llvm-6502/lib/CodeGen
Jakob Stoklund Olesen b5f327b30f No need to add liveness that's already there.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@118742 91177308-0d34-0410-b5e6-96231b3b80d8
2010-11-10 23:56:00 +00:00
..
AsmPrinter Take care of special characters while creating named MDNode name to hold function specific local variable's info. 2010-11-10 22:19:21 +00:00
SelectionDAG Fix DAGCombiner to avoid folding a sext-in-reg or similar through a shl 2010-11-09 01:54:35 +00:00
AggressiveAntiDepBreaker.cpp
AggressiveAntiDepBreaker.h
Analysis.cpp Inline asm multiple alternative constraints development phase 2 - improved basic logic, added initial platform support. 2010-10-29 17:29:13 +00:00
AntiDepBreaker.h
BranchFolding.cpp
BranchFolding.h
CalcSpillWeights.cpp
CallingConvLower.cpp In the calling convention logic, ValVT is always a legal type, 2010-11-04 10:49:57 +00:00
CMakeLists.txt This is a prototype of an experimental register allocation 2010-10-22 23:09:15 +00:00
CodeGen.cpp
CodePlacementOpt.cpp
CriticalAntiDepBreaker.cpp Fixes <rdar://problem/8612856>: During postRAsched, the antidependence 2010-11-02 18:16:45 +00:00
CriticalAntiDepBreaker.h Fixes <rdar://problem/8612856>: During postRAsched, the antidependence 2010-11-02 18:16:45 +00:00
DeadMachineInstructionElim.cpp
DwarfEHPrepare.cpp This may be an ARM target, so check for _Unwind_SjLj_Resume. 2010-10-29 07:46:01 +00:00
ELF.h
ELFCodeEmitter.cpp
ELFCodeEmitter.h
ELFWriter.cpp
ELFWriter.h
GCMetadata.cpp
GCMetadataPrinter.cpp
GCStrategy.cpp
IfConversion.cpp Prune includes. 2010-11-06 11:45:59 +00:00
InlineSpiller.cpp Hook up AliasAnalysis in InlineSpiller. This is used for rematerializing 2010-11-10 23:55:56 +00:00
IntrinsicLowering.cpp
LatencyPriorityQueue.cpp
LiveInterval.cpp Teach ConnectedVNInfoEqClasses::Classify to deal with unused values. 2010-10-29 17:37:29 +00:00
LiveIntervalAnalysis.cpp RABasic is nearly functionally complete. There are a few remaining 2010-11-10 19:18:47 +00:00
LiveIntervalUnion.cpp RABasic is nearly functionally complete. There are a few remaining 2010-11-10 19:18:47 +00:00
LiveIntervalUnion.h RABasic is nearly functionally complete. There are a few remaining 2010-11-10 19:18:47 +00:00
LiveRangeEdit.cpp Simplify the LiveRangeEdit::canRematerializeAt() interface a bit. 2010-11-10 01:05:12 +00:00
LiveRangeEdit.h Simplify the LiveRangeEdit::canRematerializeAt() interface a bit. 2010-11-10 01:05:12 +00:00
LiveStackAnalysis.cpp Make the spiller responsible for updating the LiveStacks analysis. 2010-10-26 00:11:33 +00:00
LiveVariables.cpp
LLVMTargetMachine.cpp Add registry hook for assembly text output 2010-11-08 02:21:17 +00:00
LocalStackSlotAllocation.cpp
LowerSubregs.cpp
MachineBasicBlock.cpp Don't try to split weird critical edges that really aren't: 2010-11-02 00:58:37 +00:00
MachineCSE.cpp Teach machine cse to eliminate instructions with multiple physreg uses and defs. rdar://8610857. 2010-10-29 23:36:03 +00:00
MachineDominators.cpp
MachineFunction.cpp Attach a GCModuleInfo to a MachineFunction. 2010-10-31 20:38:38 +00:00
MachineFunctionAnalysis.cpp Attach a GCModuleInfo to a MachineFunction. 2010-10-31 20:38:38 +00:00
MachineFunctionPass.cpp
MachineFunctionPrinterPass.cpp
MachineInstr.cpp Unbreak build. 2010-10-22 21:49:09 +00:00
MachineLICM.cpp MachineLICM should not claim to be preserving the CFG when it can split critical 2010-11-01 23:59:55 +00:00
MachineLoopInfo.cpp
MachineModuleInfo.cpp
MachineModuleInfoImpls.cpp
MachinePassRegistry.cpp
MachineRegisterInfo.cpp
MachineSink.cpp
MachineSSAUpdater.cpp
MachineVerifier.cpp Be more precise about verifying missing kill flags. 2010-11-01 23:59:53 +00:00
Makefile
ObjectCodeEmitter.cpp
OcamlGC.cpp
OptimizePHIs.cpp
Passes.cpp
PeepholeOptimizer.cpp When we look at instructions to convert to setting the 's' flag, we need to look 2010-11-01 20:41:43 +00:00
PHIElimination.cpp
PHIElimination.h
PostRAHazardRecognizer.cpp
PostRASchedulerList.cpp
PreAllocSplitting.cpp
ProcessImplicitDefs.cpp
PrologEpilogInserter.cpp Formatting. 2010-10-27 16:30:18 +00:00
PrologEpilogInserter.h
PseudoSourceValue.cpp
README.txt
RegAllocBase.h RABasic is nearly functionally complete. There are a few remaining 2010-11-10 19:18:47 +00:00
RegAllocBasic.cpp RABasic is nearly functionally complete. There are a few remaining 2010-11-10 19:18:47 +00:00
RegAllocFast.cpp
RegAllocLinearScan.cpp Hook up AliasAnalysis in InlineSpiller. This is used for rematerializing 2010-11-10 23:55:56 +00:00
RegAllocPBQP.cpp
RegisterCoalescer.cpp
RegisterScavenging.cpp
RenderMachineFunction.cpp The variable liTRC is not used for anything useful, zap it 2010-10-21 16:04:43 +00:00
RenderMachineFunction.h
ScheduleDAG.cpp
ScheduleDAGEmit.cpp
ScheduleDAGInstrs.cpp Two sets of changes. Sorry they are intermingled. 2010-11-03 00:45:17 +00:00
ScheduleDAGInstrs.h Properly model the latency of register defs which are 1) function returns or 2010-10-23 02:10:46 +00:00
ScheduleDAGPrinter.cpp
ShadowStackGC.cpp
ShrinkWrapping.cpp
SimpleRegisterCoalescing.cpp Unbreak build. 2010-10-22 21:49:09 +00:00
SimpleRegisterCoalescing.h
SjLjEHPrepare.cpp Prune includes. 2010-11-06 11:45:59 +00:00
SlotIndexes.cpp
Spiller.cpp RABasic is nearly functionally complete. There are a few remaining 2010-11-10 19:18:47 +00:00
Spiller.h RABasic is nearly functionally complete. There are a few remaining 2010-11-10 19:18:47 +00:00
SplitKit.cpp No need to add liveness that's already there. 2010-11-10 23:56:00 +00:00
SplitKit.h Basic rematerialization during splitting. 2010-11-10 19:31:50 +00:00
Splitter.cpp
Splitter.h
StackProtector.cpp
StackSlotColoring.cpp
StrongPHIElimination.cpp
TailDuplication.cpp
TargetInstrInfoImpl.cpp
TargetLoweringObjectFileImpl.cpp Fixed version of 118639 with an extra assert to catch similar problems 2010-11-09 23:42:07 +00:00
TwoAddressInstructionPass.cpp
UnreachableBlockElim.cpp
VirtRegMap.cpp
VirtRegMap.h
VirtRegRewriter.cpp Prune includes. 2010-11-06 11:45:59 +00:00
VirtRegRewriter.h

//===---------------------------------------------------------------------===//

Common register allocation / spilling problem:

        mul lr, r4, lr
        str lr, [sp, #+52]
        ldr lr, [r1, #+32]
        sxth r3, r3
        ldr r4, [sp, #+52]
        mla r4, r3, lr, r4

can be:

        mul lr, r4, lr
        mov r4, lr
        str lr, [sp, #+52]
        ldr lr, [r1, #+32]
        sxth r3, r3
        mla r4, r3, lr, r4

and then "merge" mul and mov:

        mul r4, r4, lr
        str lr, [sp, #+52]
        ldr lr, [r1, #+32]
        sxth r3, r3
        mla r4, r3, lr, r4

It also increase the likelyhood the store may become dead.

//===---------------------------------------------------------------------===//

bb27 ...
        ...
        %reg1037 = ADDri %reg1039, 1
        %reg1038 = ADDrs %reg1032, %reg1039, %NOREG, 10
    Successors according to CFG: 0x8b03bf0 (#5)

bb76 (0x8b03bf0, LLVM BB @0x8b032d0, ID#5):
    Predecessors according to CFG: 0x8b0c5f0 (#3) 0x8b0a7c0 (#4)
        %reg1039 = PHI %reg1070, mbb<bb76.outer,0x8b0c5f0>, %reg1037, mbb<bb27,0x8b0a7c0>

Note ADDri is not a two-address instruction. However, its result %reg1037 is an
operand of the PHI node in bb76 and its operand %reg1039 is the result of the
PHI node. We should treat it as a two-address code and make sure the ADDri is
scheduled after any node that reads %reg1039.

//===---------------------------------------------------------------------===//

Use local info (i.e. register scavenger) to assign it a free register to allow
reuse:
        ldr r3, [sp, #+4]
        add r3, r3, #3
        ldr r2, [sp, #+8]
        add r2, r2, #2
        ldr r1, [sp, #+4]  <==
        add r1, r1, #1
        ldr r0, [sp, #+4]
        add r0, r0, #2

//===---------------------------------------------------------------------===//

LLVM aggressively lift CSE out of loop. Sometimes this can be negative side-
effects:

R1 = X + 4
R2 = X + 7
R3 = X + 15

loop:
load [i + R1]
...
load [i + R2]
...
load [i + R3]

Suppose there is high register pressure, R1, R2, R3, can be spilled. We need
to implement proper re-materialization to handle this:

R1 = X + 4
R2 = X + 7
R3 = X + 15

loop:
R1 = X + 4  @ re-materialized
load [i + R1]
...
R2 = X + 7 @ re-materialized
load [i + R2]
...
R3 = X + 15 @ re-materialized
load [i + R3]

Furthermore, with re-association, we can enable sharing:

R1 = X + 4
R2 = X + 7
R3 = X + 15

loop:
T = i + X
load [T + 4]
...
load [T + 7]
...
load [T + 15]
//===---------------------------------------------------------------------===//

It's not always a good idea to choose rematerialization over spilling. If all
the load / store instructions would be folded then spilling is cheaper because
it won't require new live intervals / registers. See 2003-05-31-LongShifts for
an example.

//===---------------------------------------------------------------------===//

With a copying garbage collector, derived pointers must not be retained across
collector safe points; the collector could move the objects and invalidate the
derived pointer. This is bad enough in the first place, but safe points can
crop up unpredictably. Consider:

        %array = load { i32, [0 x %obj] }** %array_addr
        %nth_el = getelementptr { i32, [0 x %obj] }* %array, i32 0, i32 %n
        %old = load %obj** %nth_el
        %z = div i64 %x, %y
        store %obj* %new, %obj** %nth_el

If the i64 division is lowered to a libcall, then a safe point will (must)
appear for the call site. If a collection occurs, %array and %nth_el no longer
point into the correct object.

The fix for this is to copy address calculations so that dependent pointers
are never live across safe point boundaries. But the loads cannot be copied
like this if there was an intervening store, so may be hard to get right.

Only a concurrent mutator can trigger a collection at the libcall safe point.
So single-threaded programs do not have this requirement, even with a copying
collector. Still, LLVM optimizations would probably undo a front-end's careful
work.

//===---------------------------------------------------------------------===//

The ocaml frametable structure supports liveness information. It would be good
to support it.

//===---------------------------------------------------------------------===//

The FIXME in ComputeCommonTailLength in BranchFolding.cpp needs to be
revisited. The check is there to work around a misuse of directives in inline
assembly.

//===---------------------------------------------------------------------===//

It would be good to detect collector/target compatibility instead of silently
doing the wrong thing.

//===---------------------------------------------------------------------===//

It would be really nice to be able to write patterns in .td files for copies,
which would eliminate a bunch of explicit predicates on them (e.g. no side 
effects).  Once this is in place, it would be even better to have tblgen 
synthesize the various copy insertion/inspection methods in TargetInstrInfo.

//===---------------------------------------------------------------------===//

Stack coloring improvments:

1. Do proper LiveStackAnalysis on all stack objects including those which are
   not spill slots.
2. Reorder objects to fill in gaps between objects.
   e.g. 4, 1, <gap>, 4, 1, 1, 1, <gap>, 4 => 4, 1, 1, 1, 1, 4, 4

//===---------------------------------------------------------------------===//

The scheduler should be able to sort nearby instructions by their address. For
example, in an expanded memset sequence it's not uncommon to see code like this:

  movl $0, 4(%rdi)
  movl $0, 8(%rdi)
  movl $0, 12(%rdi)
  movl $0, 0(%rdi)

Each of the stores is independent, and the scheduler is currently making an
arbitrary decision about the order.

//===---------------------------------------------------------------------===//

Another opportunitiy in this code is that the $0 could be moved to a register:

  movl $0, 4(%rdi)
  movl $0, 8(%rdi)
  movl $0, 12(%rdi)
  movl $0, 0(%rdi)

This would save substantial code size, especially for longer sequences like
this. It would be easy to have a rule telling isel to avoid matching MOV32mi
if the immediate has more than some fixed number of uses. It's more involved
to teach the register allocator how to do late folding to recover from
excessive register pressure.