpected token, expected comma");
return false;
}
// Parse the return register.
TmpReg.clear();
ResTy = parseAnyRegister(TmpReg);
if (ResTy == MatchOperand_NoMatch || ResTy == MatchOperand_ParseFail) {
reportParseError("expected return register");
return false;
}
MipsOperand &ReturnRegOpnd = static_cast<MipsOperand &>(*TmpReg[0]);
if (!ReturnRegOpnd.isGPRAsmReg()) {
reportParseError(ReturnRegOpnd.getStartLoc(),
"expected general purpose register");
return false;
}
// If this is not the end of the statement, report an error.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
reportParseError("unexpected token, expected end of statement");
return false;
}
getTargetStreamer().emitFrame(StackReg, FrameSizeVal,
ReturnRegOpnd.getGPR32Reg());
return false;
}
if (IDVal == ".set") {
return parseDirectiveSet();
}
if (IDVal == ".mask" || IDVal == ".fmask") {
// .mask bitmask, frame_offset
// bitmask: One bit for each register used.
// frame_offset: Offset from Canonical Frame Address ($sp on entry) where
// first register is expected to be saved.
// Examples:
// .mask 0x80000000, -4
// .fmask 0x80000000, -4
//
// Parse the bitmask
const MCExpr *BitMask;
int64_t BitMaskVal;
if (Parser.parseExpression(BitMask)) {
reportParseError("expected bitmask value");
return false;
}
if (!BitMask->evaluateAsAbsolute(BitMaskVal)) {
reportParseError("bitmask not an absolute expression");
return false;
}
if (Parser.getTok().is(AsmToken::Comma))
Parser.Lex();
else {
reportParseError("unexpected token, expected comma");
return false;
}
// Parse the frame_offset
const MCExpr *FrameOffset;
int64_t FrameOffsetVal;
if (Parser.parseExpression(FrameOffset)) {
reportParseError("expected frame offset value");
return false;
}
if (!FrameOffset->evaluateAsAbsolute(FrameOffsetVal)) {
reportParseError("frame offset not an absolute expression");
return false;
}
// If this is not the end of the statement, report an error.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
reportParseError("unexpected token, expected end of statement");
return false;
}
if (IDVal == ".mask")
getTargetStreamer().emitMask(BitMaskVal, FrameOffsetVal);
else
getTargetStreamer().emitFMask(BitMaskVal, FrameOffsetVal);
return false;
}
if (IDVal == ".nan")
return parseDirectiveNaN();
if (IDVal == ".gpword") {
parseDirectiveGpWord();
return false;
}
if (IDVal == ".gpdword") {
parseDirectiveGpDWord();
return false;
}
if (IDVal == ".word") {
parseDataDirective(4, DirectiveID.getLoc());
return false;
}
if (IDVal == ".option")
return parseDirectiveOption();
if (IDVal == ".abicalls") {
getTargetStreamer().emitDirectiveAbiCalls();
if (Parser.getTok().isNot(AsmToken::EndOfStatement)) {
Error(Parser.getTok().getLoc(),
"unexpected token, expected end of statement");
// Clear line
Parser.eatToEndOfStatement();
}
return false;
}
if (IDVal == ".cpsetup")
return parseDirectiveCPSetup();
if (IDVal == ".module")
return parseDirectiveModule();
if (IDVal == ".llvm_internal_mips_reallow_module_directive")
return parseInternalDirectiveReallowModule();
if (IDVal == ".insn")
return parseInsnDirective();
return true;
}
bool MipsAsmParser::parseInternalDirectiveReallowModule() {
// If this is not the end of the statement, report an error.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
reportParseError("unexpected token, expected end of statement");
return false;
}
getTargetStreamer().reallowModuleDirective();
getParser().Lex(); // Eat EndOfStatement token.
return false;
}
extern "C" void LLVMInitializeMipsAsmParser() {
RegisterMCAsmParser<MipsAsmParser> X(TheMipsTarget);
RegisterMCAsmParser<MipsAsmParser> Y(TheMipselTarget);
RegisterMCAsmParser<MipsAsmParser> A(TheMips64Target);
RegisterMCAsmParser<MipsAsmParser> B(TheMips64elTarget);
}
#define GET_REGISTER_MATCHER
#define GET_MATCHER_IMPLEMENTATION
#include "MipsGenAsmMatcher.inc"