llvm-6502/lib/Transforms/Scalar/EarlyCSE.cpp
2015-01-24 11:44:32 +00:00

644 lines
23 KiB
C++

//===- EarlyCSE.cpp - Simple and fast CSE pass ----------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass performs a simple dominator tree walk that eliminates trivially
// redundant instructions.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/ScopedHashTable.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/RecyclingAllocator.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Transforms/Utils/Local.h"
#include <deque>
using namespace llvm;
using namespace llvm::PatternMatch;
#define DEBUG_TYPE "early-cse"
STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd");
STATISTIC(NumCSE, "Number of instructions CSE'd");
STATISTIC(NumCSELoad, "Number of load instructions CSE'd");
STATISTIC(NumCSECall, "Number of call instructions CSE'd");
STATISTIC(NumDSE, "Number of trivial dead stores removed");
static unsigned getHash(const void *V) {
return DenseMapInfo<const void*>::getHashValue(V);
}
//===----------------------------------------------------------------------===//
// SimpleValue
//===----------------------------------------------------------------------===//
namespace {
/// \brief Struct representing the available values in the scoped hash table.
struct SimpleValue {
Instruction *Inst;
SimpleValue(Instruction *I) : Inst(I) {
assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
}
bool isSentinel() const {
return Inst == DenseMapInfo<Instruction *>::getEmptyKey() ||
Inst == DenseMapInfo<Instruction *>::getTombstoneKey();
}
static bool canHandle(Instruction *Inst) {
// This can only handle non-void readnone functions.
if (CallInst *CI = dyn_cast<CallInst>(Inst))
return CI->doesNotAccessMemory() && !CI->getType()->isVoidTy();
return isa<CastInst>(Inst) || isa<BinaryOperator>(Inst) ||
isa<GetElementPtrInst>(Inst) || isa<CmpInst>(Inst) ||
isa<SelectInst>(Inst) || isa<ExtractElementInst>(Inst) ||
isa<InsertElementInst>(Inst) || isa<ShuffleVectorInst>(Inst) ||
isa<ExtractValueInst>(Inst) || isa<InsertValueInst>(Inst);
}
};
}
namespace llvm {
template <> struct DenseMapInfo<SimpleValue> {
static inline SimpleValue getEmptyKey() {
return DenseMapInfo<Instruction *>::getEmptyKey();
}
static inline SimpleValue getTombstoneKey() {
return DenseMapInfo<Instruction *>::getTombstoneKey();
}
static unsigned getHashValue(SimpleValue Val);
static bool isEqual(SimpleValue LHS, SimpleValue RHS);
};
}
unsigned DenseMapInfo<SimpleValue>::getHashValue(SimpleValue Val) {
Instruction *Inst = Val.Inst;
// Hash in all of the operands as pointers.
if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst)) {
Value *LHS = BinOp->getOperand(0);
Value *RHS = BinOp->getOperand(1);
if (BinOp->isCommutative() && BinOp->getOperand(0) > BinOp->getOperand(1))
std::swap(LHS, RHS);
if (isa<OverflowingBinaryOperator>(BinOp)) {
// Hash the overflow behavior
unsigned Overflow =
BinOp->hasNoSignedWrap() * OverflowingBinaryOperator::NoSignedWrap |
BinOp->hasNoUnsignedWrap() *
OverflowingBinaryOperator::NoUnsignedWrap;
return hash_combine(BinOp->getOpcode(), Overflow, LHS, RHS);
}
return hash_combine(BinOp->getOpcode(), LHS, RHS);
}
if (CmpInst *CI = dyn_cast<CmpInst>(Inst)) {
Value *LHS = CI->getOperand(0);
Value *RHS = CI->getOperand(1);
CmpInst::Predicate Pred = CI->getPredicate();
if (Inst->getOperand(0) > Inst->getOperand(1)) {
std::swap(LHS, RHS);
Pred = CI->getSwappedPredicate();
}
return hash_combine(Inst->getOpcode(), Pred, LHS, RHS);
}
if (CastInst *CI = dyn_cast<CastInst>(Inst))
return hash_combine(CI->getOpcode(), CI->getType(), CI->getOperand(0));
if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Inst))
return hash_combine(EVI->getOpcode(), EVI->getOperand(0),
hash_combine_range(EVI->idx_begin(), EVI->idx_end()));
if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(Inst))
return hash_combine(IVI->getOpcode(), IVI->getOperand(0),
IVI->getOperand(1),
hash_combine_range(IVI->idx_begin(), IVI->idx_end()));
assert((isa<CallInst>(Inst) || isa<BinaryOperator>(Inst) ||
isa<GetElementPtrInst>(Inst) || isa<SelectInst>(Inst) ||
isa<ExtractElementInst>(Inst) || isa<InsertElementInst>(Inst) ||
isa<ShuffleVectorInst>(Inst)) &&
"Invalid/unknown instruction");
// Mix in the opcode.
return hash_combine(
Inst->getOpcode(),
hash_combine_range(Inst->value_op_begin(), Inst->value_op_end()));
}
bool DenseMapInfo<SimpleValue>::isEqual(SimpleValue LHS, SimpleValue RHS) {
Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
if (LHS.isSentinel() || RHS.isSentinel())
return LHSI == RHSI;
if (LHSI->getOpcode() != RHSI->getOpcode())
return false;
if (LHSI->isIdenticalTo(RHSI))
return true;
// If we're not strictly identical, we still might be a commutable instruction
if (BinaryOperator *LHSBinOp = dyn_cast<BinaryOperator>(LHSI)) {
if (!LHSBinOp->isCommutative())
return false;
assert(isa<BinaryOperator>(RHSI) &&
"same opcode, but different instruction type?");
BinaryOperator *RHSBinOp = cast<BinaryOperator>(RHSI);
// Check overflow attributes
if (isa<OverflowingBinaryOperator>(LHSBinOp)) {
assert(isa<OverflowingBinaryOperator>(RHSBinOp) &&
"same opcode, but different operator type?");
if (LHSBinOp->hasNoUnsignedWrap() != RHSBinOp->hasNoUnsignedWrap() ||
LHSBinOp->hasNoSignedWrap() != RHSBinOp->hasNoSignedWrap())
return false;
}
// Commuted equality
return LHSBinOp->getOperand(0) == RHSBinOp->getOperand(1) &&
LHSBinOp->getOperand(1) == RHSBinOp->getOperand(0);
}
if (CmpInst *LHSCmp = dyn_cast<CmpInst>(LHSI)) {
assert(isa<CmpInst>(RHSI) &&
"same opcode, but different instruction type?");
CmpInst *RHSCmp = cast<CmpInst>(RHSI);
// Commuted equality
return LHSCmp->getOperand(0) == RHSCmp->getOperand(1) &&
LHSCmp->getOperand(1) == RHSCmp->getOperand(0) &&
LHSCmp->getSwappedPredicate() == RHSCmp->getPredicate();
}
return false;
}
//===----------------------------------------------------------------------===//
// CallValue
//===----------------------------------------------------------------------===//
namespace {
/// \brief Struct representing the available call values in the scoped hash
/// table.
struct CallValue {
Instruction *Inst;
CallValue(Instruction *I) : Inst(I) {
assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
}
bool isSentinel() const {
return Inst == DenseMapInfo<Instruction *>::getEmptyKey() ||
Inst == DenseMapInfo<Instruction *>::getTombstoneKey();
}
static bool canHandle(Instruction *Inst) {
// Don't value number anything that returns void.
if (Inst->getType()->isVoidTy())
return false;
CallInst *CI = dyn_cast<CallInst>(Inst);
if (!CI || !CI->onlyReadsMemory())
return false;
return true;
}
};
}
namespace llvm {
template <> struct DenseMapInfo<CallValue> {
static inline CallValue getEmptyKey() {
return DenseMapInfo<Instruction *>::getEmptyKey();
}
static inline CallValue getTombstoneKey() {
return DenseMapInfo<Instruction *>::getTombstoneKey();
}
static unsigned getHashValue(CallValue Val);
static bool isEqual(CallValue LHS, CallValue RHS);
};
}
unsigned DenseMapInfo<CallValue>::getHashValue(CallValue Val) {
Instruction *Inst = Val.Inst;
// Hash in all of the operands as pointers.
unsigned Res = 0;
for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) {
assert(!Inst->getOperand(i)->getType()->isMetadataTy() &&
"Cannot value number calls with metadata operands");
Res ^= getHash(Inst->getOperand(i)) << (i & 0xF);
}
// Mix in the opcode.
return (Res << 1) ^ Inst->getOpcode();
}
bool DenseMapInfo<CallValue>::isEqual(CallValue LHS, CallValue RHS) {
Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
if (LHS.isSentinel() || RHS.isSentinel())
return LHSI == RHSI;
return LHSI->isIdenticalTo(RHSI);
}
//===----------------------------------------------------------------------===//
// EarlyCSE pass.
//===----------------------------------------------------------------------===//
namespace {
/// \brief A simple and fast domtree-based CSE pass.
///
/// This pass does a simple depth-first walk over the dominator tree,
/// eliminating trivially redundant instructions and using instsimplify to
/// canonicalize things as it goes. It is intended to be fast and catch obvious
/// cases so that instcombine and other passes are more effective. It is
/// expected that a later pass of GVN will catch the interesting/hard cases.
class EarlyCSE : public FunctionPass {
public:
const DataLayout *DL;
const TargetLibraryInfo *TLI;
DominatorTree *DT;
AssumptionCache *AC;
typedef RecyclingAllocator<
BumpPtrAllocator, ScopedHashTableVal<SimpleValue, Value *>> AllocatorTy;
typedef ScopedHashTable<SimpleValue, Value *, DenseMapInfo<SimpleValue>,
AllocatorTy> ScopedHTType;
/// \brief A scoped hash table of the current values of all of our simple
/// scalar expressions.
///
/// As we walk down the domtree, we look to see if instructions are in this:
/// if so, we replace them with what we find, otherwise we insert them so
/// that dominated values can succeed in their lookup.
ScopedHTType *AvailableValues;
/// \brief A scoped hash table of the current values of loads.
///
/// This allows us to get efficient access to dominating loads when we have
/// a fully redundant load. In addition to the most recent load, we keep
/// track of a generation count of the read, which is compared against the
/// current generation count. The current generation count is incremented
/// after every possibly writing memory operation, which ensures that we only
/// CSE loads with other loads that have no intervening store.
typedef RecyclingAllocator<
BumpPtrAllocator,
ScopedHashTableVal<Value *, std::pair<Value *, unsigned>>>
LoadMapAllocator;
typedef ScopedHashTable<Value *, std::pair<Value *, unsigned>,
DenseMapInfo<Value *>, LoadMapAllocator> LoadHTType;
LoadHTType *AvailableLoads;
/// \brief A scoped hash table of the current values of read-only call
/// values.
///
/// It uses the same generation count as loads.
typedef ScopedHashTable<CallValue, std::pair<Value *, unsigned>> CallHTType;
CallHTType *AvailableCalls;
/// \brief This is the current generation of the memory value.
unsigned CurrentGeneration;
static char ID;
explicit EarlyCSE() : FunctionPass(ID) {
initializeEarlyCSEPass(*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function &F) override;
private:
// Almost a POD, but needs to call the constructors for the scoped hash
// tables so that a new scope gets pushed on. These are RAII so that the
// scope gets popped when the NodeScope is destroyed.
class NodeScope {
public:
NodeScope(ScopedHTType *availableValues, LoadHTType *availableLoads,
CallHTType *availableCalls)
: Scope(*availableValues), LoadScope(*availableLoads),
CallScope(*availableCalls) {}
private:
NodeScope(const NodeScope &) LLVM_DELETED_FUNCTION;
void operator=(const NodeScope &) LLVM_DELETED_FUNCTION;
ScopedHTType::ScopeTy Scope;
LoadHTType::ScopeTy LoadScope;
CallHTType::ScopeTy CallScope;
};
// Contains all the needed information to create a stack for doing a depth
// first tranversal of the tree. This includes scopes for values, loads, and
// calls as well as the generation. There is a child iterator so that the
// children do not need to be store spearately.
class StackNode {
public:
StackNode(ScopedHTType *availableValues, LoadHTType *availableLoads,
CallHTType *availableCalls, unsigned cg, DomTreeNode *n,
DomTreeNode::iterator child, DomTreeNode::iterator end)
: CurrentGeneration(cg), ChildGeneration(cg), Node(n), ChildIter(child),
EndIter(end), Scopes(availableValues, availableLoads, availableCalls),
Processed(false) {}
// Accessors.
unsigned currentGeneration() { return CurrentGeneration; }
unsigned childGeneration() { return ChildGeneration; }
void childGeneration(unsigned generation) { ChildGeneration = generation; }
DomTreeNode *node() { return Node; }
DomTreeNode::iterator childIter() { return ChildIter; }
DomTreeNode *nextChild() {
DomTreeNode *child = *ChildIter;
++ChildIter;
return child;
}
DomTreeNode::iterator end() { return EndIter; }
bool isProcessed() { return Processed; }
void process() { Processed = true; }
private:
StackNode(const StackNode &) LLVM_DELETED_FUNCTION;
void operator=(const StackNode &) LLVM_DELETED_FUNCTION;
// Members.
unsigned CurrentGeneration;
unsigned ChildGeneration;
DomTreeNode *Node;
DomTreeNode::iterator ChildIter;
DomTreeNode::iterator EndIter;
NodeScope Scopes;
bool Processed;
};
bool processNode(DomTreeNode *Node);
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<AssumptionCacheTracker>();
AU.addRequired<DominatorTreeWrapperPass>();
AU.addRequired<TargetLibraryInfoWrapperPass>();
AU.setPreservesCFG();
}
};
}
char EarlyCSE::ID = 0;
FunctionPass *llvm::createEarlyCSEPass() { return new EarlyCSE(); }
INITIALIZE_PASS_BEGIN(EarlyCSE, "early-cse", "Early CSE", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_END(EarlyCSE, "early-cse", "Early CSE", false, false)
bool EarlyCSE::processNode(DomTreeNode *Node) {
BasicBlock *BB = Node->getBlock();
// If this block has a single predecessor, then the predecessor is the parent
// of the domtree node and all of the live out memory values are still current
// in this block. If this block has multiple predecessors, then they could
// have invalidated the live-out memory values of our parent value. For now,
// just be conservative and invalidate memory if this block has multiple
// predecessors.
if (!BB->getSinglePredecessor())
++CurrentGeneration;
/// LastStore - Keep track of the last non-volatile store that we saw... for
/// as long as there in no instruction that reads memory. If we see a store
/// to the same location, we delete the dead store. This zaps trivial dead
/// stores which can occur in bitfield code among other things.
StoreInst *LastStore = nullptr;
bool Changed = false;
// See if any instructions in the block can be eliminated. If so, do it. If
// not, add them to AvailableValues.
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
Instruction *Inst = I++;
// Dead instructions should just be removed.
if (isInstructionTriviallyDead(Inst, TLI)) {
DEBUG(dbgs() << "EarlyCSE DCE: " << *Inst << '\n');
Inst->eraseFromParent();
Changed = true;
++NumSimplify;
continue;
}
// Skip assume intrinsics, they don't really have side effects (although
// they're marked as such to ensure preservation of control dependencies),
// and this pass will not disturb any of the assumption's control
// dependencies.
if (match(Inst, m_Intrinsic<Intrinsic::assume>())) {
DEBUG(dbgs() << "EarlyCSE skipping assumption: " << *Inst << '\n');
continue;
}
// If the instruction can be simplified (e.g. X+0 = X) then replace it with
// its simpler value.
if (Value *V = SimplifyInstruction(Inst, DL, TLI, DT, AC)) {
DEBUG(dbgs() << "EarlyCSE Simplify: " << *Inst << " to: " << *V << '\n');
Inst->replaceAllUsesWith(V);
Inst->eraseFromParent();
Changed = true;
++NumSimplify;
continue;
}
// If this is a simple instruction that we can value number, process it.
if (SimpleValue::canHandle(Inst)) {
// See if the instruction has an available value. If so, use it.
if (Value *V = AvailableValues->lookup(Inst)) {
DEBUG(dbgs() << "EarlyCSE CSE: " << *Inst << " to: " << *V << '\n');
Inst->replaceAllUsesWith(V);
Inst->eraseFromParent();
Changed = true;
++NumCSE;
continue;
}
// Otherwise, just remember that this value is available.
AvailableValues->insert(Inst, Inst);
continue;
}
// If this is a non-volatile load, process it.
if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
// Ignore volatile loads.
if (!LI->isSimple()) {
LastStore = nullptr;
continue;
}
// If we have an available version of this load, and if it is the right
// generation, replace this instruction.
std::pair<Value *, unsigned> InVal =
AvailableLoads->lookup(Inst->getOperand(0));
if (InVal.first != nullptr && InVal.second == CurrentGeneration) {
DEBUG(dbgs() << "EarlyCSE CSE LOAD: " << *Inst
<< " to: " << *InVal.first << '\n');
if (!Inst->use_empty())
Inst->replaceAllUsesWith(InVal.first);
Inst->eraseFromParent();
Changed = true;
++NumCSELoad;
continue;
}
// Otherwise, remember that we have this instruction.
AvailableLoads->insert(Inst->getOperand(0), std::pair<Value *, unsigned>(
Inst, CurrentGeneration));
LastStore = nullptr;
continue;
}
// If this instruction may read from memory, forget LastStore.
if (Inst->mayReadFromMemory())
LastStore = nullptr;
// If this is a read-only call, process it.
if (CallValue::canHandle(Inst)) {
// If we have an available version of this call, and if it is the right
// generation, replace this instruction.
std::pair<Value *, unsigned> InVal = AvailableCalls->lookup(Inst);
if (InVal.first != nullptr && InVal.second == CurrentGeneration) {
DEBUG(dbgs() << "EarlyCSE CSE CALL: " << *Inst
<< " to: " << *InVal.first << '\n');
if (!Inst->use_empty())
Inst->replaceAllUsesWith(InVal.first);
Inst->eraseFromParent();
Changed = true;
++NumCSECall;
continue;
}
// Otherwise, remember that we have this instruction.
AvailableCalls->insert(
Inst, std::pair<Value *, unsigned>(Inst, CurrentGeneration));
continue;
}
// Okay, this isn't something we can CSE at all. Check to see if it is
// something that could modify memory. If so, our available memory values
// cannot be used so bump the generation count.
if (Inst->mayWriteToMemory()) {
++CurrentGeneration;
if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
// We do a trivial form of DSE if there are two stores to the same
// location with no intervening loads. Delete the earlier store.
if (LastStore &&
LastStore->getPointerOperand() == SI->getPointerOperand()) {
DEBUG(dbgs() << "EarlyCSE DEAD STORE: " << *LastStore
<< " due to: " << *Inst << '\n');
LastStore->eraseFromParent();
Changed = true;
++NumDSE;
LastStore = nullptr;
// fallthrough - we can exploit information about this store
}
// Okay, we just invalidated anything we knew about loaded values. Try
// to salvage *something* by remembering that the stored value is a live
// version of the pointer. It is safe to forward from volatile stores
// to non-volatile loads, so we don't have to check for volatility of
// the store.
AvailableLoads->insert(SI->getPointerOperand(),
std::pair<Value *, unsigned>(
SI->getValueOperand(), CurrentGeneration));
// Remember that this was the last store we saw for DSE.
if (SI->isSimple())
LastStore = SI;
}
}
}
return Changed;
}
bool EarlyCSE::runOnFunction(Function &F) {
if (skipOptnoneFunction(F))
return false;
// Note, deque is being used here because there is significant performance
// gains over vector when the container becomes very large due to the
// specific access patterns. For more information see the mailing list
// discussion on this:
// http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20120116/135228.html
std::deque<StackNode *> nodesToProcess;
DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
DL = DLP ? &DLP->getDataLayout() : nullptr;
TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
// Tables that the pass uses when walking the domtree.
ScopedHTType AVTable;
AvailableValues = &AVTable;
LoadHTType LoadTable;
AvailableLoads = &LoadTable;
CallHTType CallTable;
AvailableCalls = &CallTable;
CurrentGeneration = 0;
bool Changed = false;
// Process the root node.
nodesToProcess.push_back(new StackNode(
AvailableValues, AvailableLoads, AvailableCalls, CurrentGeneration,
DT->getRootNode(), DT->getRootNode()->begin(), DT->getRootNode()->end()));
// Save the current generation.
unsigned LiveOutGeneration = CurrentGeneration;
// Process the stack.
while (!nodesToProcess.empty()) {
// Grab the first item off the stack. Set the current generation, remove
// the node from the stack, and process it.
StackNode *NodeToProcess = nodesToProcess.back();
// Initialize class members.
CurrentGeneration = NodeToProcess->currentGeneration();
// Check if the node needs to be processed.
if (!NodeToProcess->isProcessed()) {
// Process the node.
Changed |= processNode(NodeToProcess->node());
NodeToProcess->childGeneration(CurrentGeneration);
NodeToProcess->process();
} else if (NodeToProcess->childIter() != NodeToProcess->end()) {
// Push the next child onto the stack.
DomTreeNode *child = NodeToProcess->nextChild();
nodesToProcess.push_back(
new StackNode(AvailableValues, AvailableLoads, AvailableCalls,
NodeToProcess->childGeneration(), child, child->begin(),
child->end()));
} else {
// It has been processed, and there are no more children to process,
// so delete it and pop it off the stack.
delete NodeToProcess;
nodesToProcess.pop_back();
}
} // while (!nodes...)
// Reset the current generation.
CurrentGeneration = LiveOutGeneration;
return Changed;
}