llvm-6502/lib/Bitcode/Reader/BitcodeReader.cpp
Devang Patel 19c874638d Now Attributes are divided in three groups
- return attributes - inreg, zext and sext
- parameter attributes
- function attributes - nounwind, readonly, readnone, noreturn

Return attributes use 0 as the index.
Function attributes use ~0U as the index.

This patch requires corresponding changes in llvm-gcc and clang.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@56704 91177308-0d34-0410-b5e6-96231b3b80d8
2008-09-26 22:53:05 +00:00

2112 lines
75 KiB
C++

//===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This header defines the BitcodeReader class.
//
//===----------------------------------------------------------------------===//
#include "llvm/Bitcode/ReaderWriter.h"
#include "BitcodeReader.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/InlineAsm.h"
#include "llvm/Instructions.h"
#include "llvm/Module.h"
#include "llvm/AutoUpgrade.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/OperandTraits.h"
using namespace llvm;
void BitcodeReader::FreeState() {
delete Buffer;
Buffer = 0;
std::vector<PATypeHolder>().swap(TypeList);
ValueList.clear();
std::vector<AttrListPtr>().swap(MAttributes);
std::vector<BasicBlock*>().swap(FunctionBBs);
std::vector<Function*>().swap(FunctionsWithBodies);
DeferredFunctionInfo.clear();
}
//===----------------------------------------------------------------------===//
// Helper functions to implement forward reference resolution, etc.
//===----------------------------------------------------------------------===//
/// ConvertToString - Convert a string from a record into an std::string, return
/// true on failure.
template<typename StrTy>
static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx,
StrTy &Result) {
if (Idx > Record.size())
return true;
for (unsigned i = Idx, e = Record.size(); i != e; ++i)
Result += (char)Record[i];
return false;
}
static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
switch (Val) {
default: // Map unknown/new linkages to external
case 0: return GlobalValue::ExternalLinkage;
case 1: return GlobalValue::WeakLinkage;
case 2: return GlobalValue::AppendingLinkage;
case 3: return GlobalValue::InternalLinkage;
case 4: return GlobalValue::LinkOnceLinkage;
case 5: return GlobalValue::DLLImportLinkage;
case 6: return GlobalValue::DLLExportLinkage;
case 7: return GlobalValue::ExternalWeakLinkage;
case 8: return GlobalValue::CommonLinkage;
}
}
static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
switch (Val) {
default: // Map unknown visibilities to default.
case 0: return GlobalValue::DefaultVisibility;
case 1: return GlobalValue::HiddenVisibility;
case 2: return GlobalValue::ProtectedVisibility;
}
}
static int GetDecodedCastOpcode(unsigned Val) {
switch (Val) {
default: return -1;
case bitc::CAST_TRUNC : return Instruction::Trunc;
case bitc::CAST_ZEXT : return Instruction::ZExt;
case bitc::CAST_SEXT : return Instruction::SExt;
case bitc::CAST_FPTOUI : return Instruction::FPToUI;
case bitc::CAST_FPTOSI : return Instruction::FPToSI;
case bitc::CAST_UITOFP : return Instruction::UIToFP;
case bitc::CAST_SITOFP : return Instruction::SIToFP;
case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
case bitc::CAST_FPEXT : return Instruction::FPExt;
case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
case bitc::CAST_BITCAST : return Instruction::BitCast;
}
}
static int GetDecodedBinaryOpcode(unsigned Val, const Type *Ty) {
switch (Val) {
default: return -1;
case bitc::BINOP_ADD: return Instruction::Add;
case bitc::BINOP_SUB: return Instruction::Sub;
case bitc::BINOP_MUL: return Instruction::Mul;
case bitc::BINOP_UDIV: return Instruction::UDiv;
case bitc::BINOP_SDIV:
return Ty->isFPOrFPVector() ? Instruction::FDiv : Instruction::SDiv;
case bitc::BINOP_UREM: return Instruction::URem;
case bitc::BINOP_SREM:
return Ty->isFPOrFPVector() ? Instruction::FRem : Instruction::SRem;
case bitc::BINOP_SHL: return Instruction::Shl;
case bitc::BINOP_LSHR: return Instruction::LShr;
case bitc::BINOP_ASHR: return Instruction::AShr;
case bitc::BINOP_AND: return Instruction::And;
case bitc::BINOP_OR: return Instruction::Or;
case bitc::BINOP_XOR: return Instruction::Xor;
}
}
namespace llvm {
namespace {
/// @brief A class for maintaining the slot number definition
/// as a placeholder for the actual definition for forward constants defs.
class ConstantPlaceHolder : public ConstantExpr {
ConstantPlaceHolder(); // DO NOT IMPLEMENT
void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
public:
// allocate space for exactly one operand
void *operator new(size_t s) {
return User::operator new(s, 1);
}
explicit ConstantPlaceHolder(const Type *Ty)
: ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
Op<0>() = UndefValue::get(Type::Int32Ty);
}
/// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
static inline bool classof(const ConstantPlaceHolder *) { return true; }
static bool classof(const Value *V) {
return isa<ConstantExpr>(V) &&
cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
}
/// Provide fast operand accessors
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
};
}
// FIXME: can we inherit this from ConstantExpr?
template <>
struct OperandTraits<ConstantPlaceHolder> : FixedNumOperandTraits<1> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value)
}
void BitcodeReaderValueList::resize(unsigned Desired) {
if (Desired > Capacity) {
// Since we expect many values to come from the bitcode file we better
// allocate the double amount, so that the array size grows exponentially
// at each reallocation. Also, add a small amount of 100 extra elements
// each time, to reallocate less frequently when the array is still small.
//
Capacity = Desired * 2 + 100;
Use *New = allocHungoffUses(Capacity);
Use *Old = OperandList;
unsigned Ops = getNumOperands();
for (int i(Ops - 1); i >= 0; --i)
New[i] = Old[i].get();
OperandList = New;
if (Old) Use::zap(Old, Old + Ops, true);
}
}
Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
const Type *Ty) {
if (Idx >= size()) {
// Insert a bunch of null values.
resize(Idx + 1);
NumOperands = Idx+1;
}
if (Value *V = OperandList[Idx]) {
assert(Ty == V->getType() && "Type mismatch in constant table!");
return cast<Constant>(V);
}
// Create and return a placeholder, which will later be RAUW'd.
Constant *C = new ConstantPlaceHolder(Ty);
OperandList[Idx] = C;
return C;
}
Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, const Type *Ty) {
if (Idx >= size()) {
// Insert a bunch of null values.
resize(Idx + 1);
NumOperands = Idx+1;
}
if (Value *V = OperandList[Idx]) {
assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
return V;
}
// No type specified, must be invalid reference.
if (Ty == 0) return 0;
// Create and return a placeholder, which will later be RAUW'd.
Value *V = new Argument(Ty);
OperandList[Idx] = V;
return V;
}
/// ResolveConstantForwardRefs - Once all constants are read, this method bulk
/// resolves any forward references. The idea behind this is that we sometimes
/// get constants (such as large arrays) which reference *many* forward ref
/// constants. Replacing each of these causes a lot of thrashing when
/// building/reuniquing the constant. Instead of doing this, we look at all the
/// uses and rewrite all the place holders at once for any constant that uses
/// a placeholder.
void BitcodeReaderValueList::ResolveConstantForwardRefs() {
// Sort the values by-pointer so that they are efficient to look up with a
// binary search.
std::sort(ResolveConstants.begin(), ResolveConstants.end());
SmallVector<Constant*, 64> NewOps;
while (!ResolveConstants.empty()) {
Value *RealVal = getOperand(ResolveConstants.back().second);
Constant *Placeholder = ResolveConstants.back().first;
ResolveConstants.pop_back();
// Loop over all users of the placeholder, updating them to reference the
// new value. If they reference more than one placeholder, update them all
// at once.
while (!Placeholder->use_empty()) {
Value::use_iterator UI = Placeholder->use_begin();
// If the using object isn't uniqued, just update the operands. This
// handles instructions and initializers for global variables.
if (!isa<Constant>(*UI) || isa<GlobalValue>(*UI)) {
UI.getUse().set(RealVal);
continue;
}
// Otherwise, we have a constant that uses the placeholder. Replace that
// constant with a new constant that has *all* placeholder uses updated.
Constant *UserC = cast<Constant>(*UI);
for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
I != E; ++I) {
Value *NewOp;
if (!isa<ConstantPlaceHolder>(*I)) {
// Not a placeholder reference.
NewOp = *I;
} else if (*I == Placeholder) {
// Common case is that it just references this one placeholder.
NewOp = RealVal;
} else {
// Otherwise, look up the placeholder in ResolveConstants.
ResolveConstantsTy::iterator It =
std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
std::pair<Constant*, unsigned>(cast<Constant>(*I),
0));
assert(It != ResolveConstants.end() && It->first == *I);
NewOp = this->getOperand(It->second);
}
NewOps.push_back(cast<Constant>(NewOp));
}
// Make the new constant.
Constant *NewC;
if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
NewC = ConstantArray::get(UserCA->getType(), &NewOps[0], NewOps.size());
} else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
NewC = ConstantStruct::get(&NewOps[0], NewOps.size(),
UserCS->getType()->isPacked());
} else if (isa<ConstantVector>(UserC)) {
NewC = ConstantVector::get(&NewOps[0], NewOps.size());
} else {
// Must be a constant expression.
NewC = cast<ConstantExpr>(UserC)->getWithOperands(&NewOps[0],
NewOps.size());
}
UserC->replaceAllUsesWith(NewC);
UserC->destroyConstant();
NewOps.clear();
}
delete Placeholder;
}
}
const Type *BitcodeReader::getTypeByID(unsigned ID, bool isTypeTable) {
// If the TypeID is in range, return it.
if (ID < TypeList.size())
return TypeList[ID].get();
if (!isTypeTable) return 0;
// The type table allows forward references. Push as many Opaque types as
// needed to get up to ID.
while (TypeList.size() <= ID)
TypeList.push_back(OpaqueType::get());
return TypeList.back().get();
}
//===----------------------------------------------------------------------===//
// Functions for parsing blocks from the bitcode file
//===----------------------------------------------------------------------===//
bool BitcodeReader::ParseAttributeBlock() {
if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
return Error("Malformed block record");
if (!MAttributes.empty())
return Error("Multiple PARAMATTR blocks found!");
SmallVector<uint64_t, 64> Record;
SmallVector<AttributeWithIndex, 8> Attrs;
// Read all the records.
while (1) {
unsigned Code = Stream.ReadCode();
if (Code == bitc::END_BLOCK) {
if (Stream.ReadBlockEnd())
return Error("Error at end of PARAMATTR block");
return false;
}
if (Code == bitc::ENTER_SUBBLOCK) {
// No known subblocks, always skip them.
Stream.ReadSubBlockID();
if (Stream.SkipBlock())
return Error("Malformed block record");
continue;
}
if (Code == bitc::DEFINE_ABBREV) {
Stream.ReadAbbrevRecord();
continue;
}
// Read a record.
Record.clear();
switch (Stream.ReadRecord(Code, Record)) {
default: // Default behavior: ignore.
break;
case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...]
if (Record.size() & 1)
return Error("Invalid ENTRY record");
// FIXME : Remove this backword compatibility one day.
// If Function attributes are using index 0 then transfer them
// to index ~0. Index 0 is strictly used for return value
// attributes.
Attributes RetAttribute = Attribute::None;
Attributes FnAttribute = Attribute::None;
for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
if (Record[i] == 0)
RetAttribute = Record[i+1];
else if (Record[i] == ~0U)
FnAttribute = Record[i+1];
}
bool useUpdatedAttrs = false;
if (FnAttribute == Attribute::None && RetAttribute != Attribute::None) {
if (RetAttribute & Attribute::NoUnwind) {
FnAttribute = FnAttribute | Attribute::NoUnwind;
RetAttribute = RetAttribute ^ Attribute::NoUnwind;
useUpdatedAttrs = true;
}
if (RetAttribute & Attribute::NoReturn) {
FnAttribute = FnAttribute | Attribute::NoReturn;
RetAttribute = RetAttribute ^ Attribute::NoReturn;
useUpdatedAttrs = true;
}
if (RetAttribute & Attribute::ReadOnly) {
FnAttribute = FnAttribute | Attribute::ReadOnly;
RetAttribute = RetAttribute ^ Attribute::ReadOnly;
useUpdatedAttrs = true;
}
if (RetAttribute & Attribute::ReadNone) {
FnAttribute = FnAttribute | Attribute::ReadNone;
RetAttribute = RetAttribute ^ Attribute::ReadNone;
useUpdatedAttrs = true;
}
}
for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
if (useUpdatedAttrs && Record[i] == 0
&& RetAttribute != Attribute::None)
Attrs.push_back(AttributeWithIndex::get(0, RetAttribute));
else if (Record[i+1] != Attribute::None)
Attrs.push_back(AttributeWithIndex::get(Record[i], Record[i+1]));
}
if (useUpdatedAttrs && FnAttribute != Attribute::None)
Attrs.push_back(AttributeWithIndex::get(~0, FnAttribute));
MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end()));
Attrs.clear();
break;
}
}
}
}
bool BitcodeReader::ParseTypeTable() {
if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID))
return Error("Malformed block record");
if (!TypeList.empty())
return Error("Multiple TYPE_BLOCKs found!");
SmallVector<uint64_t, 64> Record;
unsigned NumRecords = 0;
// Read all the records for this type table.
while (1) {
unsigned Code = Stream.ReadCode();
if (Code == bitc::END_BLOCK) {
if (NumRecords != TypeList.size())
return Error("Invalid type forward reference in TYPE_BLOCK");
if (Stream.ReadBlockEnd())
return Error("Error at end of type table block");
return false;
}
if (Code == bitc::ENTER_SUBBLOCK) {
// No known subblocks, always skip them.
Stream.ReadSubBlockID();
if (Stream.SkipBlock())
return Error("Malformed block record");
continue;
}
if (Code == bitc::DEFINE_ABBREV) {
Stream.ReadAbbrevRecord();
continue;
}
// Read a record.
Record.clear();
const Type *ResultTy = 0;
switch (Stream.ReadRecord(Code, Record)) {
default: // Default behavior: unknown type.
ResultTy = 0;
break;
case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
// TYPE_CODE_NUMENTRY contains a count of the number of types in the
// type list. This allows us to reserve space.
if (Record.size() < 1)
return Error("Invalid TYPE_CODE_NUMENTRY record");
TypeList.reserve(Record[0]);
continue;
case bitc::TYPE_CODE_VOID: // VOID
ResultTy = Type::VoidTy;
break;
case bitc::TYPE_CODE_FLOAT: // FLOAT
ResultTy = Type::FloatTy;
break;
case bitc::TYPE_CODE_DOUBLE: // DOUBLE
ResultTy = Type::DoubleTy;
break;
case bitc::TYPE_CODE_X86_FP80: // X86_FP80
ResultTy = Type::X86_FP80Ty;
break;
case bitc::TYPE_CODE_FP128: // FP128
ResultTy = Type::FP128Ty;
break;
case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
ResultTy = Type::PPC_FP128Ty;
break;
case bitc::TYPE_CODE_LABEL: // LABEL
ResultTy = Type::LabelTy;
break;
case bitc::TYPE_CODE_OPAQUE: // OPAQUE
ResultTy = 0;
break;
case bitc::TYPE_CODE_INTEGER: // INTEGER: [width]
if (Record.size() < 1)
return Error("Invalid Integer type record");
ResultTy = IntegerType::get(Record[0]);
break;
case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
// [pointee type, address space]
if (Record.size() < 1)
return Error("Invalid POINTER type record");
unsigned AddressSpace = 0;
if (Record.size() == 2)
AddressSpace = Record[1];
ResultTy = PointerType::get(getTypeByID(Record[0], true), AddressSpace);
break;
}
case bitc::TYPE_CODE_FUNCTION: {
// FIXME: attrid is dead, remove it in LLVM 3.0
// FUNCTION: [vararg, attrid, retty, paramty x N]
if (Record.size() < 3)
return Error("Invalid FUNCTION type record");
std::vector<const Type*> ArgTys;
for (unsigned i = 3, e = Record.size(); i != e; ++i)
ArgTys.push_back(getTypeByID(Record[i], true));
ResultTy = FunctionType::get(getTypeByID(Record[2], true), ArgTys,
Record[0]);
break;
}
case bitc::TYPE_CODE_STRUCT: { // STRUCT: [ispacked, eltty x N]
if (Record.size() < 1)
return Error("Invalid STRUCT type record");
std::vector<const Type*> EltTys;
for (unsigned i = 1, e = Record.size(); i != e; ++i)
EltTys.push_back(getTypeByID(Record[i], true));
ResultTy = StructType::get(EltTys, Record[0]);
break;
}
case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty]
if (Record.size() < 2)
return Error("Invalid ARRAY type record");
ResultTy = ArrayType::get(getTypeByID(Record[1], true), Record[0]);
break;
case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty]
if (Record.size() < 2)
return Error("Invalid VECTOR type record");
ResultTy = VectorType::get(getTypeByID(Record[1], true), Record[0]);
break;
}
if (NumRecords == TypeList.size()) {
// If this is a new type slot, just append it.
TypeList.push_back(ResultTy ? ResultTy : OpaqueType::get());
++NumRecords;
} else if (ResultTy == 0) {
// Otherwise, this was forward referenced, so an opaque type was created,
// but the result type is actually just an opaque. Leave the one we
// created previously.
++NumRecords;
} else {
// Otherwise, this was forward referenced, so an opaque type was created.
// Resolve the opaque type to the real type now.
assert(NumRecords < TypeList.size() && "Typelist imbalance");
const OpaqueType *OldTy = cast<OpaqueType>(TypeList[NumRecords++].get());
// Don't directly push the new type on the Tab. Instead we want to replace
// the opaque type we previously inserted with the new concrete value. The
// refinement from the abstract (opaque) type to the new type causes all
// uses of the abstract type to use the concrete type (NewTy). This will
// also cause the opaque type to be deleted.
const_cast<OpaqueType*>(OldTy)->refineAbstractTypeTo(ResultTy);
// This should have replaced the old opaque type with the new type in the
// value table... or with a preexisting type that was already in the
// system. Let's just make sure it did.
assert(TypeList[NumRecords-1].get() != OldTy &&
"refineAbstractType didn't work!");
}
}
}
bool BitcodeReader::ParseTypeSymbolTable() {
if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID))
return Error("Malformed block record");
SmallVector<uint64_t, 64> Record;
// Read all the records for this type table.
std::string TypeName;
while (1) {
unsigned Code = Stream.ReadCode();
if (Code == bitc::END_BLOCK) {
if (Stream.ReadBlockEnd())
return Error("Error at end of type symbol table block");
return false;
}
if (Code == bitc::ENTER_SUBBLOCK) {
// No known subblocks, always skip them.
Stream.ReadSubBlockID();
if (Stream.SkipBlock())
return Error("Malformed block record");
continue;
}
if (Code == bitc::DEFINE_ABBREV) {
Stream.ReadAbbrevRecord();
continue;
}
// Read a record.
Record.clear();
switch (Stream.ReadRecord(Code, Record)) {
default: // Default behavior: unknown type.
break;
case bitc::TST_CODE_ENTRY: // TST_ENTRY: [typeid, namechar x N]
if (ConvertToString(Record, 1, TypeName))
return Error("Invalid TST_ENTRY record");
unsigned TypeID = Record[0];
if (TypeID >= TypeList.size())
return Error("Invalid Type ID in TST_ENTRY record");
TheModule->addTypeName(TypeName, TypeList[TypeID].get());
TypeName.clear();
break;
}
}
}
bool BitcodeReader::ParseValueSymbolTable() {
if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
return Error("Malformed block record");
SmallVector<uint64_t, 64> Record;
// Read all the records for this value table.
SmallString<128> ValueName;
while (1) {
unsigned Code = Stream.ReadCode();
if (Code == bitc::END_BLOCK) {
if (Stream.ReadBlockEnd())
return Error("Error at end of value symbol table block");
return false;
}
if (Code == bitc::ENTER_SUBBLOCK) {
// No known subblocks, always skip them.
Stream.ReadSubBlockID();
if (Stream.SkipBlock())
return Error("Malformed block record");
continue;
}
if (Code == bitc::DEFINE_ABBREV) {
Stream.ReadAbbrevRecord();
continue;
}
// Read a record.
Record.clear();
switch (Stream.ReadRecord(Code, Record)) {
default: // Default behavior: unknown type.
break;
case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N]
if (ConvertToString(Record, 1, ValueName))
return Error("Invalid TST_ENTRY record");
unsigned ValueID = Record[0];
if (ValueID >= ValueList.size())
return Error("Invalid Value ID in VST_ENTRY record");
Value *V = ValueList[ValueID];
V->setName(&ValueName[0], ValueName.size());
ValueName.clear();
break;
}
case bitc::VST_CODE_BBENTRY: {
if (ConvertToString(Record, 1, ValueName))
return Error("Invalid VST_BBENTRY record");
BasicBlock *BB = getBasicBlock(Record[0]);
if (BB == 0)
return Error("Invalid BB ID in VST_BBENTRY record");
BB->setName(&ValueName[0], ValueName.size());
ValueName.clear();
break;
}
}
}
}
/// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in
/// the LSB for dense VBR encoding.
static uint64_t DecodeSignRotatedValue(uint64_t V) {
if ((V & 1) == 0)
return V >> 1;
if (V != 1)
return -(V >> 1);
// There is no such thing as -0 with integers. "-0" really means MININT.
return 1ULL << 63;
}
/// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
/// values and aliases that we can.
bool BitcodeReader::ResolveGlobalAndAliasInits() {
std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
GlobalInitWorklist.swap(GlobalInits);
AliasInitWorklist.swap(AliasInits);
while (!GlobalInitWorklist.empty()) {
unsigned ValID = GlobalInitWorklist.back().second;
if (ValID >= ValueList.size()) {
// Not ready to resolve this yet, it requires something later in the file.
GlobalInits.push_back(GlobalInitWorklist.back());
} else {
if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
GlobalInitWorklist.back().first->setInitializer(C);
else
return Error("Global variable initializer is not a constant!");
}
GlobalInitWorklist.pop_back();
}
while (!AliasInitWorklist.empty()) {
unsigned ValID = AliasInitWorklist.back().second;
if (ValID >= ValueList.size()) {
AliasInits.push_back(AliasInitWorklist.back());
} else {
if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
AliasInitWorklist.back().first->setAliasee(C);
else
return Error("Alias initializer is not a constant!");
}
AliasInitWorklist.pop_back();
}
return false;
}
bool BitcodeReader::ParseConstants() {
if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
return Error("Malformed block record");
SmallVector<uint64_t, 64> Record;
// Read all the records for this value table.
const Type *CurTy = Type::Int32Ty;
unsigned NextCstNo = ValueList.size();
while (1) {
unsigned Code = Stream.ReadCode();
if (Code == bitc::END_BLOCK)
break;
if (Code == bitc::ENTER_SUBBLOCK) {
// No known subblocks, always skip them.
Stream.ReadSubBlockID();
if (Stream.SkipBlock())
return Error("Malformed block record");
continue;
}
if (Code == bitc::DEFINE_ABBREV) {
Stream.ReadAbbrevRecord();
continue;
}
// Read a record.
Record.clear();
Value *V = 0;
switch (Stream.ReadRecord(Code, Record)) {
default: // Default behavior: unknown constant
case bitc::CST_CODE_UNDEF: // UNDEF
V = UndefValue::get(CurTy);
break;
case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid]
if (Record.empty())
return Error("Malformed CST_SETTYPE record");
if (Record[0] >= TypeList.size())
return Error("Invalid Type ID in CST_SETTYPE record");
CurTy = TypeList[Record[0]];
continue; // Skip the ValueList manipulation.
case bitc::CST_CODE_NULL: // NULL
V = Constant::getNullValue(CurTy);
break;
case bitc::CST_CODE_INTEGER: // INTEGER: [intval]
if (!isa<IntegerType>(CurTy) || Record.empty())
return Error("Invalid CST_INTEGER record");
V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0]));
break;
case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
if (!isa<IntegerType>(CurTy) || Record.empty())
return Error("Invalid WIDE_INTEGER record");
unsigned NumWords = Record.size();
SmallVector<uint64_t, 8> Words;
Words.resize(NumWords);
for (unsigned i = 0; i != NumWords; ++i)
Words[i] = DecodeSignRotatedValue(Record[i]);
V = ConstantInt::get(APInt(cast<IntegerType>(CurTy)->getBitWidth(),
NumWords, &Words[0]));
break;
}
case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval]
if (Record.empty())
return Error("Invalid FLOAT record");
if (CurTy == Type::FloatTy)
V = ConstantFP::get(APFloat(APInt(32, (uint32_t)Record[0])));
else if (CurTy == Type::DoubleTy)
V = ConstantFP::get(APFloat(APInt(64, Record[0])));
else if (CurTy == Type::X86_FP80Ty)
V = ConstantFP::get(APFloat(APInt(80, 2, &Record[0])));
else if (CurTy == Type::FP128Ty)
V = ConstantFP::get(APFloat(APInt(128, 2, &Record[0]), true));
else if (CurTy == Type::PPC_FP128Ty)
V = ConstantFP::get(APFloat(APInt(128, 2, &Record[0])));
else
V = UndefValue::get(CurTy);
break;
}
case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
if (Record.empty())
return Error("Invalid CST_AGGREGATE record");
unsigned Size = Record.size();
std::vector<Constant*> Elts;
if (const StructType *STy = dyn_cast<StructType>(CurTy)) {
for (unsigned i = 0; i != Size; ++i)
Elts.push_back(ValueList.getConstantFwdRef(Record[i],
STy->getElementType(i)));
V = ConstantStruct::get(STy, Elts);
} else if (const ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
const Type *EltTy = ATy->getElementType();
for (unsigned i = 0; i != Size; ++i)
Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
V = ConstantArray::get(ATy, Elts);
} else if (const VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
const Type *EltTy = VTy->getElementType();
for (unsigned i = 0; i != Size; ++i)
Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
V = ConstantVector::get(Elts);
} else {
V = UndefValue::get(CurTy);
}
break;
}
case bitc::CST_CODE_STRING: { // STRING: [values]
if (Record.empty())
return Error("Invalid CST_AGGREGATE record");
const ArrayType *ATy = cast<ArrayType>(CurTy);
const Type *EltTy = ATy->getElementType();
unsigned Size = Record.size();
std::vector<Constant*> Elts;
for (unsigned i = 0; i != Size; ++i)
Elts.push_back(ConstantInt::get(EltTy, Record[i]));
V = ConstantArray::get(ATy, Elts);
break;
}
case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
if (Record.empty())
return Error("Invalid CST_AGGREGATE record");
const ArrayType *ATy = cast<ArrayType>(CurTy);
const Type *EltTy = ATy->getElementType();
unsigned Size = Record.size();
std::vector<Constant*> Elts;
for (unsigned i = 0; i != Size; ++i)
Elts.push_back(ConstantInt::get(EltTy, Record[i]));
Elts.push_back(Constant::getNullValue(EltTy));
V = ConstantArray::get(ATy, Elts);
break;
}
case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval]
if (Record.size() < 3) return Error("Invalid CE_BINOP record");
int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
if (Opc < 0) {
V = UndefValue::get(CurTy); // Unknown binop.
} else {
Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
V = ConstantExpr::get(Opc, LHS, RHS);
}
break;
}
case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval]
if (Record.size() < 3) return Error("Invalid CE_CAST record");
int Opc = GetDecodedCastOpcode(Record[0]);
if (Opc < 0) {
V = UndefValue::get(CurTy); // Unknown cast.
} else {
const Type *OpTy = getTypeByID(Record[1]);
if (!OpTy) return Error("Invalid CE_CAST record");
Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
V = ConstantExpr::getCast(Opc, Op, CurTy);
}
break;
}
case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands]
if (Record.size() & 1) return Error("Invalid CE_GEP record");
SmallVector<Constant*, 16> Elts;
for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
const Type *ElTy = getTypeByID(Record[i]);
if (!ElTy) return Error("Invalid CE_GEP record");
Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
}
V = ConstantExpr::getGetElementPtr(Elts[0], &Elts[1], Elts.size()-1);
break;
}
case bitc::CST_CODE_CE_SELECT: // CE_SELECT: [opval#, opval#, opval#]
if (Record.size() < 3) return Error("Invalid CE_SELECT record");
V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
Type::Int1Ty),
ValueList.getConstantFwdRef(Record[1],CurTy),
ValueList.getConstantFwdRef(Record[2],CurTy));
break;
case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record");
const VectorType *OpTy =
dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record");
Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
Constant *Op1 = ValueList.getConstantFwdRef(Record[2],
OpTy->getElementType());
V = ConstantExpr::getExtractElement(Op0, Op1);
break;
}
case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
if (Record.size() < 3 || OpTy == 0)
return Error("Invalid CE_INSERTELT record");
Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
OpTy->getElementType());
Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::Int32Ty);
V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
break;
}
case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
if (Record.size() < 3 || OpTy == 0)
return Error("Invalid CE_INSERTELT record");
Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
const Type *ShufTy=VectorType::get(Type::Int32Ty, OpTy->getNumElements());
Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
break;
}
case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred]
if (Record.size() < 4) return Error("Invalid CE_CMP record");
const Type *OpTy = getTypeByID(Record[0]);
if (OpTy == 0) return Error("Invalid CE_CMP record");
Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
if (OpTy->isFloatingPoint())
V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
else if (!isa<VectorType>(OpTy))
V = ConstantExpr::getICmp(Record[3], Op0, Op1);
else if (OpTy->isFPOrFPVector())
V = ConstantExpr::getVFCmp(Record[3], Op0, Op1);
else
V = ConstantExpr::getVICmp(Record[3], Op0, Op1);
break;
}
case bitc::CST_CODE_INLINEASM: {
if (Record.size() < 2) return Error("Invalid INLINEASM record");
std::string AsmStr, ConstrStr;
bool HasSideEffects = Record[0];
unsigned AsmStrSize = Record[1];
if (2+AsmStrSize >= Record.size())
return Error("Invalid INLINEASM record");
unsigned ConstStrSize = Record[2+AsmStrSize];
if (3+AsmStrSize+ConstStrSize > Record.size())
return Error("Invalid INLINEASM record");
for (unsigned i = 0; i != AsmStrSize; ++i)
AsmStr += (char)Record[2+i];
for (unsigned i = 0; i != ConstStrSize; ++i)
ConstrStr += (char)Record[3+AsmStrSize+i];
const PointerType *PTy = cast<PointerType>(CurTy);
V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
AsmStr, ConstrStr, HasSideEffects);
break;
}
}
ValueList.AssignValue(V, NextCstNo);
++NextCstNo;
}
if (NextCstNo != ValueList.size())
return Error("Invalid constant reference!");
if (Stream.ReadBlockEnd())
return Error("Error at end of constants block");
// Once all the constants have been read, go through and resolve forward
// references.
ValueList.ResolveConstantForwardRefs();
return false;
}
/// RememberAndSkipFunctionBody - When we see the block for a function body,
/// remember where it is and then skip it. This lets us lazily deserialize the
/// functions.
bool BitcodeReader::RememberAndSkipFunctionBody() {
// Get the function we are talking about.
if (FunctionsWithBodies.empty())
return Error("Insufficient function protos");
Function *Fn = FunctionsWithBodies.back();
FunctionsWithBodies.pop_back();
// Save the current stream state.
uint64_t CurBit = Stream.GetCurrentBitNo();
DeferredFunctionInfo[Fn] = std::make_pair(CurBit, Fn->getLinkage());
// Set the functions linkage to GhostLinkage so we know it is lazily
// deserialized.
Fn->setLinkage(GlobalValue::GhostLinkage);
// Skip over the function block for now.
if (Stream.SkipBlock())
return Error("Malformed block record");
return false;
}
bool BitcodeReader::ParseModule(const std::string &ModuleID) {
// Reject multiple MODULE_BLOCK's in a single bitstream.
if (TheModule)
return Error("Multiple MODULE_BLOCKs in same stream");
if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
return Error("Malformed block record");
// Otherwise, create the module.
TheModule = new Module(ModuleID);
SmallVector<uint64_t, 64> Record;
std::vector<std::string> SectionTable;
std::vector<std::string> GCTable;
// Read all the records for this module.
while (!Stream.AtEndOfStream()) {
unsigned Code = Stream.ReadCode();
if (Code == bitc::END_BLOCK) {
if (Stream.ReadBlockEnd())
return Error("Error at end of module block");
// Patch the initializers for globals and aliases up.
ResolveGlobalAndAliasInits();
if (!GlobalInits.empty() || !AliasInits.empty())
return Error("Malformed global initializer set");
if (!FunctionsWithBodies.empty())
return Error("Too few function bodies found");
// Look for intrinsic functions which need to be upgraded at some point
for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
FI != FE; ++FI) {
Function* NewFn;
if (UpgradeIntrinsicFunction(FI, NewFn))
UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
}
// Force deallocation of memory for these vectors to favor the client that
// want lazy deserialization.
std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
std::vector<Function*>().swap(FunctionsWithBodies);
return false;
}
if (Code == bitc::ENTER_SUBBLOCK) {
switch (Stream.ReadSubBlockID()) {
default: // Skip unknown content.
if (Stream.SkipBlock())
return Error("Malformed block record");
break;
case bitc::BLOCKINFO_BLOCK_ID:
if (Stream.ReadBlockInfoBlock())
return Error("Malformed BlockInfoBlock");
break;
case bitc::PARAMATTR_BLOCK_ID:
if (ParseAttributeBlock())
return true;
break;
case bitc::TYPE_BLOCK_ID:
if (ParseTypeTable())
return true;
break;
case bitc::TYPE_SYMTAB_BLOCK_ID:
if (ParseTypeSymbolTable())
return true;
break;
case bitc::VALUE_SYMTAB_BLOCK_ID:
if (ParseValueSymbolTable())
return true;
break;
case bitc::CONSTANTS_BLOCK_ID:
if (ParseConstants() || ResolveGlobalAndAliasInits())
return true;
break;
case bitc::FUNCTION_BLOCK_ID:
// If this is the first function body we've seen, reverse the
// FunctionsWithBodies list.
if (!HasReversedFunctionsWithBodies) {
std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
HasReversedFunctionsWithBodies = true;
}
if (RememberAndSkipFunctionBody())
return true;
break;
}
continue;
}
if (Code == bitc::DEFINE_ABBREV) {
Stream.ReadAbbrevRecord();
continue;
}
// Read a record.
switch (Stream.ReadRecord(Code, Record)) {
default: break; // Default behavior, ignore unknown content.
case bitc::MODULE_CODE_VERSION: // VERSION: [version#]
if (Record.size() < 1)
return Error("Malformed MODULE_CODE_VERSION");
// Only version #0 is supported so far.
if (Record[0] != 0)
return Error("Unknown bitstream version!");
break;
case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N]
std::string S;
if (ConvertToString(Record, 0, S))
return Error("Invalid MODULE_CODE_TRIPLE record");
TheModule->setTargetTriple(S);
break;
}
case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N]
std::string S;
if (ConvertToString(Record, 0, S))
return Error("Invalid MODULE_CODE_DATALAYOUT record");
TheModule->setDataLayout(S);
break;
}
case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N]
std::string S;
if (ConvertToString(Record, 0, S))
return Error("Invalid MODULE_CODE_ASM record");
TheModule->setModuleInlineAsm(S);
break;
}
case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N]
std::string S;
if (ConvertToString(Record, 0, S))
return Error("Invalid MODULE_CODE_DEPLIB record");
TheModule->addLibrary(S);
break;
}
case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
std::string S;
if (ConvertToString(Record, 0, S))
return Error("Invalid MODULE_CODE_SECTIONNAME record");
SectionTable.push_back(S);
break;
}
case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N]
std::string S;
if (ConvertToString(Record, 0, S))
return Error("Invalid MODULE_CODE_GCNAME record");
GCTable.push_back(S);
break;
}
// GLOBALVAR: [pointer type, isconst, initid,
// linkage, alignment, section, visibility, threadlocal]
case bitc::MODULE_CODE_GLOBALVAR: {
if (Record.size() < 6)
return Error("Invalid MODULE_CODE_GLOBALVAR record");
const Type *Ty = getTypeByID(Record[0]);
if (!isa<PointerType>(Ty))
return Error("Global not a pointer type!");
unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
Ty = cast<PointerType>(Ty)->getElementType();
bool isConstant = Record[1];
GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
unsigned Alignment = (1 << Record[4]) >> 1;
std::string Section;
if (Record[5]) {
if (Record[5]-1 >= SectionTable.size())
return Error("Invalid section ID");
Section = SectionTable[Record[5]-1];
}
GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
if (Record.size() > 6)
Visibility = GetDecodedVisibility(Record[6]);
bool isThreadLocal = false;
if (Record.size() > 7)
isThreadLocal = Record[7];
GlobalVariable *NewGV =
new GlobalVariable(Ty, isConstant, Linkage, 0, "", TheModule,
isThreadLocal, AddressSpace);
NewGV->setAlignment(Alignment);
if (!Section.empty())
NewGV->setSection(Section);
NewGV->setVisibility(Visibility);
NewGV->setThreadLocal(isThreadLocal);
ValueList.push_back(NewGV);
// Remember which value to use for the global initializer.
if (unsigned InitID = Record[2])
GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
break;
}
// FUNCTION: [type, callingconv, isproto, linkage, paramattr,
// alignment, section, visibility, gc]
case bitc::MODULE_CODE_FUNCTION: {
if (Record.size() < 8)
return Error("Invalid MODULE_CODE_FUNCTION record");
const Type *Ty = getTypeByID(Record[0]);
if (!isa<PointerType>(Ty))
return Error("Function not a pointer type!");
const FunctionType *FTy =
dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
if (!FTy)
return Error("Function not a pointer to function type!");
Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
"", TheModule);
Func->setCallingConv(Record[1]);
bool isProto = Record[2];
Func->setLinkage(GetDecodedLinkage(Record[3]));
Func->setAttributes(getAttributes(Record[4]));
Func->setAlignment((1 << Record[5]) >> 1);
if (Record[6]) {
if (Record[6]-1 >= SectionTable.size())
return Error("Invalid section ID");
Func->setSection(SectionTable[Record[6]-1]);
}
Func->setVisibility(GetDecodedVisibility(Record[7]));
if (Record.size() > 8 && Record[8]) {
if (Record[8]-1 > GCTable.size())
return Error("Invalid GC ID");
Func->setGC(GCTable[Record[8]-1].c_str());
}
ValueList.push_back(Func);
// If this is a function with a body, remember the prototype we are
// creating now, so that we can match up the body with them later.
if (!isProto)
FunctionsWithBodies.push_back(Func);
break;
}
// ALIAS: [alias type, aliasee val#, linkage]
// ALIAS: [alias type, aliasee val#, linkage, visibility]
case bitc::MODULE_CODE_ALIAS: {
if (Record.size() < 3)
return Error("Invalid MODULE_ALIAS record");
const Type *Ty = getTypeByID(Record[0]);
if (!isa<PointerType>(Ty))
return Error("Function not a pointer type!");
GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]),
"", 0, TheModule);
// Old bitcode files didn't have visibility field.
if (Record.size() > 3)
NewGA->setVisibility(GetDecodedVisibility(Record[3]));
ValueList.push_back(NewGA);
AliasInits.push_back(std::make_pair(NewGA, Record[1]));
break;
}
/// MODULE_CODE_PURGEVALS: [numvals]
case bitc::MODULE_CODE_PURGEVALS:
// Trim down the value list to the specified size.
if (Record.size() < 1 || Record[0] > ValueList.size())
return Error("Invalid MODULE_PURGEVALS record");
ValueList.shrinkTo(Record[0]);
break;
}
Record.clear();
}
return Error("Premature end of bitstream");
}
/// SkipWrapperHeader - Some systems wrap bc files with a special header for
/// padding or other reasons. The format of this header is:
///
/// struct bc_header {
/// uint32_t Magic; // 0x0B17C0DE
/// uint32_t Version; // Version, currently always 0.
/// uint32_t BitcodeOffset; // Offset to traditional bitcode file.
/// uint32_t BitcodeSize; // Size of traditional bitcode file.
/// ... potentially other gunk ...
/// };
///
/// This function is called when we find a file with a matching magic number.
/// In this case, skip down to the subsection of the file that is actually a BC
/// file.
static bool SkipWrapperHeader(unsigned char *&BufPtr, unsigned char *&BufEnd) {
enum {
KnownHeaderSize = 4*4, // Size of header we read.
OffsetField = 2*4, // Offset in bytes to Offset field.
SizeField = 3*4 // Offset in bytes to Size field.
};
// Must contain the header!
if (BufEnd-BufPtr < KnownHeaderSize) return true;
unsigned Offset = ( BufPtr[OffsetField ] |
(BufPtr[OffsetField+1] << 8) |
(BufPtr[OffsetField+2] << 16) |
(BufPtr[OffsetField+3] << 24));
unsigned Size = ( BufPtr[SizeField ] |
(BufPtr[SizeField +1] << 8) |
(BufPtr[SizeField +2] << 16) |
(BufPtr[SizeField +3] << 24));
// Verify that Offset+Size fits in the file.
if (Offset+Size > unsigned(BufEnd-BufPtr))
return true;
BufPtr += Offset;
BufEnd = BufPtr+Size;
return false;
}
bool BitcodeReader::ParseBitcode() {
TheModule = 0;
if (Buffer->getBufferSize() & 3)
return Error("Bitcode stream should be a multiple of 4 bytes in length");
unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
// If we have a wrapper header, parse it and ignore the non-bc file contents.
// The magic number is 0x0B17C0DE stored in little endian.
if (BufPtr != BufEnd && BufPtr[0] == 0xDE && BufPtr[1] == 0xC0 &&
BufPtr[2] == 0x17 && BufPtr[3] == 0x0B)
if (SkipWrapperHeader(BufPtr, BufEnd))
return Error("Invalid bitcode wrapper header");
Stream.init(BufPtr, BufEnd);
// Sniff for the signature.
if (Stream.Read(8) != 'B' ||
Stream.Read(8) != 'C' ||
Stream.Read(4) != 0x0 ||
Stream.Read(4) != 0xC ||
Stream.Read(4) != 0xE ||
Stream.Read(4) != 0xD)
return Error("Invalid bitcode signature");
// We expect a number of well-defined blocks, though we don't necessarily
// need to understand them all.
while (!Stream.AtEndOfStream()) {
unsigned Code = Stream.ReadCode();
if (Code != bitc::ENTER_SUBBLOCK)
return Error("Invalid record at top-level");
unsigned BlockID = Stream.ReadSubBlockID();
// We only know the MODULE subblock ID.
switch (BlockID) {
case bitc::BLOCKINFO_BLOCK_ID:
if (Stream.ReadBlockInfoBlock())
return Error("Malformed BlockInfoBlock");
break;
case bitc::MODULE_BLOCK_ID:
if (ParseModule(Buffer->getBufferIdentifier()))
return true;
break;
default:
if (Stream.SkipBlock())
return Error("Malformed block record");
break;
}
}
return false;
}
/// ParseFunctionBody - Lazily parse the specified function body block.
bool BitcodeReader::ParseFunctionBody(Function *F) {
if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
return Error("Malformed block record");
unsigned ModuleValueListSize = ValueList.size();
// Add all the function arguments to the value table.
for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
ValueList.push_back(I);
unsigned NextValueNo = ValueList.size();
BasicBlock *CurBB = 0;
unsigned CurBBNo = 0;
// Read all the records.
SmallVector<uint64_t, 64> Record;
while (1) {
unsigned Code = Stream.ReadCode();
if (Code == bitc::END_BLOCK) {
if (Stream.ReadBlockEnd())
return Error("Error at end of function block");
break;
}
if (Code == bitc::ENTER_SUBBLOCK) {
switch (Stream.ReadSubBlockID()) {
default: // Skip unknown content.
if (Stream.SkipBlock())
return Error("Malformed block record");
break;
case bitc::CONSTANTS_BLOCK_ID:
if (ParseConstants()) return true;
NextValueNo = ValueList.size();
break;
case bitc::VALUE_SYMTAB_BLOCK_ID:
if (ParseValueSymbolTable()) return true;
break;
}
continue;
}
if (Code == bitc::DEFINE_ABBREV) {
Stream.ReadAbbrevRecord();
continue;
}
// Read a record.
Record.clear();
Instruction *I = 0;
switch (Stream.ReadRecord(Code, Record)) {
default: // Default behavior: reject
return Error("Unknown instruction");
case bitc::FUNC_CODE_DECLAREBLOCKS: // DECLAREBLOCKS: [nblocks]
if (Record.size() < 1 || Record[0] == 0)
return Error("Invalid DECLAREBLOCKS record");
// Create all the basic blocks for the function.
FunctionBBs.resize(Record[0]);
for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
FunctionBBs[i] = BasicBlock::Create("", F);
CurBB = FunctionBBs[0];
continue;
case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode]
unsigned OpNum = 0;
Value *LHS, *RHS;
if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
getValue(Record, OpNum, LHS->getType(), RHS) ||
OpNum+1 != Record.size())
return Error("Invalid BINOP record");
int Opc = GetDecodedBinaryOpcode(Record[OpNum], LHS->getType());
if (Opc == -1) return Error("Invalid BINOP record");
I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
break;
}
case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc]
unsigned OpNum = 0;
Value *Op;
if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
OpNum+2 != Record.size())
return Error("Invalid CAST record");
const Type *ResTy = getTypeByID(Record[OpNum]);
int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
if (Opc == -1 || ResTy == 0)
return Error("Invalid CAST record");
I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
break;
}
case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
unsigned OpNum = 0;
Value *BasePtr;
if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
return Error("Invalid GEP record");
SmallVector<Value*, 16> GEPIdx;
while (OpNum != Record.size()) {
Value *Op;
if (getValueTypePair(Record, OpNum, NextValueNo, Op))
return Error("Invalid GEP record");
GEPIdx.push_back(Op);
}
I = GetElementPtrInst::Create(BasePtr, GEPIdx.begin(), GEPIdx.end());
break;
}
case bitc::FUNC_CODE_INST_EXTRACTVAL: {
// EXTRACTVAL: [opty, opval, n x indices]
unsigned OpNum = 0;
Value *Agg;
if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
return Error("Invalid EXTRACTVAL record");
SmallVector<unsigned, 4> EXTRACTVALIdx;
for (unsigned RecSize = Record.size();
OpNum != RecSize; ++OpNum) {
uint64_t Index = Record[OpNum];
if ((unsigned)Index != Index)
return Error("Invalid EXTRACTVAL index");
EXTRACTVALIdx.push_back((unsigned)Index);
}
I = ExtractValueInst::Create(Agg,
EXTRACTVALIdx.begin(), EXTRACTVALIdx.end());
break;
}
case bitc::FUNC_CODE_INST_INSERTVAL: {
// INSERTVAL: [opty, opval, opty, opval, n x indices]
unsigned OpNum = 0;
Value *Agg;
if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
return Error("Invalid INSERTVAL record");
Value *Val;
if (getValueTypePair(Record, OpNum, NextValueNo, Val))
return Error("Invalid INSERTVAL record");
SmallVector<unsigned, 4> INSERTVALIdx;
for (unsigned RecSize = Record.size();
OpNum != RecSize; ++OpNum) {
uint64_t Index = Record[OpNum];
if ((unsigned)Index != Index)
return Error("Invalid INSERTVAL index");
INSERTVALIdx.push_back((unsigned)Index);
}
I = InsertValueInst::Create(Agg, Val,
INSERTVALIdx.begin(), INSERTVALIdx.end());
break;
}
case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
// obsolete form of select
// handles select i1 ... in old bitcode
unsigned OpNum = 0;
Value *TrueVal, *FalseVal, *Cond;
if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
getValue(Record, OpNum, Type::Int1Ty, Cond))
return Error("Invalid SELECT record");
I = SelectInst::Create(Cond, TrueVal, FalseVal);
break;
}
case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
// new form of select
// handles select i1 or select [N x i1]
unsigned OpNum = 0;
Value *TrueVal, *FalseVal, *Cond;
if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
getValueTypePair(Record, OpNum, NextValueNo, Cond))
return Error("Invalid SELECT record");
// select condition can be either i1 or [N x i1]
if (const VectorType* vector_type =
dyn_cast<const VectorType>(Cond->getType())) {
// expect <n x i1>
if (vector_type->getElementType() != Type::Int1Ty)
return Error("Invalid SELECT condition type");
} else {
// expect i1
if (Cond->getType() != Type::Int1Ty)
return Error("Invalid SELECT condition type");
}
I = SelectInst::Create(Cond, TrueVal, FalseVal);
break;
}
case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
unsigned OpNum = 0;
Value *Vec, *Idx;
if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
getValue(Record, OpNum, Type::Int32Ty, Idx))
return Error("Invalid EXTRACTELT record");
I = new ExtractElementInst(Vec, Idx);
break;
}
case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
unsigned OpNum = 0;
Value *Vec, *Elt, *Idx;
if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
getValue(Record, OpNum,
cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
getValue(Record, OpNum, Type::Int32Ty, Idx))
return Error("Invalid INSERTELT record");
I = InsertElementInst::Create(Vec, Elt, Idx);
break;
}
case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
unsigned OpNum = 0;
Value *Vec1, *Vec2, *Mask;
if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
getValue(Record, OpNum, Vec1->getType(), Vec2))
return Error("Invalid SHUFFLEVEC record");
const Type *MaskTy =
VectorType::get(Type::Int32Ty,
cast<VectorType>(Vec1->getType())->getNumElements());
if (getValue(Record, OpNum, MaskTy, Mask))
return Error("Invalid SHUFFLEVEC record");
I = new ShuffleVectorInst(Vec1, Vec2, Mask);
break;
}
case bitc::FUNC_CODE_INST_CMP: { // CMP: [opty, opval, opval, pred]
// VFCmp/VICmp
// or old form of ICmp/FCmp returning bool
unsigned OpNum = 0;
Value *LHS, *RHS;
if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
getValue(Record, OpNum, LHS->getType(), RHS) ||
OpNum+1 != Record.size())
return Error("Invalid CMP record");
if (LHS->getType()->isFloatingPoint())
I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
else if (!isa<VectorType>(LHS->getType()))
I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
else if (LHS->getType()->isFPOrFPVector())
I = new VFCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
else
I = new VICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
break;
}
case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
// Fcmp/ICmp returning bool or vector of bool
unsigned OpNum = 0;
Value *LHS, *RHS;
if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
getValue(Record, OpNum, LHS->getType(), RHS) ||
OpNum+1 != Record.size())
return Error("Invalid CMP2 record");
if (LHS->getType()->isFPOrFPVector())
I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
else
I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
break;
}
case bitc::FUNC_CODE_INST_GETRESULT: { // GETRESULT: [ty, val, n]
if (Record.size() != 2)
return Error("Invalid GETRESULT record");
unsigned OpNum = 0;
Value *Op;
getValueTypePair(Record, OpNum, NextValueNo, Op);
unsigned Index = Record[1];
I = ExtractValueInst::Create(Op, Index);
break;
}
case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
{
unsigned Size = Record.size();
if (Size == 0) {
I = ReturnInst::Create();
break;
}
unsigned OpNum = 0;
SmallVector<Value *,4> Vs;
do {
Value *Op = NULL;
if (getValueTypePair(Record, OpNum, NextValueNo, Op))
return Error("Invalid RET record");
Vs.push_back(Op);
} while(OpNum != Record.size());
const Type *ReturnType = F->getReturnType();
if (Vs.size() > 1 ||
(isa<StructType>(ReturnType) &&
(Vs.empty() || Vs[0]->getType() != ReturnType))) {
Value *RV = UndefValue::get(ReturnType);
for (unsigned i = 0, e = Vs.size(); i != e; ++i) {
I = InsertValueInst::Create(RV, Vs[i], i, "mrv");
CurBB->getInstList().push_back(I);
ValueList.AssignValue(I, NextValueNo++);
RV = I;
}
I = ReturnInst::Create(RV);
break;
}
I = ReturnInst::Create(Vs[0]);
break;
}
case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
if (Record.size() != 1 && Record.size() != 3)
return Error("Invalid BR record");
BasicBlock *TrueDest = getBasicBlock(Record[0]);
if (TrueDest == 0)
return Error("Invalid BR record");
if (Record.size() == 1)
I = BranchInst::Create(TrueDest);
else {
BasicBlock *FalseDest = getBasicBlock(Record[1]);
Value *Cond = getFnValueByID(Record[2], Type::Int1Ty);
if (FalseDest == 0 || Cond == 0)
return Error("Invalid BR record");
I = BranchInst::Create(TrueDest, FalseDest, Cond);
}
break;
}
case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, opval, n, n x ops]
if (Record.size() < 3 || (Record.size() & 1) == 0)
return Error("Invalid SWITCH record");
const Type *OpTy = getTypeByID(Record[0]);
Value *Cond = getFnValueByID(Record[1], OpTy);
BasicBlock *Default = getBasicBlock(Record[2]);
if (OpTy == 0 || Cond == 0 || Default == 0)
return Error("Invalid SWITCH record");
unsigned NumCases = (Record.size()-3)/2;
SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
for (unsigned i = 0, e = NumCases; i != e; ++i) {
ConstantInt *CaseVal =
dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
if (CaseVal == 0 || DestBB == 0) {
delete SI;
return Error("Invalid SWITCH record!");
}
SI->addCase(CaseVal, DestBB);
}
I = SI;
break;
}
case bitc::FUNC_CODE_INST_INVOKE: {
// INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
if (Record.size() < 4) return Error("Invalid INVOKE record");
AttrListPtr PAL = getAttributes(Record[0]);
unsigned CCInfo = Record[1];
BasicBlock *NormalBB = getBasicBlock(Record[2]);
BasicBlock *UnwindBB = getBasicBlock(Record[3]);
unsigned OpNum = 4;
Value *Callee;
if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
return Error("Invalid INVOKE record");
const PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
const FunctionType *FTy = !CalleeTy ? 0 :
dyn_cast<FunctionType>(CalleeTy->getElementType());
// Check that the right number of fixed parameters are here.
if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 ||
Record.size() < OpNum+FTy->getNumParams())
return Error("Invalid INVOKE record");
SmallVector<Value*, 16> Ops;
for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
if (Ops.back() == 0) return Error("Invalid INVOKE record");
}
if (!FTy->isVarArg()) {
if (Record.size() != OpNum)
return Error("Invalid INVOKE record");
} else {
// Read type/value pairs for varargs params.
while (OpNum != Record.size()) {
Value *Op;
if (getValueTypePair(Record, OpNum, NextValueNo, Op))
return Error("Invalid INVOKE record");
Ops.push_back(Op);
}
}
I = InvokeInst::Create(Callee, NormalBB, UnwindBB,
Ops.begin(), Ops.end());
cast<InvokeInst>(I)->setCallingConv(CCInfo);
cast<InvokeInst>(I)->setAttributes(PAL);
break;
}
case bitc::FUNC_CODE_INST_UNWIND: // UNWIND
I = new UnwindInst();
break;
case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
I = new UnreachableInst();
break;
case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
if (Record.size() < 1 || ((Record.size()-1)&1))
return Error("Invalid PHI record");
const Type *Ty = getTypeByID(Record[0]);
if (!Ty) return Error("Invalid PHI record");
PHINode *PN = PHINode::Create(Ty);
PN->reserveOperandSpace((Record.size()-1)/2);
for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
Value *V = getFnValueByID(Record[1+i], Ty);
BasicBlock *BB = getBasicBlock(Record[2+i]);
if (!V || !BB) return Error("Invalid PHI record");
PN->addIncoming(V, BB);
}
I = PN;
break;
}
case bitc::FUNC_CODE_INST_MALLOC: { // MALLOC: [instty, op, align]
if (Record.size() < 3)
return Error("Invalid MALLOC record");
const PointerType *Ty =
dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
Value *Size = getFnValueByID(Record[1], Type::Int32Ty);
unsigned Align = Record[2];
if (!Ty || !Size) return Error("Invalid MALLOC record");
I = new MallocInst(Ty->getElementType(), Size, (1 << Align) >> 1);
break;
}
case bitc::FUNC_CODE_INST_FREE: { // FREE: [op, opty]
unsigned OpNum = 0;
Value *Op;
if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
OpNum != Record.size())
return Error("Invalid FREE record");
I = new FreeInst(Op);
break;
}
case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, op, align]
if (Record.size() < 3)
return Error("Invalid ALLOCA record");
const PointerType *Ty =
dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
Value *Size = getFnValueByID(Record[1], Type::Int32Ty);
unsigned Align = Record[2];
if (!Ty || !Size) return Error("Invalid ALLOCA record");
I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
break;
}
case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
unsigned OpNum = 0;
Value *Op;
if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
OpNum+2 != Record.size())
return Error("Invalid LOAD record");
I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
break;
}
case bitc::FUNC_CODE_INST_STORE2: { // STORE2:[ptrty, ptr, val, align, vol]
unsigned OpNum = 0;
Value *Val, *Ptr;
if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
getValue(Record, OpNum,
cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
OpNum+2 != Record.size())
return Error("Invalid STORE record");
I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
break;
}
case bitc::FUNC_CODE_INST_STORE: { // STORE:[val, valty, ptr, align, vol]
// FIXME: Legacy form of store instruction. Should be removed in LLVM 3.0.
unsigned OpNum = 0;
Value *Val, *Ptr;
if (getValueTypePair(Record, OpNum, NextValueNo, Val) ||
getValue(Record, OpNum, PointerType::getUnqual(Val->getType()), Ptr)||
OpNum+2 != Record.size())
return Error("Invalid STORE record");
I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
break;
}
case bitc::FUNC_CODE_INST_CALL: {
// CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
if (Record.size() < 3)
return Error("Invalid CALL record");
AttrListPtr PAL = getAttributes(Record[0]);
unsigned CCInfo = Record[1];
unsigned OpNum = 2;
Value *Callee;
if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
return Error("Invalid CALL record");
const PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
const FunctionType *FTy = 0;
if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
return Error("Invalid CALL record");
SmallVector<Value*, 16> Args;
// Read the fixed params.
for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
if (FTy->getParamType(i)->getTypeID()==Type::LabelTyID)
Args.push_back(getBasicBlock(Record[OpNum]));
else
Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
if (Args.back() == 0) return Error("Invalid CALL record");
}
// Read type/value pairs for varargs params.
if (!FTy->isVarArg()) {
if (OpNum != Record.size())
return Error("Invalid CALL record");
} else {
while (OpNum != Record.size()) {
Value *Op;
if (getValueTypePair(Record, OpNum, NextValueNo, Op))
return Error("Invalid CALL record");
Args.push_back(Op);
}
}
I = CallInst::Create(Callee, Args.begin(), Args.end());
cast<CallInst>(I)->setCallingConv(CCInfo>>1);
cast<CallInst>(I)->setTailCall(CCInfo & 1);
cast<CallInst>(I)->setAttributes(PAL);
break;
}
case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
if (Record.size() < 3)
return Error("Invalid VAARG record");
const Type *OpTy = getTypeByID(Record[0]);
Value *Op = getFnValueByID(Record[1], OpTy);
const Type *ResTy = getTypeByID(Record[2]);
if (!OpTy || !Op || !ResTy)
return Error("Invalid VAARG record");
I = new VAArgInst(Op, ResTy);
break;
}
}
// Add instruction to end of current BB. If there is no current BB, reject
// this file.
if (CurBB == 0) {
delete I;
return Error("Invalid instruction with no BB");
}
CurBB->getInstList().push_back(I);
// If this was a terminator instruction, move to the next block.
if (isa<TerminatorInst>(I)) {
++CurBBNo;
CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0;
}
// Non-void values get registered in the value table for future use.
if (I && I->getType() != Type::VoidTy)
ValueList.AssignValue(I, NextValueNo++);
}
// Check the function list for unresolved values.
if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
if (A->getParent() == 0) {
// We found at least one unresolved value. Nuke them all to avoid leaks.
for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
if ((A = dyn_cast<Argument>(ValueList.back())) && A->getParent() == 0) {
A->replaceAllUsesWith(UndefValue::get(A->getType()));
delete A;
}
}
return Error("Never resolved value found in function!");
}
}
// Trim the value list down to the size it was before we parsed this function.
ValueList.shrinkTo(ModuleValueListSize);
std::vector<BasicBlock*>().swap(FunctionBBs);
return false;
}
//===----------------------------------------------------------------------===//
// ModuleProvider implementation
//===----------------------------------------------------------------------===//
bool BitcodeReader::materializeFunction(Function *F, std::string *ErrInfo) {
// If it already is material, ignore the request.
if (!F->hasNotBeenReadFromBitcode()) return false;
DenseMap<Function*, std::pair<uint64_t, unsigned> >::iterator DFII =
DeferredFunctionInfo.find(F);
assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
// Move the bit stream to the saved position of the deferred function body and
// restore the real linkage type for the function.
Stream.JumpToBit(DFII->second.first);
F->setLinkage((GlobalValue::LinkageTypes)DFII->second.second);
if (ParseFunctionBody(F)) {
if (ErrInfo) *ErrInfo = ErrorString;
return true;
}
// Upgrade any old intrinsic calls in the function.
for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
E = UpgradedIntrinsics.end(); I != E; ++I) {
if (I->first != I->second) {
for (Value::use_iterator UI = I->first->use_begin(),
UE = I->first->use_end(); UI != UE; ) {
if (CallInst* CI = dyn_cast<CallInst>(*UI++))
UpgradeIntrinsicCall(CI, I->second);
}
}
}
return false;
}
void BitcodeReader::dematerializeFunction(Function *F) {
// If this function isn't materialized, or if it is a proto, this is a noop.
if (F->hasNotBeenReadFromBitcode() || F->isDeclaration())
return;
assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
// Just forget the function body, we can remat it later.
F->deleteBody();
F->setLinkage(GlobalValue::GhostLinkage);
}
Module *BitcodeReader::materializeModule(std::string *ErrInfo) {
for (DenseMap<Function*, std::pair<uint64_t, unsigned> >::iterator I =
DeferredFunctionInfo.begin(), E = DeferredFunctionInfo.end(); I != E;
++I) {
Function *F = I->first;
if (F->hasNotBeenReadFromBitcode() &&
materializeFunction(F, ErrInfo))
return 0;
}
// Upgrade any intrinsic calls that slipped through (should not happen!) and
// delete the old functions to clean up. We can't do this unless the entire
// module is materialized because there could always be another function body
// with calls to the old function.
for (std::vector<std::pair<Function*, Function*> >::iterator I =
UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
if (I->first != I->second) {
for (Value::use_iterator UI = I->first->use_begin(),
UE = I->first->use_end(); UI != UE; ) {
if (CallInst* CI = dyn_cast<CallInst>(*UI++))
UpgradeIntrinsicCall(CI, I->second);
}
ValueList.replaceUsesOfWith(I->first, I->second);
I->first->eraseFromParent();
}
}
std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
return TheModule;
}
/// This method is provided by the parent ModuleProvde class and overriden
/// here. It simply releases the module from its provided and frees up our
/// state.
/// @brief Release our hold on the generated module
Module *BitcodeReader::releaseModule(std::string *ErrInfo) {
// Since we're losing control of this Module, we must hand it back complete
Module *M = ModuleProvider::releaseModule(ErrInfo);
FreeState();
return M;
}
//===----------------------------------------------------------------------===//
// External interface
//===----------------------------------------------------------------------===//
/// getBitcodeModuleProvider - lazy function-at-a-time loading from a file.
///
ModuleProvider *llvm::getBitcodeModuleProvider(MemoryBuffer *Buffer,
std::string *ErrMsg) {
BitcodeReader *R = new BitcodeReader(Buffer);
if (R->ParseBitcode()) {
if (ErrMsg)
*ErrMsg = R->getErrorString();
// Don't let the BitcodeReader dtor delete 'Buffer'.
R->releaseMemoryBuffer();
delete R;
return 0;
}
return R;
}
/// ParseBitcodeFile - Read the specified bitcode file, returning the module.
/// If an error occurs, return null and fill in *ErrMsg if non-null.
Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, std::string *ErrMsg){
BitcodeReader *R;
R = static_cast<BitcodeReader*>(getBitcodeModuleProvider(Buffer, ErrMsg));
if (!R) return 0;
// Read in the entire module.
Module *M = R->materializeModule(ErrMsg);
// Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether
// there was an error.
R->releaseMemoryBuffer();
// If there was no error, tell ModuleProvider not to delete it when its dtor
// is run.
if (M)
M = R->releaseModule(ErrMsg);
delete R;
return M;
}