llvm-6502/lib/Transforms/Instrumentation/ThreadSanitizer.cpp
Chandler Carruth d04a8d4b33 Use the new script to sort the includes of every file under lib.
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.

Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169131 91177308-0d34-0410-b5e6-96231b3b80d8
2012-12-03 16:50:05 +00:00

524 lines
20 KiB
C++

//===-- ThreadSanitizer.cpp - race detector -------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of ThreadSanitizer, a race detector.
//
// The tool is under development, for the details about previous versions see
// http://code.google.com/p/data-race-test
//
// The instrumentation phase is quite simple:
// - Insert calls to run-time library before every memory access.
// - Optimizations may apply to avoid instrumenting some of the accesses.
// - Insert calls at function entry/exit.
// The rest is handled by the run-time library.
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "tsan"
#include "llvm/Transforms/Instrumentation.h"
#include "BlackList.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/DataLayout.h"
#include "llvm/Function.h"
#include "llvm/IRBuilder.h"
#include "llvm/Intrinsics.h"
#include "llvm/LLVMContext.h"
#include "llvm/Metadata.h"
#include "llvm/Module.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/ModuleUtils.h"
#include "llvm/Type.h"
using namespace llvm;
static cl::opt<std::string> ClBlackListFile("tsan-blacklist",
cl::desc("Blacklist file"), cl::Hidden);
static cl::opt<bool> ClInstrumentMemoryAccesses(
"tsan-instrument-memory-accesses", cl::init(true),
cl::desc("Instrument memory accesses"), cl::Hidden);
static cl::opt<bool> ClInstrumentFuncEntryExit(
"tsan-instrument-func-entry-exit", cl::init(true),
cl::desc("Instrument function entry and exit"), cl::Hidden);
static cl::opt<bool> ClInstrumentAtomics(
"tsan-instrument-atomics", cl::init(true),
cl::desc("Instrument atomics"), cl::Hidden);
STATISTIC(NumInstrumentedReads, "Number of instrumented reads");
STATISTIC(NumInstrumentedWrites, "Number of instrumented writes");
STATISTIC(NumOmittedReadsBeforeWrite,
"Number of reads ignored due to following writes");
STATISTIC(NumAccessesWithBadSize, "Number of accesses with bad size");
STATISTIC(NumInstrumentedVtableWrites, "Number of vtable ptr writes");
STATISTIC(NumOmittedReadsFromConstantGlobals,
"Number of reads from constant globals");
STATISTIC(NumOmittedReadsFromVtable, "Number of vtable reads");
namespace {
/// ThreadSanitizer: instrument the code in module to find races.
struct ThreadSanitizer : public FunctionPass {
ThreadSanitizer();
const char *getPassName() const;
bool runOnFunction(Function &F);
bool doInitialization(Module &M);
static char ID; // Pass identification, replacement for typeid.
private:
void initializeCallbacks(Module &M);
bool instrumentLoadOrStore(Instruction *I);
bool instrumentAtomic(Instruction *I);
void chooseInstructionsToInstrument(SmallVectorImpl<Instruction*> &Local,
SmallVectorImpl<Instruction*> &All);
bool addrPointsToConstantData(Value *Addr);
int getMemoryAccessFuncIndex(Value *Addr);
DataLayout *TD;
OwningPtr<BlackList> BL;
IntegerType *OrdTy;
// Callbacks to run-time library are computed in doInitialization.
Function *TsanFuncEntry;
Function *TsanFuncExit;
// Accesses sizes are powers of two: 1, 2, 4, 8, 16.
static const size_t kNumberOfAccessSizes = 5;
Function *TsanRead[kNumberOfAccessSizes];
Function *TsanWrite[kNumberOfAccessSizes];
Function *TsanAtomicLoad[kNumberOfAccessSizes];
Function *TsanAtomicStore[kNumberOfAccessSizes];
Function *TsanAtomicRMW[AtomicRMWInst::LAST_BINOP + 1][kNumberOfAccessSizes];
Function *TsanAtomicCAS[kNumberOfAccessSizes];
Function *TsanAtomicThreadFence;
Function *TsanAtomicSignalFence;
Function *TsanVptrUpdate;
};
} // namespace
char ThreadSanitizer::ID = 0;
INITIALIZE_PASS(ThreadSanitizer, "tsan",
"ThreadSanitizer: detects data races.",
false, false)
const char *ThreadSanitizer::getPassName() const {
return "ThreadSanitizer";
}
ThreadSanitizer::ThreadSanitizer()
: FunctionPass(ID),
TD(NULL) {
}
FunctionPass *llvm::createThreadSanitizerPass() {
return new ThreadSanitizer();
}
static Function *checkInterfaceFunction(Constant *FuncOrBitcast) {
if (Function *F = dyn_cast<Function>(FuncOrBitcast))
return F;
FuncOrBitcast->dump();
report_fatal_error("ThreadSanitizer interface function redefined");
}
void ThreadSanitizer::initializeCallbacks(Module &M) {
IRBuilder<> IRB(M.getContext());
// Initialize the callbacks.
TsanFuncEntry = checkInterfaceFunction(M.getOrInsertFunction(
"__tsan_func_entry", IRB.getVoidTy(), IRB.getInt8PtrTy(), NULL));
TsanFuncExit = checkInterfaceFunction(M.getOrInsertFunction(
"__tsan_func_exit", IRB.getVoidTy(), NULL));
OrdTy = IRB.getInt32Ty();
for (size_t i = 0; i < kNumberOfAccessSizes; ++i) {
const size_t ByteSize = 1 << i;
const size_t BitSize = ByteSize * 8;
SmallString<32> ReadName("__tsan_read" + itostr(ByteSize));
TsanRead[i] = checkInterfaceFunction(M.getOrInsertFunction(
ReadName, IRB.getVoidTy(), IRB.getInt8PtrTy(), NULL));
SmallString<32> WriteName("__tsan_write" + itostr(ByteSize));
TsanWrite[i] = checkInterfaceFunction(M.getOrInsertFunction(
WriteName, IRB.getVoidTy(), IRB.getInt8PtrTy(), NULL));
Type *Ty = Type::getIntNTy(M.getContext(), BitSize);
Type *PtrTy = Ty->getPointerTo();
SmallString<32> AtomicLoadName("__tsan_atomic" + itostr(BitSize) +
"_load");
TsanAtomicLoad[i] = checkInterfaceFunction(M.getOrInsertFunction(
AtomicLoadName, Ty, PtrTy, OrdTy, NULL));
SmallString<32> AtomicStoreName("__tsan_atomic" + itostr(BitSize) +
"_store");
TsanAtomicStore[i] = checkInterfaceFunction(M.getOrInsertFunction(
AtomicStoreName, IRB.getVoidTy(), PtrTy, Ty, OrdTy,
NULL));
for (int op = AtomicRMWInst::FIRST_BINOP;
op <= AtomicRMWInst::LAST_BINOP; ++op) {
TsanAtomicRMW[op][i] = NULL;
const char *NamePart = NULL;
if (op == AtomicRMWInst::Xchg)
NamePart = "_exchange";
else if (op == AtomicRMWInst::Add)
NamePart = "_fetch_add";
else if (op == AtomicRMWInst::Sub)
NamePart = "_fetch_sub";
else if (op == AtomicRMWInst::And)
NamePart = "_fetch_and";
else if (op == AtomicRMWInst::Or)
NamePart = "_fetch_or";
else if (op == AtomicRMWInst::Xor)
NamePart = "_fetch_xor";
else if (op == AtomicRMWInst::Nand)
NamePart = "_fetch_nand";
else
continue;
SmallString<32> RMWName("__tsan_atomic" + itostr(BitSize) + NamePart);
TsanAtomicRMW[op][i] = checkInterfaceFunction(M.getOrInsertFunction(
RMWName, Ty, PtrTy, Ty, OrdTy, NULL));
}
SmallString<32> AtomicCASName("__tsan_atomic" + itostr(BitSize) +
"_compare_exchange_val");
TsanAtomicCAS[i] = checkInterfaceFunction(M.getOrInsertFunction(
AtomicCASName, Ty, PtrTy, Ty, Ty, OrdTy, OrdTy, NULL));
}
TsanVptrUpdate = checkInterfaceFunction(M.getOrInsertFunction(
"__tsan_vptr_update", IRB.getVoidTy(), IRB.getInt8PtrTy(),
IRB.getInt8PtrTy(), NULL));
TsanAtomicThreadFence = checkInterfaceFunction(M.getOrInsertFunction(
"__tsan_atomic_thread_fence", IRB.getVoidTy(), OrdTy, NULL));
TsanAtomicSignalFence = checkInterfaceFunction(M.getOrInsertFunction(
"__tsan_atomic_signal_fence", IRB.getVoidTy(), OrdTy, NULL));
}
bool ThreadSanitizer::doInitialization(Module &M) {
TD = getAnalysisIfAvailable<DataLayout>();
if (!TD)
return false;
BL.reset(new BlackList(ClBlackListFile));
// Always insert a call to __tsan_init into the module's CTORs.
IRBuilder<> IRB(M.getContext());
Value *TsanInit = M.getOrInsertFunction("__tsan_init",
IRB.getVoidTy(), NULL);
appendToGlobalCtors(M, cast<Function>(TsanInit), 0);
return true;
}
static bool isVtableAccess(Instruction *I) {
if (MDNode *Tag = I->getMetadata(LLVMContext::MD_tbaa)) {
if (Tag->getNumOperands() < 1) return false;
if (MDString *Tag1 = dyn_cast<MDString>(Tag->getOperand(0))) {
if (Tag1->getString() == "vtable pointer") return true;
}
}
return false;
}
bool ThreadSanitizer::addrPointsToConstantData(Value *Addr) {
// If this is a GEP, just analyze its pointer operand.
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Addr))
Addr = GEP->getPointerOperand();
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
if (GV->isConstant()) {
// Reads from constant globals can not race with any writes.
NumOmittedReadsFromConstantGlobals++;
return true;
}
} else if (LoadInst *L = dyn_cast<LoadInst>(Addr)) {
if (isVtableAccess(L)) {
// Reads from a vtable pointer can not race with any writes.
NumOmittedReadsFromVtable++;
return true;
}
}
return false;
}
// Instrumenting some of the accesses may be proven redundant.
// Currently handled:
// - read-before-write (within same BB, no calls between)
//
// We do not handle some of the patterns that should not survive
// after the classic compiler optimizations.
// E.g. two reads from the same temp should be eliminated by CSE,
// two writes should be eliminated by DSE, etc.
//
// 'Local' is a vector of insns within the same BB (no calls between).
// 'All' is a vector of insns that will be instrumented.
void ThreadSanitizer::chooseInstructionsToInstrument(
SmallVectorImpl<Instruction*> &Local,
SmallVectorImpl<Instruction*> &All) {
SmallSet<Value*, 8> WriteTargets;
// Iterate from the end.
for (SmallVectorImpl<Instruction*>::reverse_iterator It = Local.rbegin(),
E = Local.rend(); It != E; ++It) {
Instruction *I = *It;
if (StoreInst *Store = dyn_cast<StoreInst>(I)) {
WriteTargets.insert(Store->getPointerOperand());
} else {
LoadInst *Load = cast<LoadInst>(I);
Value *Addr = Load->getPointerOperand();
if (WriteTargets.count(Addr)) {
// We will write to this temp, so no reason to analyze the read.
NumOmittedReadsBeforeWrite++;
continue;
}
if (addrPointsToConstantData(Addr)) {
// Addr points to some constant data -- it can not race with any writes.
continue;
}
}
All.push_back(I);
}
Local.clear();
}
static bool isAtomic(Instruction *I) {
if (LoadInst *LI = dyn_cast<LoadInst>(I))
return LI->isAtomic() && LI->getSynchScope() == CrossThread;
if (StoreInst *SI = dyn_cast<StoreInst>(I))
return SI->isAtomic() && SI->getSynchScope() == CrossThread;
if (isa<AtomicRMWInst>(I))
return true;
if (isa<AtomicCmpXchgInst>(I))
return true;
if (isa<FenceInst>(I))
return true;
return false;
}
bool ThreadSanitizer::runOnFunction(Function &F) {
if (!TD) return false;
if (BL->isIn(F)) return false;
initializeCallbacks(*F.getParent());
SmallVector<Instruction*, 8> RetVec;
SmallVector<Instruction*, 8> AllLoadsAndStores;
SmallVector<Instruction*, 8> LocalLoadsAndStores;
SmallVector<Instruction*, 8> AtomicAccesses;
bool Res = false;
bool HasCalls = false;
// Traverse all instructions, collect loads/stores/returns, check for calls.
for (Function::iterator FI = F.begin(), FE = F.end();
FI != FE; ++FI) {
BasicBlock &BB = *FI;
for (BasicBlock::iterator BI = BB.begin(), BE = BB.end();
BI != BE; ++BI) {
if (isAtomic(BI))
AtomicAccesses.push_back(BI);
else if (isa<LoadInst>(BI) || isa<StoreInst>(BI))
LocalLoadsAndStores.push_back(BI);
else if (isa<ReturnInst>(BI))
RetVec.push_back(BI);
else if (isa<CallInst>(BI) || isa<InvokeInst>(BI)) {
HasCalls = true;
chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores);
}
}
chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores);
}
// We have collected all loads and stores.
// FIXME: many of these accesses do not need to be checked for races
// (e.g. variables that do not escape, etc).
// Instrument memory accesses.
if (ClInstrumentMemoryAccesses)
for (size_t i = 0, n = AllLoadsAndStores.size(); i < n; ++i) {
Res |= instrumentLoadOrStore(AllLoadsAndStores[i]);
}
// Instrument atomic memory accesses.
if (ClInstrumentAtomics)
for (size_t i = 0, n = AtomicAccesses.size(); i < n; ++i) {
Res |= instrumentAtomic(AtomicAccesses[i]);
}
// Instrument function entry/exit points if there were instrumented accesses.
if ((Res || HasCalls) && ClInstrumentFuncEntryExit) {
IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
Value *ReturnAddress = IRB.CreateCall(
Intrinsic::getDeclaration(F.getParent(), Intrinsic::returnaddress),
IRB.getInt32(0));
IRB.CreateCall(TsanFuncEntry, ReturnAddress);
for (size_t i = 0, n = RetVec.size(); i < n; ++i) {
IRBuilder<> IRBRet(RetVec[i]);
IRBRet.CreateCall(TsanFuncExit);
}
Res = true;
}
return Res;
}
bool ThreadSanitizer::instrumentLoadOrStore(Instruction *I) {
IRBuilder<> IRB(I);
bool IsWrite = isa<StoreInst>(*I);
Value *Addr = IsWrite
? cast<StoreInst>(I)->getPointerOperand()
: cast<LoadInst>(I)->getPointerOperand();
int Idx = getMemoryAccessFuncIndex(Addr);
if (Idx < 0)
return false;
if (IsWrite && isVtableAccess(I)) {
DEBUG(dbgs() << " VPTR : " << *I << "\n");
Value *StoredValue = cast<StoreInst>(I)->getValueOperand();
// StoredValue does not necessary have a pointer type.
if (isa<IntegerType>(StoredValue->getType()))
StoredValue = IRB.CreateIntToPtr(StoredValue, IRB.getInt8PtrTy());
// Call TsanVptrUpdate.
IRB.CreateCall2(TsanVptrUpdate,
IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()),
IRB.CreatePointerCast(StoredValue, IRB.getInt8PtrTy()));
NumInstrumentedVtableWrites++;
return true;
}
Value *OnAccessFunc = IsWrite ? TsanWrite[Idx] : TsanRead[Idx];
IRB.CreateCall(OnAccessFunc, IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()));
if (IsWrite) NumInstrumentedWrites++;
else NumInstrumentedReads++;
return true;
}
static ConstantInt *createOrdering(IRBuilder<> *IRB, AtomicOrdering ord) {
uint32_t v = 0;
switch (ord) {
case NotAtomic: assert(false);
case Unordered: // Fall-through.
case Monotonic: v = 0; break;
// case Consume: v = 1; break; // Not specified yet.
case Acquire: v = 2; break;
case Release: v = 3; break;
case AcquireRelease: v = 4; break;
case SequentiallyConsistent: v = 5; break;
}
return IRB->getInt32(v);
}
static ConstantInt *createFailOrdering(IRBuilder<> *IRB, AtomicOrdering ord) {
uint32_t v = 0;
switch (ord) {
case NotAtomic: assert(false);
case Unordered: // Fall-through.
case Monotonic: v = 0; break;
// case Consume: v = 1; break; // Not specified yet.
case Acquire: v = 2; break;
case Release: v = 0; break;
case AcquireRelease: v = 2; break;
case SequentiallyConsistent: v = 5; break;
}
return IRB->getInt32(v);
}
// Both llvm and ThreadSanitizer atomic operations are based on C++11/C1x
// standards. For background see C++11 standard. A slightly older, publically
// available draft of the standard (not entirely up-to-date, but close enough
// for casual browsing) is available here:
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf
// The following page contains more background information:
// http://www.hpl.hp.com/personal/Hans_Boehm/c++mm/
bool ThreadSanitizer::instrumentAtomic(Instruction *I) {
IRBuilder<> IRB(I);
if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
Value *Addr = LI->getPointerOperand();
int Idx = getMemoryAccessFuncIndex(Addr);
if (Idx < 0)
return false;
const size_t ByteSize = 1 << Idx;
const size_t BitSize = ByteSize * 8;
Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
Type *PtrTy = Ty->getPointerTo();
Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
createOrdering(&IRB, LI->getOrdering())};
CallInst *C = CallInst::Create(TsanAtomicLoad[Idx],
ArrayRef<Value*>(Args));
ReplaceInstWithInst(I, C);
} else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
Value *Addr = SI->getPointerOperand();
int Idx = getMemoryAccessFuncIndex(Addr);
if (Idx < 0)
return false;
const size_t ByteSize = 1 << Idx;
const size_t BitSize = ByteSize * 8;
Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
Type *PtrTy = Ty->getPointerTo();
Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
IRB.CreateIntCast(SI->getValueOperand(), Ty, false),
createOrdering(&IRB, SI->getOrdering())};
CallInst *C = CallInst::Create(TsanAtomicStore[Idx],
ArrayRef<Value*>(Args));
ReplaceInstWithInst(I, C);
} else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) {
Value *Addr = RMWI->getPointerOperand();
int Idx = getMemoryAccessFuncIndex(Addr);
if (Idx < 0)
return false;
Function *F = TsanAtomicRMW[RMWI->getOperation()][Idx];
if (F == NULL)
return false;
const size_t ByteSize = 1 << Idx;
const size_t BitSize = ByteSize * 8;
Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
Type *PtrTy = Ty->getPointerTo();
Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
IRB.CreateIntCast(RMWI->getValOperand(), Ty, false),
createOrdering(&IRB, RMWI->getOrdering())};
CallInst *C = CallInst::Create(F, ArrayRef<Value*>(Args));
ReplaceInstWithInst(I, C);
} else if (AtomicCmpXchgInst *CASI = dyn_cast<AtomicCmpXchgInst>(I)) {
Value *Addr = CASI->getPointerOperand();
int Idx = getMemoryAccessFuncIndex(Addr);
if (Idx < 0)
return false;
const size_t ByteSize = 1 << Idx;
const size_t BitSize = ByteSize * 8;
Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
Type *PtrTy = Ty->getPointerTo();
Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
IRB.CreateIntCast(CASI->getCompareOperand(), Ty, false),
IRB.CreateIntCast(CASI->getNewValOperand(), Ty, false),
createOrdering(&IRB, CASI->getOrdering()),
createFailOrdering(&IRB, CASI->getOrdering())};
CallInst *C = CallInst::Create(TsanAtomicCAS[Idx], ArrayRef<Value*>(Args));
ReplaceInstWithInst(I, C);
} else if (FenceInst *FI = dyn_cast<FenceInst>(I)) {
Value *Args[] = {createOrdering(&IRB, FI->getOrdering())};
Function *F = FI->getSynchScope() == SingleThread ?
TsanAtomicSignalFence : TsanAtomicThreadFence;
CallInst *C = CallInst::Create(F, ArrayRef<Value*>(Args));
ReplaceInstWithInst(I, C);
}
return true;
}
int ThreadSanitizer::getMemoryAccessFuncIndex(Value *Addr) {
Type *OrigPtrTy = Addr->getType();
Type *OrigTy = cast<PointerType>(OrigPtrTy)->getElementType();
assert(OrigTy->isSized());
uint32_t TypeSize = TD->getTypeStoreSizeInBits(OrigTy);
if (TypeSize != 8 && TypeSize != 16 &&
TypeSize != 32 && TypeSize != 64 && TypeSize != 128) {
NumAccessesWithBadSize++;
// Ignore all unusual sizes.
return -1;
}
size_t Idx = CountTrailingZeros_32(TypeSize / 8);
assert(Idx < kNumberOfAccessSizes);
return Idx;
}