llvm-6502/lib/CodeGen
Chris Lattner 01d029b82c One mundane change: Change ReplaceAllUsesOfValueWith to *optionally*
take a deleted nodes vector, instead of requiring it.

One more significant change:  Implement the start of a legalizer that
just works on types.  This legalizer is designed to run before the 
operation legalizer and ensure just that the input dag is transformed
into an output dag whose operand and result types are all legal, even
if the operations on those types are not.

This design/impl has the following advantages:

1. When finished, this will *significantly* reduce the amount of code in
   LegalizeDAG.cpp.  It will remove all the code related to promotion and
   expansion as well as splitting and scalarizing vectors.
2. The new code is very simple, idiomatic, and modular: unlike 
   LegalizeDAG.cpp, it has no 3000 line long functions. :)
3. The implementation is completely iterative instead of recursive, good
   for hacking on large dags without blowing out your stack.
4. The implementation updates nodes in place when possible instead of 
   deallocating and reallocating the entire graph that points to some 
   mutated node.
5. The code nicely separates out handling of operations with invalid 
   results from operations with invalid operands, making some cases
   simpler and easier to understand.
6. The new -debug-only=legalize-types option is very very handy :), 
   allowing you to easily understand what legalize types is doing.

This is not yet done.  Until the ifdef added to SelectionDAGISel.cpp is
enabled, this does nothing.  However, this code is sufficient to legalize
all of the code in 186.crafty, olden and freebench on an x86 machine.  The
biggest issues are:

1. Vectors aren't implemented at all yet
2. SoftFP is a mess, I need to talk to Evan about it.
3. No lowering to libcalls is implemented yet.
4. Various operations are missing etc.
5. There are FIXME's for stuff I hax0r'd out, like softfp.

Hey, at least it is a step in the right direction :).  If you'd like to help,
just enable the #ifdef in SelectionDAGISel.cpp and compile code with it.  If
this explodes it will tell you what needs to be implemented.  Help is 
certainly appreciated.

Once this goes in, we can do three things:

1. Add a new pass of dag combine between the "type legalizer" and "operation
   legalizer" passes.  This will let us catch some long-standing isel issues
   that we miss because operation legalization often obfuscates the dag with
   target-specific nodes.
2. We can rip out all of the type legalization code from LegalizeDAG.cpp,
   making it much smaller and simpler.  When that happens we can then 
   reimplement the core functionality left in it in a much more efficient and
   non-recursive way.
3. Once the whole legalizer is non-recursive, we can implement whole-function
   selectiondags maybe...



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@42981 91177308-0d34-0410-b5e6-96231b3b80d8
2007-10-15 06:10:22 +00:00
..
SelectionDAG One mundane change: Change ReplaceAllUsesOfValueWith to *optionally* 2007-10-15 06:10:22 +00:00
AsmPrinter.cpp Revert 42908 for now. 2007-10-14 05:57:21 +00:00
BranchFolding.cpp More explicit keywords. 2007-08-02 21:21:54 +00:00
Collector.cpp Collector is the base class for garbage collection code generators. 2007-09-29 02:13:43 +00:00
CollectorMetadata.cpp CollectorMetadata abstractly describes stack maps for a function. 2007-09-27 22:18:46 +00:00
Collectors.cpp My previous Registry.h header, as well as Collectors.h, which is the 2007-09-27 19:34:27 +00:00
DwarfWriter.cpp Move the code that emits the .file directives so that it runs after the 2007-10-01 22:40:20 +00:00
ELFWriter.cpp Drop 'const' 2007-05-03 01:11:54 +00:00
ELFWriter.h Here is the bulk of the sanitizing. 2007-07-05 17:07:56 +00:00
IfConversion.cpp Somehow this wasn't committed last time. M_CLOBBERS_PRED is gone. 2007-07-10 17:50:43 +00:00
IntrinsicLowering.cpp Rewrite sqrt and powi to use anyfloat. By popular demand. 2007-10-02 17:43:59 +00:00
LiveInterval.cpp When coalescing an EXTRACT_SUBREG and the dst register is a physical register, 2007-10-14 10:08:34 +00:00
LiveIntervalAnalysis.cpp Did mean to leave this in. INSERT_SUBREG isn't being coalesced yet. 2007-10-12 17:16:50 +00:00
LiveVariables.cpp Remove isReg, isImm, and isMBB, and change all their users to use 2007-09-14 20:33:02 +00:00
LLVMTargetMachine.cpp Move subreg lowering pass to be right after regalloc, per feedback. 2007-07-27 07:36:14 +00:00
LowerSubregs.cpp Allow copyRegToReg to emit cross register classes copies. 2007-09-26 06:25:56 +00:00
MachineBasicBlock.cpp Use empty() member functions when that's what's being tested for instead 2007-10-03 19:26:29 +00:00
MachineFunction.cpp Use empty() member functions when that's what's being tested for instead 2007-10-03 19:26:29 +00:00
MachineInstr.cpp Optionally create a MachineInstr without default implicit operands. 2007-10-13 02:23:01 +00:00
MachineModuleInfo.cpp Fix PR1628. When exception handling is turned on, 2007-09-05 11:27:52 +00:00
MachinePassRegistry.cpp
MachOWriter.cpp Revise previous patch per review comments. 2007-09-12 03:30:33 +00:00
MachOWriter.h Drop 'const' 2007-05-03 01:11:54 +00:00
Makefile
Passes.cpp *** empty log message *** 2006-11-16 20:11:33 +00:00
PHIElimination.cpp Allow copyRegToReg to emit cross register classes copies. 2007-09-26 06:25:56 +00:00
PhysRegTracker.h Add explicit keywords and remove spurious trailing semicolons. 2007-08-27 14:50:10 +00:00
PostRASchedulerList.cpp Modify previous patch per review comments. 2007-07-13 17:31:29 +00:00
PrologEpilogInserter.cpp Long live the exception handling! 2007-07-14 14:06:15 +00:00
README.txt This is done already. 2007-09-29 02:23:08 +00:00
RegAllocBigBlock.cpp Merge DenseMapKeyInfo & DenseMapValueInfo into DenseMapInfo 2007-09-17 18:34:04 +00:00
RegAllocLinearScan.cpp Some clean up. 2007-10-12 08:45:27 +00:00
RegAllocLocal.cpp Correctly handle implcit def / use operands. 2007-06-26 21:05:13 +00:00
RegAllocSimple.cpp Drop 'const' 2007-05-03 01:11:54 +00:00
RegisterCoalescer.cpp Pluggable coalescers inplementation. 2007-09-06 16:18:45 +00:00
RegisterScavenging.cpp Remove isReg, isImm, and isMBB, and change all their users to use 2007-09-14 20:33:02 +00:00
SimpleRegisterCoalescing.cpp When coalescing an EXTRACT_SUBREG and the dst register is a physical register, 2007-10-14 10:08:34 +00:00
TwoAddressInstructionPass.cpp Allow copyRegToReg to emit cross register classes copies. 2007-09-26 06:25:56 +00:00
UnreachableBlockElim.cpp Fix typo in comment. 2007-05-06 13:37:16 +00:00
VirtRegMap.cpp Local spiller optimization: 2007-10-13 02:50:24 +00:00
VirtRegMap.h Local spiller optimization: 2007-10-13 02:50:24 +00:00

//===---------------------------------------------------------------------===//

Common register allocation / spilling problem:

        mul lr, r4, lr
        str lr, [sp, #+52]
        ldr lr, [r1, #+32]
        sxth r3, r3
        ldr r4, [sp, #+52]
        mla r4, r3, lr, r4

can be:

        mul lr, r4, lr
        mov r4, lr
        str lr, [sp, #+52]
        ldr lr, [r1, #+32]
        sxth r3, r3
        mla r4, r3, lr, r4

and then "merge" mul and mov:

        mul r4, r4, lr
        str lr, [sp, #+52]
        ldr lr, [r1, #+32]
        sxth r3, r3
        mla r4, r3, lr, r4

It also increase the likelyhood the store may become dead.

//===---------------------------------------------------------------------===//

I think we should have a "hasSideEffects" flag (which is automatically set for
stuff that "isLoad" "isCall" etc), and the remat pass should eventually be able
to remat any instruction that has no side effects, if it can handle it and if
profitable.

For now, I'd suggest having the remat stuff work like this:

1. I need to spill/reload this thing.
2. Check to see if it has side effects.
3. Check to see if it is simple enough: e.g. it only has one register
destination and no register input.
4. If so, clone the instruction, do the xform, etc.

Advantages of this are:

1. the .td file describes the behavior of the instructions, not the way the
   algorithm should work.
2. as remat gets smarter in the future, we shouldn't have to be changing the .td
   files.
3. it is easier to explain what the flag means in the .td file, because you
   don't have to pull in the explanation of how the current remat algo works.

Some potential added complexities:

1. Some instructions have to be glued to it's predecessor or successor. All of
   the PC relative instructions and condition code setting instruction. We could
   mark them as hasSideEffects, but that's not quite right. PC relative loads
   from constantpools can be remat'ed, for example. But it requires more than
   just cloning the instruction. Some instructions can be remat'ed but it
   expands to more than one instruction. But allocator will have to make a
   decision.

4. As stated in 3, not as simple as cloning in some cases. The target will have
   to decide how to remat it. For example, an ARM 2-piece constant generation
   instruction is remat'ed as a load from constantpool.

//===---------------------------------------------------------------------===//

bb27 ...
        ...
        %reg1037 = ADDri %reg1039, 1
        %reg1038 = ADDrs %reg1032, %reg1039, %NOREG, 10
    Successors according to CFG: 0x8b03bf0 (#5)

bb76 (0x8b03bf0, LLVM BB @0x8b032d0, ID#5):
    Predecessors according to CFG: 0x8b0c5f0 (#3) 0x8b0a7c0 (#4)
        %reg1039 = PHI %reg1070, mbb<bb76.outer,0x8b0c5f0>, %reg1037, mbb<bb27,0x8b0a7c0>

Note ADDri is not a two-address instruction. However, its result %reg1037 is an
operand of the PHI node in bb76 and its operand %reg1039 is the result of the
PHI node. We should treat it as a two-address code and make sure the ADDri is
scheduled after any node that reads %reg1039.

//===---------------------------------------------------------------------===//

Use local info (i.e. register scavenger) to assign it a free register to allow
reuse:
	ldr r3, [sp, #+4]
	add r3, r3, #3
	ldr r2, [sp, #+8]
	add r2, r2, #2
	ldr r1, [sp, #+4]  <==
	add r1, r1, #1
	ldr r0, [sp, #+4]
	add r0, r0, #2

//===---------------------------------------------------------------------===//

LLVM aggressively lift CSE out of loop. Sometimes this can be negative side-
effects:

R1 = X + 4
R2 = X + 7
R3 = X + 15

loop:
load [i + R1]
...
load [i + R2]
...
load [i + R3]

Suppose there is high register pressure, R1, R2, R3, can be spilled. We need
to implement proper re-materialization to handle this:

R1 = X + 4
R2 = X + 7
R3 = X + 15

loop:
R1 = X + 4  @ re-materialized
load [i + R1]
...
R2 = X + 7 @ re-materialized
load [i + R2]
...
R3 = X + 15 @ re-materialized
load [i + R3]

Furthermore, with re-association, we can enable sharing:

R1 = X + 4
R2 = X + 7
R3 = X + 15

loop:
T = i + X
load [T + 4]
...
load [T + 7]
...
load [T + 15]
//===---------------------------------------------------------------------===//

It's not always a good idea to choose rematerialization over spilling. If all
the load / store instructions would be folded then spilling is cheaper because
it won't require new live intervals / registers. See 2003-05-31-LongShifts for
an example.

//===---------------------------------------------------------------------===//

With a copying garbage collector, derived pointers must not be retained across
collector safe points; the collector could move the objects and invalidate the
derived pointer. This is bad enough in the first place, but safe points can
crop up unpredictably. Consider:

        %array = load { i32, [0 x %obj] }** %array_addr
        %nth_el = getelementptr { i32, [0 x %obj] }* %array, i32 0, i32 %n
        %old = load %obj** %nth_el
        %z = div i64 %x, %y
        store %obj* %new, %obj** %nth_el

If the i64 division is lowered to a libcall, then a safe point will (must)
appear for the call site. If a collection occurs, %array and %nth_el no longer
point into the correct object.

The fix for this is to copy address calculations so that dependent pointers
are never live across safe point boundaries. But the loads cannot be copied
like this if there was an intervening store, so may be hard to get right.

Only a concurrent mutator can trigger a collection at the libcall safe point.
So single-threaded programs do not have this requirement, even with a copying
collector. Still, LLVM optimizations would probably undo a front-end's careful
work.

//===---------------------------------------------------------------------===//

The ocaml frametable structure supports liveness information. It would be good
to support it.