llvm-6502/lib/Target/PowerPC/PPCCodeEmitter.cpp
Chris Lattner a9d9ab9673 split call operands out to their own encoding class, simplifying
code in the JIT.  Use this to form the first fixup for the PPC backend,
giving us stuff like this:

	bl L_foo$stub ; encoding: [0b010010AA,A,A,0bAAAAAA01]
                                        ;   fixup A - offset: 0, value: L_foo$stub, kind: fixup_ppc_br24


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119123 91177308-0d34-0410-b5e6-96231b3b80d8
2010-11-15 05:57:53 +00:00

264 lines
8.7 KiB
C++

//===-- PPCCodeEmitter.cpp - JIT Code Emitter for PowerPC32 -------*- C++ -*-=//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the PowerPC 32-bit CodeEmitter and associated machinery to
// JIT-compile bitcode to native PowerPC.
//
//===----------------------------------------------------------------------===//
#include "PPCTargetMachine.h"
#include "PPCRelocations.h"
#include "PPC.h"
#include "llvm/Module.h"
#include "llvm/PassManager.h"
#include "llvm/CodeGen/JITCodeEmitter.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetOptions.h"
using namespace llvm;
namespace {
class PPCCodeEmitter : public MachineFunctionPass {
TargetMachine &TM;
JITCodeEmitter &MCE;
MachineModuleInfo *MMI;
void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<MachineModuleInfo>();
MachineFunctionPass::getAnalysisUsage(AU);
}
static char ID;
/// MovePCtoLROffset - When/if we see a MovePCtoLR instruction, we record
/// its address in the function into this pointer.
void *MovePCtoLROffset;
public:
PPCCodeEmitter(TargetMachine &tm, JITCodeEmitter &mce)
: MachineFunctionPass(ID), TM(tm), MCE(mce) {}
/// getBinaryCodeForInstr - This function, generated by the
/// CodeEmitterGenerator using TableGen, produces the binary encoding for
/// machine instructions.
unsigned getBinaryCodeForInstr(const MachineInstr &MI) const;
MachineRelocation GetRelocation(const MachineOperand &MO,
unsigned RelocID) const;
/// getMachineOpValue - evaluates the MachineOperand of a given MachineInstr
unsigned getMachineOpValue(const MachineInstr &MI,
const MachineOperand &MO) const;
unsigned get_crbitm_encoding(const MachineInstr &MI, unsigned OpNo) const;
unsigned getCallTargetEncoding(const MachineInstr &MI, unsigned OpNo) const;
const char *getPassName() const { return "PowerPC Machine Code Emitter"; }
/// runOnMachineFunction - emits the given MachineFunction to memory
///
bool runOnMachineFunction(MachineFunction &MF);
/// emitBasicBlock - emits the given MachineBasicBlock to memory
///
void emitBasicBlock(MachineBasicBlock &MBB);
};
}
char PPCCodeEmitter::ID = 0;
/// createPPCCodeEmitterPass - Return a pass that emits the collected PPC code
/// to the specified MCE object.
FunctionPass *llvm::createPPCJITCodeEmitterPass(PPCTargetMachine &TM,
JITCodeEmitter &JCE) {
return new PPCCodeEmitter(TM, JCE);
}
bool PPCCodeEmitter::runOnMachineFunction(MachineFunction &MF) {
assert((MF.getTarget().getRelocationModel() != Reloc::Default ||
MF.getTarget().getRelocationModel() != Reloc::Static) &&
"JIT relocation model must be set to static or default!");
MMI = &getAnalysis<MachineModuleInfo>();
MCE.setModuleInfo(MMI);
do {
MovePCtoLROffset = 0;
MCE.startFunction(MF);
for (MachineFunction::iterator BB = MF.begin(), E = MF.end(); BB != E; ++BB)
emitBasicBlock(*BB);
} while (MCE.finishFunction(MF));
return false;
}
void PPCCodeEmitter::emitBasicBlock(MachineBasicBlock &MBB) {
MCE.StartMachineBasicBlock(&MBB);
for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E; ++I){
const MachineInstr &MI = *I;
MCE.processDebugLoc(MI.getDebugLoc(), true);
switch (MI.getOpcode()) {
default:
MCE.emitWordBE(getBinaryCodeForInstr(MI));
break;
case TargetOpcode::PROLOG_LABEL:
case TargetOpcode::EH_LABEL:
MCE.emitLabel(MI.getOperand(0).getMCSymbol());
break;
case TargetOpcode::IMPLICIT_DEF:
case TargetOpcode::KILL:
break; // pseudo opcode, no side effects
case PPC::MovePCtoLR:
case PPC::MovePCtoLR8:
assert(TM.getRelocationModel() == Reloc::PIC_);
MovePCtoLROffset = (void*)MCE.getCurrentPCValue();
MCE.emitWordBE(0x48000005); // bl 1
break;
}
MCE.processDebugLoc(MI.getDebugLoc(), false);
}
}
unsigned PPCCodeEmitter::get_crbitm_encoding(const MachineInstr &MI,
unsigned OpNo) const {
const MachineOperand &MO = MI.getOperand(OpNo);
assert((MI.getOpcode() == PPC::MTCRF || MI.getOpcode() == PPC::MFOCRF) &&
(MO.getReg() >= PPC::CR0 && MO.getReg() <= PPC::CR7));
return 0x80 >> PPCRegisterInfo::getRegisterNumbering(MO.getReg());
}
MachineRelocation PPCCodeEmitter::GetRelocation(const MachineOperand &MO,
unsigned RelocID) const {
if (MO.isGlobal())
return MachineRelocation::getGV(MCE.getCurrentPCOffset(), RelocID,
const_cast<GlobalValue *>(MO.getGlobal()),0,
isa<Function>(MO.getGlobal()));
if (MO.isSymbol())
return MachineRelocation::getExtSym(MCE.getCurrentPCOffset(),
RelocID, MO.getSymbolName(), 0);
if (MO.isCPI())
return MachineRelocation::getConstPool(MCE.getCurrentPCOffset(),
RelocID, MO.getIndex(), 0);
if (MO.isMBB())
MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(),
RelocID, MO.getMBB()));
assert(MO.isJTI());
return MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(),
RelocID, MO.getIndex(), 0);
}
unsigned PPCCodeEmitter::getCallTargetEncoding(const MachineInstr &MI,
unsigned OpNo) const {
const MachineOperand &MO = MI.getOperand(OpNo);
if (MO.isReg() || MO.isImm()) return getMachineOpValue(MI, MO);
MCE.addRelocation(GetRelocation(MO, PPC::reloc_pcrel_bx));
return 0;
}
unsigned PPCCodeEmitter::getMachineOpValue(const MachineInstr &MI,
const MachineOperand &MO) const {
if (MO.isReg()) {
assert(MI.getOpcode() != PPC::MTCRF && MI.getOpcode() != PPC::MFOCRF);
return PPCRegisterInfo::getRegisterNumbering(MO.getReg());
}
if (MO.isImm())
return MO.getImm();
if (MO.isGlobal() || MO.isSymbol() || MO.isCPI() || MO.isJTI()) {
unsigned Reloc = 0;
assert((TM.getRelocationModel() != Reloc::PIC_ || MovePCtoLROffset) &&
"MovePCtoLR not seen yet?");
switch (MI.getOpcode()) {
default: MI.dump(); llvm_unreachable("Unknown instruction for relocation!");
case PPC::LIS:
case PPC::LIS8:
case PPC::ADDIS:
case PPC::ADDIS8:
Reloc = PPC::reloc_absolute_high; // Pointer to symbol
break;
case PPC::LI:
case PPC::LI8:
case PPC::LA:
// Loads.
case PPC::LBZ:
case PPC::LBZ8:
case PPC::LHA:
case PPC::LHA8:
case PPC::LHZ:
case PPC::LHZ8:
case PPC::LWZ:
case PPC::LWZ8:
case PPC::LFS:
case PPC::LFD:
// Stores.
case PPC::STB:
case PPC::STB8:
case PPC::STH:
case PPC::STH8:
case PPC::STW:
case PPC::STW8:
case PPC::STFS:
case PPC::STFD:
Reloc = PPC::reloc_absolute_low;
break;
case PPC::LWA:
case PPC::LD:
case PPC::STD:
case PPC::STD_32:
Reloc = PPC::reloc_absolute_low_ix;
break;
}
MachineRelocation R = GetRelocation(MO, Reloc);
// If in PIC mode, we need to encode the negated address of the
// 'movepctolr' into the unrelocated field. After relocation, we'll have
// &gv-&movepctolr-4 in the imm field. Once &movepctolr is added to the imm
// field, we get &gv. This doesn't happen for branch relocations, which are
// always implicitly pc relative.
if (TM.getRelocationModel() == Reloc::PIC_) {
assert(MovePCtoLROffset && "MovePCtoLR not seen yet?");
R.setConstantVal(-(intptr_t)MovePCtoLROffset - 4);
}
MCE.addRelocation(R);
} else if (MO.isMBB()) {
unsigned Reloc = 0;
unsigned Opcode = MI.getOpcode();
if (Opcode == PPC::B)
Reloc = PPC::reloc_pcrel_bx;
else // BCC instruction
Reloc = PPC::reloc_pcrel_bcx;
MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(),
Reloc, MO.getMBB()));
} else {
#ifndef NDEBUG
errs() << "ERROR: Unknown type of MachineOperand: " << MO << "\n";
#endif
llvm_unreachable(0);
}
return 0;
}
#include "PPCGenCodeEmitter.inc"