llvm-6502/lib/Target/X86/X86InstrSSE.td
Dan Gohman 4a0b3e170d Add support for rematerializing FsFLD0SS and FsFLD0SD as constant-pool
loads in order to reduce register pressure.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@82470 91177308-0d34-0410-b5e6-96231b3b80d8
2009-09-21 18:30:38 +00:00

3882 lines
186 KiB
TableGen

//====- X86InstrSSE.td - Describe the X86 Instruction Set --*- tablegen -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes the X86 SSE instruction set, defining the instructions,
// and properties of the instructions which are needed for code generation,
// machine code emission, and analysis.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// SSE specific DAG Nodes.
//===----------------------------------------------------------------------===//
def SDTX86FPShiftOp : SDTypeProfile<1, 2, [ SDTCisSameAs<0, 1>,
SDTCisFP<0>, SDTCisInt<2> ]>;
def SDTX86VFCMP : SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<1, 2>,
SDTCisFP<1>, SDTCisVT<3, i8>]>;
def X86fmin : SDNode<"X86ISD::FMIN", SDTFPBinOp>;
def X86fmax : SDNode<"X86ISD::FMAX", SDTFPBinOp>;
def X86fand : SDNode<"X86ISD::FAND", SDTFPBinOp,
[SDNPCommutative, SDNPAssociative]>;
def X86for : SDNode<"X86ISD::FOR", SDTFPBinOp,
[SDNPCommutative, SDNPAssociative]>;
def X86fxor : SDNode<"X86ISD::FXOR", SDTFPBinOp,
[SDNPCommutative, SDNPAssociative]>;
def X86frsqrt : SDNode<"X86ISD::FRSQRT", SDTFPUnaryOp>;
def X86frcp : SDNode<"X86ISD::FRCP", SDTFPUnaryOp>;
def X86fsrl : SDNode<"X86ISD::FSRL", SDTX86FPShiftOp>;
def X86comi : SDNode<"X86ISD::COMI", SDTX86CmpTest>;
def X86ucomi : SDNode<"X86ISD::UCOMI", SDTX86CmpTest>;
def X86pshufb : SDNode<"X86ISD::PSHUFB",
SDTypeProfile<1, 2, [SDTCisVT<0, v16i8>, SDTCisSameAs<0,1>,
SDTCisSameAs<0,2>]>>;
def X86pextrb : SDNode<"X86ISD::PEXTRB",
SDTypeProfile<1, 2, [SDTCisVT<0, i32>, SDTCisPtrTy<2>]>>;
def X86pextrw : SDNode<"X86ISD::PEXTRW",
SDTypeProfile<1, 2, [SDTCisVT<0, i32>, SDTCisPtrTy<2>]>>;
def X86pinsrb : SDNode<"X86ISD::PINSRB",
SDTypeProfile<1, 3, [SDTCisVT<0, v16i8>, SDTCisSameAs<0,1>,
SDTCisVT<2, i32>, SDTCisPtrTy<3>]>>;
def X86pinsrw : SDNode<"X86ISD::PINSRW",
SDTypeProfile<1, 3, [SDTCisVT<0, v8i16>, SDTCisSameAs<0,1>,
SDTCisVT<2, i32>, SDTCisPtrTy<3>]>>;
def X86insrtps : SDNode<"X86ISD::INSERTPS",
SDTypeProfile<1, 3, [SDTCisVT<0, v4f32>, SDTCisSameAs<0,1>,
SDTCisVT<2, v4f32>, SDTCisPtrTy<3>]>>;
def X86vzmovl : SDNode<"X86ISD::VZEXT_MOVL",
SDTypeProfile<1, 1, [SDTCisSameAs<0,1>]>>;
def X86vzload : SDNode<"X86ISD::VZEXT_LOAD", SDTLoad,
[SDNPHasChain, SDNPMayLoad]>;
def X86vshl : SDNode<"X86ISD::VSHL", SDTIntShiftOp>;
def X86vshr : SDNode<"X86ISD::VSRL", SDTIntShiftOp>;
def X86cmpps : SDNode<"X86ISD::CMPPS", SDTX86VFCMP>;
def X86cmppd : SDNode<"X86ISD::CMPPD", SDTX86VFCMP>;
def X86pcmpeqb : SDNode<"X86ISD::PCMPEQB", SDTIntBinOp, [SDNPCommutative]>;
def X86pcmpeqw : SDNode<"X86ISD::PCMPEQW", SDTIntBinOp, [SDNPCommutative]>;
def X86pcmpeqd : SDNode<"X86ISD::PCMPEQD", SDTIntBinOp, [SDNPCommutative]>;
def X86pcmpeqq : SDNode<"X86ISD::PCMPEQQ", SDTIntBinOp, [SDNPCommutative]>;
def X86pcmpgtb : SDNode<"X86ISD::PCMPGTB", SDTIntBinOp>;
def X86pcmpgtw : SDNode<"X86ISD::PCMPGTW", SDTIntBinOp>;
def X86pcmpgtd : SDNode<"X86ISD::PCMPGTD", SDTIntBinOp>;
def X86pcmpgtq : SDNode<"X86ISD::PCMPGTQ", SDTIntBinOp>;
def SDTX86CmpPTest : SDTypeProfile<0, 2, [SDTCisVT<0, v4f32>,
SDTCisVT<1, v4f32>]>;
def X86ptest : SDNode<"X86ISD::PTEST", SDTX86CmpPTest>;
//===----------------------------------------------------------------------===//
// SSE Complex Patterns
//===----------------------------------------------------------------------===//
// These are 'extloads' from a scalar to the low element of a vector, zeroing
// the top elements. These are used for the SSE 'ss' and 'sd' instruction
// forms.
def sse_load_f32 : ComplexPattern<v4f32, 5, "SelectScalarSSELoad", [],
[SDNPHasChain, SDNPMayLoad]>;
def sse_load_f64 : ComplexPattern<v2f64, 5, "SelectScalarSSELoad", [],
[SDNPHasChain, SDNPMayLoad]>;
def ssmem : Operand<v4f32> {
let PrintMethod = "printf32mem";
let MIOperandInfo = (ops ptr_rc, i8imm, ptr_rc_nosp, i32imm, i8imm);
let ParserMatchClass = X86MemAsmOperand;
}
def sdmem : Operand<v2f64> {
let PrintMethod = "printf64mem";
let MIOperandInfo = (ops ptr_rc, i8imm, ptr_rc_nosp, i32imm, i8imm);
let ParserMatchClass = X86MemAsmOperand;
}
//===----------------------------------------------------------------------===//
// SSE pattern fragments
//===----------------------------------------------------------------------===//
def loadv4f32 : PatFrag<(ops node:$ptr), (v4f32 (load node:$ptr))>;
def loadv2f64 : PatFrag<(ops node:$ptr), (v2f64 (load node:$ptr))>;
def loadv4i32 : PatFrag<(ops node:$ptr), (v4i32 (load node:$ptr))>;
def loadv2i64 : PatFrag<(ops node:$ptr), (v2i64 (load node:$ptr))>;
// Like 'store', but always requires vector alignment.
def alignedstore : PatFrag<(ops node:$val, node:$ptr),
(store node:$val, node:$ptr), [{
return cast<StoreSDNode>(N)->getAlignment() >= 16;
}]>;
// Like 'load', but always requires vector alignment.
def alignedload : PatFrag<(ops node:$ptr), (load node:$ptr), [{
return cast<LoadSDNode>(N)->getAlignment() >= 16;
}]>;
def alignedloadfsf32 : PatFrag<(ops node:$ptr), (f32 (alignedload node:$ptr))>;
def alignedloadfsf64 : PatFrag<(ops node:$ptr), (f64 (alignedload node:$ptr))>;
def alignedloadv4f32 : PatFrag<(ops node:$ptr), (v4f32 (alignedload node:$ptr))>;
def alignedloadv2f64 : PatFrag<(ops node:$ptr), (v2f64 (alignedload node:$ptr))>;
def alignedloadv4i32 : PatFrag<(ops node:$ptr), (v4i32 (alignedload node:$ptr))>;
def alignedloadv2i64 : PatFrag<(ops node:$ptr), (v2i64 (alignedload node:$ptr))>;
// Like 'load', but uses special alignment checks suitable for use in
// memory operands in most SSE instructions, which are required to
// be naturally aligned on some targets but not on others.
// FIXME: Actually implement support for targets that don't require the
// alignment. This probably wants a subtarget predicate.
def memop : PatFrag<(ops node:$ptr), (load node:$ptr), [{
return cast<LoadSDNode>(N)->getAlignment() >= 16;
}]>;
def memopfsf32 : PatFrag<(ops node:$ptr), (f32 (memop node:$ptr))>;
def memopfsf64 : PatFrag<(ops node:$ptr), (f64 (memop node:$ptr))>;
def memopv4f32 : PatFrag<(ops node:$ptr), (v4f32 (memop node:$ptr))>;
def memopv2f64 : PatFrag<(ops node:$ptr), (v2f64 (memop node:$ptr))>;
def memopv4i32 : PatFrag<(ops node:$ptr), (v4i32 (memop node:$ptr))>;
def memopv2i64 : PatFrag<(ops node:$ptr), (v2i64 (memop node:$ptr))>;
def memopv16i8 : PatFrag<(ops node:$ptr), (v16i8 (memop node:$ptr))>;
// SSSE3 uses MMX registers for some instructions. They aren't aligned on a
// 16-byte boundary.
// FIXME: 8 byte alignment for mmx reads is not required
def memop64 : PatFrag<(ops node:$ptr), (load node:$ptr), [{
return cast<LoadSDNode>(N)->getAlignment() >= 8;
}]>;
def memopv8i8 : PatFrag<(ops node:$ptr), (v8i8 (memop64 node:$ptr))>;
def memopv4i16 : PatFrag<(ops node:$ptr), (v4i16 (memop64 node:$ptr))>;
def memopv8i16 : PatFrag<(ops node:$ptr), (v8i16 (memop64 node:$ptr))>;
def memopv2i32 : PatFrag<(ops node:$ptr), (v2i32 (memop64 node:$ptr))>;
def bc_v4f32 : PatFrag<(ops node:$in), (v4f32 (bitconvert node:$in))>;
def bc_v2f64 : PatFrag<(ops node:$in), (v2f64 (bitconvert node:$in))>;
def bc_v16i8 : PatFrag<(ops node:$in), (v16i8 (bitconvert node:$in))>;
def bc_v8i16 : PatFrag<(ops node:$in), (v8i16 (bitconvert node:$in))>;
def bc_v4i32 : PatFrag<(ops node:$in), (v4i32 (bitconvert node:$in))>;
def bc_v2i64 : PatFrag<(ops node:$in), (v2i64 (bitconvert node:$in))>;
def vzmovl_v2i64 : PatFrag<(ops node:$src),
(bitconvert (v2i64 (X86vzmovl
(v2i64 (scalar_to_vector (loadi64 node:$src))))))>;
def vzmovl_v4i32 : PatFrag<(ops node:$src),
(bitconvert (v4i32 (X86vzmovl
(v4i32 (scalar_to_vector (loadi32 node:$src))))))>;
def vzload_v2i64 : PatFrag<(ops node:$src),
(bitconvert (v2i64 (X86vzload node:$src)))>;
def fp32imm0 : PatLeaf<(f32 fpimm), [{
return N->isExactlyValue(+0.0);
}]>;
def PSxLDQ_imm : SDNodeXForm<imm, [{
// Transformation function: imm >> 3
return getI32Imm(N->getZExtValue() >> 3);
}]>;
// SHUFFLE_get_shuf_imm xform function: convert vector_shuffle mask to PSHUF*,
// SHUFP* etc. imm.
def SHUFFLE_get_shuf_imm : SDNodeXForm<vector_shuffle, [{
return getI8Imm(X86::getShuffleSHUFImmediate(N));
}]>;
// SHUFFLE_get_pshufhw_imm xform function: convert vector_shuffle mask to
// PSHUFHW imm.
def SHUFFLE_get_pshufhw_imm : SDNodeXForm<vector_shuffle, [{
return getI8Imm(X86::getShufflePSHUFHWImmediate(N));
}]>;
// SHUFFLE_get_pshuflw_imm xform function: convert vector_shuffle mask to
// PSHUFLW imm.
def SHUFFLE_get_pshuflw_imm : SDNodeXForm<vector_shuffle, [{
return getI8Imm(X86::getShufflePSHUFLWImmediate(N));
}]>;
def splat_lo : PatFrag<(ops node:$lhs, node:$rhs),
(vector_shuffle node:$lhs, node:$rhs), [{
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
return SVOp->isSplat() && SVOp->getSplatIndex() == 0;
}]>;
def movddup : PatFrag<(ops node:$lhs, node:$rhs),
(vector_shuffle node:$lhs, node:$rhs), [{
return X86::isMOVDDUPMask(cast<ShuffleVectorSDNode>(N));
}]>;
def movhlps : PatFrag<(ops node:$lhs, node:$rhs),
(vector_shuffle node:$lhs, node:$rhs), [{
return X86::isMOVHLPSMask(cast<ShuffleVectorSDNode>(N));
}]>;
def movhlps_undef : PatFrag<(ops node:$lhs, node:$rhs),
(vector_shuffle node:$lhs, node:$rhs), [{
return X86::isMOVHLPS_v_undef_Mask(cast<ShuffleVectorSDNode>(N));
}]>;
def movhp : PatFrag<(ops node:$lhs, node:$rhs),
(vector_shuffle node:$lhs, node:$rhs), [{
return X86::isMOVHPMask(cast<ShuffleVectorSDNode>(N));
}]>;
def movlp : PatFrag<(ops node:$lhs, node:$rhs),
(vector_shuffle node:$lhs, node:$rhs), [{
return X86::isMOVLPMask(cast<ShuffleVectorSDNode>(N));
}]>;
def movl : PatFrag<(ops node:$lhs, node:$rhs),
(vector_shuffle node:$lhs, node:$rhs), [{
return X86::isMOVLMask(cast<ShuffleVectorSDNode>(N));
}]>;
def movshdup : PatFrag<(ops node:$lhs, node:$rhs),
(vector_shuffle node:$lhs, node:$rhs), [{
return X86::isMOVSHDUPMask(cast<ShuffleVectorSDNode>(N));
}]>;
def movsldup : PatFrag<(ops node:$lhs, node:$rhs),
(vector_shuffle node:$lhs, node:$rhs), [{
return X86::isMOVSLDUPMask(cast<ShuffleVectorSDNode>(N));
}]>;
def unpckl : PatFrag<(ops node:$lhs, node:$rhs),
(vector_shuffle node:$lhs, node:$rhs), [{
return X86::isUNPCKLMask(cast<ShuffleVectorSDNode>(N));
}]>;
def unpckh : PatFrag<(ops node:$lhs, node:$rhs),
(vector_shuffle node:$lhs, node:$rhs), [{
return X86::isUNPCKHMask(cast<ShuffleVectorSDNode>(N));
}]>;
def unpckl_undef : PatFrag<(ops node:$lhs, node:$rhs),
(vector_shuffle node:$lhs, node:$rhs), [{
return X86::isUNPCKL_v_undef_Mask(cast<ShuffleVectorSDNode>(N));
}]>;
def unpckh_undef : PatFrag<(ops node:$lhs, node:$rhs),
(vector_shuffle node:$lhs, node:$rhs), [{
return X86::isUNPCKH_v_undef_Mask(cast<ShuffleVectorSDNode>(N));
}]>;
def pshufd : PatFrag<(ops node:$lhs, node:$rhs),
(vector_shuffle node:$lhs, node:$rhs), [{
return X86::isPSHUFDMask(cast<ShuffleVectorSDNode>(N));
}], SHUFFLE_get_shuf_imm>;
def shufp : PatFrag<(ops node:$lhs, node:$rhs),
(vector_shuffle node:$lhs, node:$rhs), [{
return X86::isSHUFPMask(cast<ShuffleVectorSDNode>(N));
}], SHUFFLE_get_shuf_imm>;
def pshufhw : PatFrag<(ops node:$lhs, node:$rhs),
(vector_shuffle node:$lhs, node:$rhs), [{
return X86::isPSHUFHWMask(cast<ShuffleVectorSDNode>(N));
}], SHUFFLE_get_pshufhw_imm>;
def pshuflw : PatFrag<(ops node:$lhs, node:$rhs),
(vector_shuffle node:$lhs, node:$rhs), [{
return X86::isPSHUFLWMask(cast<ShuffleVectorSDNode>(N));
}], SHUFFLE_get_pshuflw_imm>;
//===----------------------------------------------------------------------===//
// SSE scalar FP Instructions
//===----------------------------------------------------------------------===//
// CMOV* - Used to implement the SSE SELECT DAG operation. Expanded by the
// scheduler into a branch sequence.
// These are expanded by the scheduler.
let Uses = [EFLAGS], usesCustomDAGSchedInserter = 1 in {
def CMOV_FR32 : I<0, Pseudo,
(outs FR32:$dst), (ins FR32:$t, FR32:$f, i8imm:$cond),
"#CMOV_FR32 PSEUDO!",
[(set FR32:$dst, (X86cmov FR32:$t, FR32:$f, imm:$cond,
EFLAGS))]>;
def CMOV_FR64 : I<0, Pseudo,
(outs FR64:$dst), (ins FR64:$t, FR64:$f, i8imm:$cond),
"#CMOV_FR64 PSEUDO!",
[(set FR64:$dst, (X86cmov FR64:$t, FR64:$f, imm:$cond,
EFLAGS))]>;
def CMOV_V4F32 : I<0, Pseudo,
(outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond),
"#CMOV_V4F32 PSEUDO!",
[(set VR128:$dst,
(v4f32 (X86cmov VR128:$t, VR128:$f, imm:$cond,
EFLAGS)))]>;
def CMOV_V2F64 : I<0, Pseudo,
(outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond),
"#CMOV_V2F64 PSEUDO!",
[(set VR128:$dst,
(v2f64 (X86cmov VR128:$t, VR128:$f, imm:$cond,
EFLAGS)))]>;
def CMOV_V2I64 : I<0, Pseudo,
(outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond),
"#CMOV_V2I64 PSEUDO!",
[(set VR128:$dst,
(v2i64 (X86cmov VR128:$t, VR128:$f, imm:$cond,
EFLAGS)))]>;
}
//===----------------------------------------------------------------------===//
// SSE1 Instructions
//===----------------------------------------------------------------------===//
// Move Instructions
let neverHasSideEffects = 1 in
def MOVSSrr : SSI<0x10, MRMSrcReg, (outs FR32:$dst), (ins FR32:$src),
"movss\t{$src, $dst|$dst, $src}", []>;
let canFoldAsLoad = 1, isReMaterializable = 1, mayHaveSideEffects = 1 in
def MOVSSrm : SSI<0x10, MRMSrcMem, (outs FR32:$dst), (ins f32mem:$src),
"movss\t{$src, $dst|$dst, $src}",
[(set FR32:$dst, (loadf32 addr:$src))]>;
def MOVSSmr : SSI<0x11, MRMDestMem, (outs), (ins f32mem:$dst, FR32:$src),
"movss\t{$src, $dst|$dst, $src}",
[(store FR32:$src, addr:$dst)]>;
// Conversion instructions
def CVTTSS2SIrr : SSI<0x2C, MRMSrcReg, (outs GR32:$dst), (ins FR32:$src),
"cvttss2si\t{$src, $dst|$dst, $src}",
[(set GR32:$dst, (fp_to_sint FR32:$src))]>;
def CVTTSS2SIrm : SSI<0x2C, MRMSrcMem, (outs GR32:$dst), (ins f32mem:$src),
"cvttss2si\t{$src, $dst|$dst, $src}",
[(set GR32:$dst, (fp_to_sint (loadf32 addr:$src)))]>;
def CVTSI2SSrr : SSI<0x2A, MRMSrcReg, (outs FR32:$dst), (ins GR32:$src),
"cvtsi2ss\t{$src, $dst|$dst, $src}",
[(set FR32:$dst, (sint_to_fp GR32:$src))]>;
def CVTSI2SSrm : SSI<0x2A, MRMSrcMem, (outs FR32:$dst), (ins i32mem:$src),
"cvtsi2ss\t{$src, $dst|$dst, $src}",
[(set FR32:$dst, (sint_to_fp (loadi32 addr:$src)))]>;
// Match intrinsics which expect XMM operand(s).
def Int_CVTSS2SIrr : SSI<0x2D, MRMSrcReg, (outs GR32:$dst), (ins VR128:$src),
"cvtss2si\t{$src, $dst|$dst, $src}",
[(set GR32:$dst, (int_x86_sse_cvtss2si VR128:$src))]>;
def Int_CVTSS2SIrm : SSI<0x2D, MRMSrcMem, (outs GR32:$dst), (ins f32mem:$src),
"cvtss2si\t{$src, $dst|$dst, $src}",
[(set GR32:$dst, (int_x86_sse_cvtss2si
(load addr:$src)))]>;
// Match intrinisics which expect MM and XMM operand(s).
def Int_CVTPS2PIrr : PSI<0x2D, MRMSrcReg, (outs VR64:$dst), (ins VR128:$src),
"cvtps2pi\t{$src, $dst|$dst, $src}",
[(set VR64:$dst, (int_x86_sse_cvtps2pi VR128:$src))]>;
def Int_CVTPS2PIrm : PSI<0x2D, MRMSrcMem, (outs VR64:$dst), (ins f64mem:$src),
"cvtps2pi\t{$src, $dst|$dst, $src}",
[(set VR64:$dst, (int_x86_sse_cvtps2pi
(load addr:$src)))]>;
def Int_CVTTPS2PIrr: PSI<0x2C, MRMSrcReg, (outs VR64:$dst), (ins VR128:$src),
"cvttps2pi\t{$src, $dst|$dst, $src}",
[(set VR64:$dst, (int_x86_sse_cvttps2pi VR128:$src))]>;
def Int_CVTTPS2PIrm: PSI<0x2C, MRMSrcMem, (outs VR64:$dst), (ins f64mem:$src),
"cvttps2pi\t{$src, $dst|$dst, $src}",
[(set VR64:$dst, (int_x86_sse_cvttps2pi
(load addr:$src)))]>;
let Constraints = "$src1 = $dst" in {
def Int_CVTPI2PSrr : PSI<0x2A, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, VR64:$src2),
"cvtpi2ps\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst, (int_x86_sse_cvtpi2ps VR128:$src1,
VR64:$src2))]>;
def Int_CVTPI2PSrm : PSI<0x2A, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, i64mem:$src2),
"cvtpi2ps\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst, (int_x86_sse_cvtpi2ps VR128:$src1,
(load addr:$src2)))]>;
}
// Aliases for intrinsics
def Int_CVTTSS2SIrr : SSI<0x2C, MRMSrcReg, (outs GR32:$dst), (ins VR128:$src),
"cvttss2si\t{$src, $dst|$dst, $src}",
[(set GR32:$dst,
(int_x86_sse_cvttss2si VR128:$src))]>;
def Int_CVTTSS2SIrm : SSI<0x2C, MRMSrcMem, (outs GR32:$dst), (ins f32mem:$src),
"cvttss2si\t{$src, $dst|$dst, $src}",
[(set GR32:$dst,
(int_x86_sse_cvttss2si(load addr:$src)))]>;
let Constraints = "$src1 = $dst" in {
def Int_CVTSI2SSrr : SSI<0x2A, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, GR32:$src2),
"cvtsi2ss\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst, (int_x86_sse_cvtsi2ss VR128:$src1,
GR32:$src2))]>;
def Int_CVTSI2SSrm : SSI<0x2A, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, i32mem:$src2),
"cvtsi2ss\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst, (int_x86_sse_cvtsi2ss VR128:$src1,
(loadi32 addr:$src2)))]>;
}
// Comparison instructions
let Constraints = "$src1 = $dst", neverHasSideEffects = 1 in {
def CMPSSrr : SSIi8<0xC2, MRMSrcReg,
(outs FR32:$dst), (ins FR32:$src1, FR32:$src, SSECC:$cc),
"cmp${cc}ss\t{$src, $dst|$dst, $src}", []>;
let mayLoad = 1 in
def CMPSSrm : SSIi8<0xC2, MRMSrcMem,
(outs FR32:$dst), (ins FR32:$src1, f32mem:$src, SSECC:$cc),
"cmp${cc}ss\t{$src, $dst|$dst, $src}", []>;
}
let Defs = [EFLAGS] in {
def UCOMISSrr: PSI<0x2E, MRMSrcReg, (outs), (ins FR32:$src1, FR32:$src2),
"ucomiss\t{$src2, $src1|$src1, $src2}",
[(X86cmp FR32:$src1, FR32:$src2), (implicit EFLAGS)]>;
def UCOMISSrm: PSI<0x2E, MRMSrcMem, (outs), (ins FR32:$src1, f32mem:$src2),
"ucomiss\t{$src2, $src1|$src1, $src2}",
[(X86cmp FR32:$src1, (loadf32 addr:$src2)),
(implicit EFLAGS)]>;
} // Defs = [EFLAGS]
// Aliases to match intrinsics which expect XMM operand(s).
let Constraints = "$src1 = $dst" in {
def Int_CMPSSrr : SSIi8<0xC2, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, VR128:$src,
SSECC:$cc),
"cmp${cc}ss\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse_cmp_ss VR128:$src1,
VR128:$src, imm:$cc))]>;
def Int_CMPSSrm : SSIi8<0xC2, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, f32mem:$src,
SSECC:$cc),
"cmp${cc}ss\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse_cmp_ss VR128:$src1,
(load addr:$src), imm:$cc))]>;
}
let Defs = [EFLAGS] in {
def Int_UCOMISSrr: PSI<0x2E, MRMSrcReg, (outs), (ins VR128:$src1, VR128:$src2),
"ucomiss\t{$src2, $src1|$src1, $src2}",
[(X86ucomi (v4f32 VR128:$src1), VR128:$src2),
(implicit EFLAGS)]>;
def Int_UCOMISSrm: PSI<0x2E, MRMSrcMem, (outs),(ins VR128:$src1, f128mem:$src2),
"ucomiss\t{$src2, $src1|$src1, $src2}",
[(X86ucomi (v4f32 VR128:$src1), (load addr:$src2)),
(implicit EFLAGS)]>;
def Int_COMISSrr: PSI<0x2F, MRMSrcReg, (outs), (ins VR128:$src1, VR128:$src2),
"comiss\t{$src2, $src1|$src1, $src2}",
[(X86comi (v4f32 VR128:$src1), VR128:$src2),
(implicit EFLAGS)]>;
def Int_COMISSrm: PSI<0x2F, MRMSrcMem, (outs), (ins VR128:$src1, f128mem:$src2),
"comiss\t{$src2, $src1|$src1, $src2}",
[(X86comi (v4f32 VR128:$src1), (load addr:$src2)),
(implicit EFLAGS)]>;
} // Defs = [EFLAGS]
// Aliases of packed SSE1 instructions for scalar use. These all have names
// that start with 'Fs'.
// Alias instructions that map fld0 to pxor for sse.
let isReMaterializable = 1, isAsCheapAsAMove = 1, isCodeGenOnly = 1,
canFoldAsLoad = 1 in
def FsFLD0SS : I<0xEF, MRMInitReg, (outs FR32:$dst), (ins),
"pxor\t$dst, $dst", [(set FR32:$dst, fp32imm0)]>,
Requires<[HasSSE1]>, TB, OpSize;
// Alias instruction to do FR32 reg-to-reg copy using movaps. Upper bits are
// disregarded.
let neverHasSideEffects = 1 in
def FsMOVAPSrr : PSI<0x28, MRMSrcReg, (outs FR32:$dst), (ins FR32:$src),
"movaps\t{$src, $dst|$dst, $src}", []>;
// Alias instruction to load FR32 from f128mem using movaps. Upper bits are
// disregarded.
let canFoldAsLoad = 1 in
def FsMOVAPSrm : PSI<0x28, MRMSrcMem, (outs FR32:$dst), (ins f128mem:$src),
"movaps\t{$src, $dst|$dst, $src}",
[(set FR32:$dst, (alignedloadfsf32 addr:$src))]>;
// Alias bitwise logical operations using SSE logical ops on packed FP values.
let Constraints = "$src1 = $dst" in {
let isCommutable = 1 in {
def FsANDPSrr : PSI<0x54, MRMSrcReg, (outs FR32:$dst),
(ins FR32:$src1, FR32:$src2),
"andps\t{$src2, $dst|$dst, $src2}",
[(set FR32:$dst, (X86fand FR32:$src1, FR32:$src2))]>;
def FsORPSrr : PSI<0x56, MRMSrcReg, (outs FR32:$dst),
(ins FR32:$src1, FR32:$src2),
"orps\t{$src2, $dst|$dst, $src2}",
[(set FR32:$dst, (X86for FR32:$src1, FR32:$src2))]>;
def FsXORPSrr : PSI<0x57, MRMSrcReg, (outs FR32:$dst),
(ins FR32:$src1, FR32:$src2),
"xorps\t{$src2, $dst|$dst, $src2}",
[(set FR32:$dst, (X86fxor FR32:$src1, FR32:$src2))]>;
}
def FsANDPSrm : PSI<0x54, MRMSrcMem, (outs FR32:$dst),
(ins FR32:$src1, f128mem:$src2),
"andps\t{$src2, $dst|$dst, $src2}",
[(set FR32:$dst, (X86fand FR32:$src1,
(memopfsf32 addr:$src2)))]>;
def FsORPSrm : PSI<0x56, MRMSrcMem, (outs FR32:$dst),
(ins FR32:$src1, f128mem:$src2),
"orps\t{$src2, $dst|$dst, $src2}",
[(set FR32:$dst, (X86for FR32:$src1,
(memopfsf32 addr:$src2)))]>;
def FsXORPSrm : PSI<0x57, MRMSrcMem, (outs FR32:$dst),
(ins FR32:$src1, f128mem:$src2),
"xorps\t{$src2, $dst|$dst, $src2}",
[(set FR32:$dst, (X86fxor FR32:$src1,
(memopfsf32 addr:$src2)))]>;
let neverHasSideEffects = 1 in {
def FsANDNPSrr : PSI<0x55, MRMSrcReg,
(outs FR32:$dst), (ins FR32:$src1, FR32:$src2),
"andnps\t{$src2, $dst|$dst, $src2}", []>;
let mayLoad = 1 in
def FsANDNPSrm : PSI<0x55, MRMSrcMem,
(outs FR32:$dst), (ins FR32:$src1, f128mem:$src2),
"andnps\t{$src2, $dst|$dst, $src2}", []>;
}
}
/// basic_sse1_fp_binop_rm - SSE1 binops come in both scalar and vector forms.
///
/// In addition, we also have a special variant of the scalar form here to
/// represent the associated intrinsic operation. This form is unlike the
/// plain scalar form, in that it takes an entire vector (instead of a scalar)
/// and leaves the top elements unmodified (therefore these cannot be commuted).
///
/// These three forms can each be reg+reg or reg+mem, so there are a total of
/// six "instructions".
///
let Constraints = "$src1 = $dst" in {
multiclass basic_sse1_fp_binop_rm<bits<8> opc, string OpcodeStr,
SDNode OpNode, Intrinsic F32Int,
bit Commutable = 0> {
// Scalar operation, reg+reg.
def SSrr : SSI<opc, MRMSrcReg, (outs FR32:$dst), (ins FR32:$src1, FR32:$src2),
!strconcat(OpcodeStr, "ss\t{$src2, $dst|$dst, $src2}"),
[(set FR32:$dst, (OpNode FR32:$src1, FR32:$src2))]> {
let isCommutable = Commutable;
}
// Scalar operation, reg+mem.
def SSrm : SSI<opc, MRMSrcMem, (outs FR32:$dst),
(ins FR32:$src1, f32mem:$src2),
!strconcat(OpcodeStr, "ss\t{$src2, $dst|$dst, $src2}"),
[(set FR32:$dst, (OpNode FR32:$src1, (load addr:$src2)))]>;
// Vector operation, reg+reg.
def PSrr : PSI<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2),
!strconcat(OpcodeStr, "ps\t{$src2, $dst|$dst, $src2}"),
[(set VR128:$dst, (v4f32 (OpNode VR128:$src1, VR128:$src2)))]> {
let isCommutable = Commutable;
}
// Vector operation, reg+mem.
def PSrm : PSI<opc, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, f128mem:$src2),
!strconcat(OpcodeStr, "ps\t{$src2, $dst|$dst, $src2}"),
[(set VR128:$dst, (OpNode VR128:$src1, (memopv4f32 addr:$src2)))]>;
// Intrinsic operation, reg+reg.
def SSrr_Int : SSI<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2),
!strconcat(OpcodeStr, "ss\t{$src2, $dst|$dst, $src2}"),
[(set VR128:$dst, (F32Int VR128:$src1, VR128:$src2))]>;
// Intrinsic operation, reg+mem.
def SSrm_Int : SSI<opc, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, ssmem:$src2),
!strconcat(OpcodeStr, "ss\t{$src2, $dst|$dst, $src2}"),
[(set VR128:$dst, (F32Int VR128:$src1,
sse_load_f32:$src2))]>;
}
}
// Arithmetic instructions
defm ADD : basic_sse1_fp_binop_rm<0x58, "add", fadd, int_x86_sse_add_ss, 1>;
defm MUL : basic_sse1_fp_binop_rm<0x59, "mul", fmul, int_x86_sse_mul_ss, 1>;
defm SUB : basic_sse1_fp_binop_rm<0x5C, "sub", fsub, int_x86_sse_sub_ss>;
defm DIV : basic_sse1_fp_binop_rm<0x5E, "div", fdiv, int_x86_sse_div_ss>;
/// sse1_fp_binop_rm - Other SSE1 binops
///
/// This multiclass is like basic_sse1_fp_binop_rm, with the addition of
/// instructions for a full-vector intrinsic form. Operations that map
/// onto C operators don't use this form since they just use the plain
/// vector form instead of having a separate vector intrinsic form.
///
/// This provides a total of eight "instructions".
///
let Constraints = "$src1 = $dst" in {
multiclass sse1_fp_binop_rm<bits<8> opc, string OpcodeStr,
SDNode OpNode,
Intrinsic F32Int,
Intrinsic V4F32Int,
bit Commutable = 0> {
// Scalar operation, reg+reg.
def SSrr : SSI<opc, MRMSrcReg, (outs FR32:$dst), (ins FR32:$src1, FR32:$src2),
!strconcat(OpcodeStr, "ss\t{$src2, $dst|$dst, $src2}"),
[(set FR32:$dst, (OpNode FR32:$src1, FR32:$src2))]> {
let isCommutable = Commutable;
}
// Scalar operation, reg+mem.
def SSrm : SSI<opc, MRMSrcMem, (outs FR32:$dst),
(ins FR32:$src1, f32mem:$src2),
!strconcat(OpcodeStr, "ss\t{$src2, $dst|$dst, $src2}"),
[(set FR32:$dst, (OpNode FR32:$src1, (load addr:$src2)))]>;
// Vector operation, reg+reg.
def PSrr : PSI<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2),
!strconcat(OpcodeStr, "ps\t{$src2, $dst|$dst, $src2}"),
[(set VR128:$dst, (v4f32 (OpNode VR128:$src1, VR128:$src2)))]> {
let isCommutable = Commutable;
}
// Vector operation, reg+mem.
def PSrm : PSI<opc, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, f128mem:$src2),
!strconcat(OpcodeStr, "ps\t{$src2, $dst|$dst, $src2}"),
[(set VR128:$dst, (OpNode VR128:$src1, (memopv4f32 addr:$src2)))]>;
// Intrinsic operation, reg+reg.
def SSrr_Int : SSI<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2),
!strconcat(OpcodeStr, "ss\t{$src2, $dst|$dst, $src2}"),
[(set VR128:$dst, (F32Int VR128:$src1, VR128:$src2))]> {
let isCommutable = Commutable;
}
// Intrinsic operation, reg+mem.
def SSrm_Int : SSI<opc, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, ssmem:$src2),
!strconcat(OpcodeStr, "ss\t{$src2, $dst|$dst, $src2}"),
[(set VR128:$dst, (F32Int VR128:$src1,
sse_load_f32:$src2))]>;
// Vector intrinsic operation, reg+reg.
def PSrr_Int : PSI<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2),
!strconcat(OpcodeStr, "ps\t{$src2, $dst|$dst, $src2}"),
[(set VR128:$dst, (V4F32Int VR128:$src1, VR128:$src2))]> {
let isCommutable = Commutable;
}
// Vector intrinsic operation, reg+mem.
def PSrm_Int : PSI<opc, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, f128mem:$src2),
!strconcat(OpcodeStr, "ps\t{$src2, $dst|$dst, $src2}"),
[(set VR128:$dst, (V4F32Int VR128:$src1, (memopv4f32 addr:$src2)))]>;
}
}
defm MAX : sse1_fp_binop_rm<0x5F, "max", X86fmax,
int_x86_sse_max_ss, int_x86_sse_max_ps>;
defm MIN : sse1_fp_binop_rm<0x5D, "min", X86fmin,
int_x86_sse_min_ss, int_x86_sse_min_ps>;
//===----------------------------------------------------------------------===//
// SSE packed FP Instructions
// Move Instructions
let neverHasSideEffects = 1 in
def MOVAPSrr : PSI<0x28, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"movaps\t{$src, $dst|$dst, $src}", []>;
let canFoldAsLoad = 1, isReMaterializable = 1, mayHaveSideEffects = 1 in
def MOVAPSrm : PSI<0x28, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
"movaps\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (alignedloadv4f32 addr:$src))]>;
def MOVAPSmr : PSI<0x29, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src),
"movaps\t{$src, $dst|$dst, $src}",
[(alignedstore (v4f32 VR128:$src), addr:$dst)]>;
let neverHasSideEffects = 1 in
def MOVUPSrr : PSI<0x10, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"movups\t{$src, $dst|$dst, $src}", []>;
let canFoldAsLoad = 1 in
def MOVUPSrm : PSI<0x10, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
"movups\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (loadv4f32 addr:$src))]>;
def MOVUPSmr : PSI<0x11, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src),
"movups\t{$src, $dst|$dst, $src}",
[(store (v4f32 VR128:$src), addr:$dst)]>;
// Intrinsic forms of MOVUPS load and store
let canFoldAsLoad = 1 in
def MOVUPSrm_Int : PSI<0x10, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
"movups\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse_loadu_ps addr:$src))]>;
def MOVUPSmr_Int : PSI<0x11, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src),
"movups\t{$src, $dst|$dst, $src}",
[(int_x86_sse_storeu_ps addr:$dst, VR128:$src)]>;
let Constraints = "$src1 = $dst" in {
let AddedComplexity = 20 in {
def MOVLPSrm : PSI<0x12, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, f64mem:$src2),
"movlps\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(movlp VR128:$src1,
(bc_v4f32 (v2f64 (scalar_to_vector (loadf64 addr:$src2))))))]>;
def MOVHPSrm : PSI<0x16, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, f64mem:$src2),
"movhps\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(movhp VR128:$src1,
(bc_v4f32 (v2f64 (scalar_to_vector (loadf64 addr:$src2))))))]>;
} // AddedComplexity
} // Constraints = "$src1 = $dst"
def MOVLPSmr : PSI<0x13, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src),
"movlps\t{$src, $dst|$dst, $src}",
[(store (f64 (vector_extract (bc_v2f64 (v4f32 VR128:$src)),
(iPTR 0))), addr:$dst)]>;
// v2f64 extract element 1 is always custom lowered to unpack high to low
// and extract element 0 so the non-store version isn't too horrible.
def MOVHPSmr : PSI<0x17, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src),
"movhps\t{$src, $dst|$dst, $src}",
[(store (f64 (vector_extract
(unpckh (bc_v2f64 (v4f32 VR128:$src)),
(undef)), (iPTR 0))), addr:$dst)]>;
let Constraints = "$src1 = $dst" in {
let AddedComplexity = 20 in {
def MOVLHPSrr : PSI<0x16, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2),
"movlhps\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(v4f32 (movhp VR128:$src1, VR128:$src2)))]>;
def MOVHLPSrr : PSI<0x12, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2),
"movhlps\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(v4f32 (movhlps VR128:$src1, VR128:$src2)))]>;
} // AddedComplexity
} // Constraints = "$src1 = $dst"
let AddedComplexity = 20 in {
def : Pat<(v4f32 (movddup VR128:$src, (undef))),
(MOVLHPSrr VR128:$src, VR128:$src)>, Requires<[HasSSE1]>;
def : Pat<(v2i64 (movddup VR128:$src, (undef))),
(MOVLHPSrr VR128:$src, VR128:$src)>, Requires<[HasSSE1]>;
}
// Arithmetic
/// sse1_fp_unop_rm - SSE1 unops come in both scalar and vector forms.
///
/// In addition, we also have a special variant of the scalar form here to
/// represent the associated intrinsic operation. This form is unlike the
/// plain scalar form, in that it takes an entire vector (instead of a
/// scalar) and leaves the top elements undefined.
///
/// And, we have a special variant form for a full-vector intrinsic form.
///
/// These four forms can each have a reg or a mem operand, so there are a
/// total of eight "instructions".
///
multiclass sse1_fp_unop_rm<bits<8> opc, string OpcodeStr,
SDNode OpNode,
Intrinsic F32Int,
Intrinsic V4F32Int,
bit Commutable = 0> {
// Scalar operation, reg.
def SSr : SSI<opc, MRMSrcReg, (outs FR32:$dst), (ins FR32:$src),
!strconcat(OpcodeStr, "ss\t{$src, $dst|$dst, $src}"),
[(set FR32:$dst, (OpNode FR32:$src))]> {
let isCommutable = Commutable;
}
// Scalar operation, mem.
def SSm : SSI<opc, MRMSrcMem, (outs FR32:$dst), (ins f32mem:$src),
!strconcat(OpcodeStr, "ss\t{$src, $dst|$dst, $src}"),
[(set FR32:$dst, (OpNode (load addr:$src)))]>;
// Vector operation, reg.
def PSr : PSI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
!strconcat(OpcodeStr, "ps\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst, (v4f32 (OpNode VR128:$src)))]> {
let isCommutable = Commutable;
}
// Vector operation, mem.
def PSm : PSI<opc, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
!strconcat(OpcodeStr, "ps\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst, (OpNode (memopv4f32 addr:$src)))]>;
// Intrinsic operation, reg.
def SSr_Int : SSI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
!strconcat(OpcodeStr, "ss\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst, (F32Int VR128:$src))]> {
let isCommutable = Commutable;
}
// Intrinsic operation, mem.
def SSm_Int : SSI<opc, MRMSrcMem, (outs VR128:$dst), (ins ssmem:$src),
!strconcat(OpcodeStr, "ss\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst, (F32Int sse_load_f32:$src))]>;
// Vector intrinsic operation, reg
def PSr_Int : PSI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
!strconcat(OpcodeStr, "ps\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst, (V4F32Int VR128:$src))]> {
let isCommutable = Commutable;
}
// Vector intrinsic operation, mem
def PSm_Int : PSI<opc, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
!strconcat(OpcodeStr, "ps\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst, (V4F32Int (memopv4f32 addr:$src)))]>;
}
// Square root.
defm SQRT : sse1_fp_unop_rm<0x51, "sqrt", fsqrt,
int_x86_sse_sqrt_ss, int_x86_sse_sqrt_ps>;
// Reciprocal approximations. Note that these typically require refinement
// in order to obtain suitable precision.
defm RSQRT : sse1_fp_unop_rm<0x52, "rsqrt", X86frsqrt,
int_x86_sse_rsqrt_ss, int_x86_sse_rsqrt_ps>;
defm RCP : sse1_fp_unop_rm<0x53, "rcp", X86frcp,
int_x86_sse_rcp_ss, int_x86_sse_rcp_ps>;
// Logical
let Constraints = "$src1 = $dst" in {
let isCommutable = 1 in {
def ANDPSrr : PSI<0x54, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
"andps\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst, (v2i64
(and VR128:$src1, VR128:$src2)))]>;
def ORPSrr : PSI<0x56, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
"orps\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst, (v2i64
(or VR128:$src1, VR128:$src2)))]>;
def XORPSrr : PSI<0x57, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
"xorps\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst, (v2i64
(xor VR128:$src1, VR128:$src2)))]>;
}
def ANDPSrm : PSI<0x54, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, f128mem:$src2),
"andps\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst, (and (bc_v2i64 (v4f32 VR128:$src1)),
(memopv2i64 addr:$src2)))]>;
def ORPSrm : PSI<0x56, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, f128mem:$src2),
"orps\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst, (or (bc_v2i64 (v4f32 VR128:$src1)),
(memopv2i64 addr:$src2)))]>;
def XORPSrm : PSI<0x57, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, f128mem:$src2),
"xorps\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst, (xor (bc_v2i64 (v4f32 VR128:$src1)),
(memopv2i64 addr:$src2)))]>;
def ANDNPSrr : PSI<0x55, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
"andnps\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(v2i64 (and (xor VR128:$src1,
(bc_v2i64 (v4i32 immAllOnesV))),
VR128:$src2)))]>;
def ANDNPSrm : PSI<0x55, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1,f128mem:$src2),
"andnps\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(v2i64 (and (xor (bc_v2i64 (v4f32 VR128:$src1)),
(bc_v2i64 (v4i32 immAllOnesV))),
(memopv2i64 addr:$src2))))]>;
}
let Constraints = "$src1 = $dst" in {
def CMPPSrri : PSIi8<0xC2, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, VR128:$src, SSECC:$cc),
"cmp${cc}ps\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse_cmp_ps VR128:$src1,
VR128:$src, imm:$cc))]>;
def CMPPSrmi : PSIi8<0xC2, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, f128mem:$src, SSECC:$cc),
"cmp${cc}ps\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse_cmp_ps VR128:$src1,
(memop addr:$src), imm:$cc))]>;
}
def : Pat<(v4i32 (X86cmpps (v4f32 VR128:$src1), VR128:$src2, imm:$cc)),
(CMPPSrri VR128:$src1, VR128:$src2, imm:$cc)>;
def : Pat<(v4i32 (X86cmpps (v4f32 VR128:$src1), (memop addr:$src2), imm:$cc)),
(CMPPSrmi VR128:$src1, addr:$src2, imm:$cc)>;
// Shuffle and unpack instructions
let Constraints = "$src1 = $dst" in {
let isConvertibleToThreeAddress = 1 in // Convert to pshufd
def SHUFPSrri : PSIi8<0xC6, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1,
VR128:$src2, i8imm:$src3),
"shufps\t{$src3, $src2, $dst|$dst, $src2, $src3}",
[(set VR128:$dst,
(v4f32 (shufp:$src3 VR128:$src1, VR128:$src2)))]>;
def SHUFPSrmi : PSIi8<0xC6, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1,
f128mem:$src2, i8imm:$src3),
"shufps\t{$src3, $src2, $dst|$dst, $src2, $src3}",
[(set VR128:$dst,
(v4f32 (shufp:$src3
VR128:$src1, (memopv4f32 addr:$src2))))]>;
let AddedComplexity = 10 in {
def UNPCKHPSrr : PSI<0x15, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
"unpckhps\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(v4f32 (unpckh VR128:$src1, VR128:$src2)))]>;
def UNPCKHPSrm : PSI<0x15, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, f128mem:$src2),
"unpckhps\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(v4f32 (unpckh VR128:$src1,
(memopv4f32 addr:$src2))))]>;
def UNPCKLPSrr : PSI<0x14, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
"unpcklps\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(v4f32 (unpckl VR128:$src1, VR128:$src2)))]>;
def UNPCKLPSrm : PSI<0x14, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, f128mem:$src2),
"unpcklps\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(unpckl VR128:$src1, (memopv4f32 addr:$src2)))]>;
} // AddedComplexity
} // Constraints = "$src1 = $dst"
// Mask creation
def MOVMSKPSrr : PSI<0x50, MRMSrcReg, (outs GR32:$dst), (ins VR128:$src),
"movmskps\t{$src, $dst|$dst, $src}",
[(set GR32:$dst, (int_x86_sse_movmsk_ps VR128:$src))]>;
def MOVMSKPDrr : PDI<0x50, MRMSrcReg, (outs GR32:$dst), (ins VR128:$src),
"movmskpd\t{$src, $dst|$dst, $src}",
[(set GR32:$dst, (int_x86_sse2_movmsk_pd VR128:$src))]>;
// Prefetch intrinsic.
def PREFETCHT0 : PSI<0x18, MRM1m, (outs), (ins i8mem:$src),
"prefetcht0\t$src", [(prefetch addr:$src, imm, (i32 3))]>;
def PREFETCHT1 : PSI<0x18, MRM2m, (outs), (ins i8mem:$src),
"prefetcht1\t$src", [(prefetch addr:$src, imm, (i32 2))]>;
def PREFETCHT2 : PSI<0x18, MRM3m, (outs), (ins i8mem:$src),
"prefetcht2\t$src", [(prefetch addr:$src, imm, (i32 1))]>;
def PREFETCHNTA : PSI<0x18, MRM0m, (outs), (ins i8mem:$src),
"prefetchnta\t$src", [(prefetch addr:$src, imm, (i32 0))]>;
// Non-temporal stores
def MOVNTPSmr : PSI<0x2B, MRMDestMem, (outs), (ins i128mem:$dst, VR128:$src),
"movntps\t{$src, $dst|$dst, $src}",
[(int_x86_sse_movnt_ps addr:$dst, VR128:$src)]>;
// Load, store, and memory fence
def SFENCE : PSI<0xAE, MRM7r, (outs), (ins), "sfence", [(int_x86_sse_sfence)]>;
// MXCSR register
def LDMXCSR : PSI<0xAE, MRM2m, (outs), (ins i32mem:$src),
"ldmxcsr\t$src", [(int_x86_sse_ldmxcsr addr:$src)]>;
def STMXCSR : PSI<0xAE, MRM3m, (outs), (ins i32mem:$dst),
"stmxcsr\t$dst", [(int_x86_sse_stmxcsr addr:$dst)]>;
// Alias instructions that map zero vector to pxor / xorp* for sse.
// We set canFoldAsLoad because this can be converted to a constant-pool
// load of an all-zeros value if folding it would be beneficial.
let isReMaterializable = 1, isAsCheapAsAMove = 1, canFoldAsLoad = 1,
isCodeGenOnly = 1 in
def V_SET0 : PSI<0x57, MRMInitReg, (outs VR128:$dst), (ins),
"xorps\t$dst, $dst",
[(set VR128:$dst, (v4i32 immAllZerosV))]>;
let Predicates = [HasSSE1] in {
def : Pat<(v2i64 immAllZerosV), (V_SET0)>;
def : Pat<(v8i16 immAllZerosV), (V_SET0)>;
def : Pat<(v16i8 immAllZerosV), (V_SET0)>;
def : Pat<(v2f64 immAllZerosV), (V_SET0)>;
def : Pat<(v4f32 immAllZerosV), (V_SET0)>;
}
// FR32 to 128-bit vector conversion.
let isAsCheapAsAMove = 1 in
def MOVSS2PSrr : SSI<0x10, MRMSrcReg, (outs VR128:$dst), (ins FR32:$src),
"movss\t{$src, $dst|$dst, $src}",
[(set VR128:$dst,
(v4f32 (scalar_to_vector FR32:$src)))]>;
def MOVSS2PSrm : SSI<0x10, MRMSrcMem, (outs VR128:$dst), (ins f32mem:$src),
"movss\t{$src, $dst|$dst, $src}",
[(set VR128:$dst,
(v4f32 (scalar_to_vector (loadf32 addr:$src))))]>;
// FIXME: may not be able to eliminate this movss with coalescing the src and
// dest register classes are different. We really want to write this pattern
// like this:
// def : Pat<(f32 (vector_extract (v4f32 VR128:$src), (iPTR 0))),
// (f32 FR32:$src)>;
let isAsCheapAsAMove = 1 in
def MOVPS2SSrr : SSI<0x10, MRMSrcReg, (outs FR32:$dst), (ins VR128:$src),
"movss\t{$src, $dst|$dst, $src}",
[(set FR32:$dst, (vector_extract (v4f32 VR128:$src),
(iPTR 0)))]>;
def MOVPS2SSmr : SSI<0x11, MRMDestMem, (outs), (ins f32mem:$dst, VR128:$src),
"movss\t{$src, $dst|$dst, $src}",
[(store (f32 (vector_extract (v4f32 VR128:$src),
(iPTR 0))), addr:$dst)]>;
// Move to lower bits of a VR128, leaving upper bits alone.
// Three operand (but two address) aliases.
let Constraints = "$src1 = $dst" in {
let neverHasSideEffects = 1 in
def MOVLSS2PSrr : SSI<0x10, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, FR32:$src2),
"movss\t{$src2, $dst|$dst, $src2}", []>;
let AddedComplexity = 15 in
def MOVLPSrr : SSI<0x10, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
"movss\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(v4f32 (movl VR128:$src1, VR128:$src2)))]>;
}
// Move to lower bits of a VR128 and zeroing upper bits.
// Loading from memory automatically zeroing upper bits.
let AddedComplexity = 20 in
def MOVZSS2PSrm : SSI<0x10, MRMSrcMem, (outs VR128:$dst), (ins f32mem:$src),
"movss\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (v4f32 (X86vzmovl (v4f32 (scalar_to_vector
(loadf32 addr:$src))))))]>;
def : Pat<(v4f32 (X86vzmovl (loadv4f32 addr:$src))),
(MOVZSS2PSrm addr:$src)>;
//===---------------------------------------------------------------------===//
// SSE2 Instructions
//===---------------------------------------------------------------------===//
// Move Instructions
let neverHasSideEffects = 1 in
def MOVSDrr : SDI<0x10, MRMSrcReg, (outs FR64:$dst), (ins FR64:$src),
"movsd\t{$src, $dst|$dst, $src}", []>;
let canFoldAsLoad = 1, isReMaterializable = 1, mayHaveSideEffects = 1 in
def MOVSDrm : SDI<0x10, MRMSrcMem, (outs FR64:$dst), (ins f64mem:$src),
"movsd\t{$src, $dst|$dst, $src}",
[(set FR64:$dst, (loadf64 addr:$src))]>;
def MOVSDmr : SDI<0x11, MRMDestMem, (outs), (ins f64mem:$dst, FR64:$src),
"movsd\t{$src, $dst|$dst, $src}",
[(store FR64:$src, addr:$dst)]>;
// Conversion instructions
def CVTTSD2SIrr : SDI<0x2C, MRMSrcReg, (outs GR32:$dst), (ins FR64:$src),
"cvttsd2si\t{$src, $dst|$dst, $src}",
[(set GR32:$dst, (fp_to_sint FR64:$src))]>;
def CVTTSD2SIrm : SDI<0x2C, MRMSrcMem, (outs GR32:$dst), (ins f64mem:$src),
"cvttsd2si\t{$src, $dst|$dst, $src}",
[(set GR32:$dst, (fp_to_sint (loadf64 addr:$src)))]>;
def CVTSD2SSrr : SDI<0x5A, MRMSrcReg, (outs FR32:$dst), (ins FR64:$src),
"cvtsd2ss\t{$src, $dst|$dst, $src}",
[(set FR32:$dst, (fround FR64:$src))]>;
def CVTSD2SSrm : SDI<0x5A, MRMSrcMem, (outs FR32:$dst), (ins f64mem:$src),
"cvtsd2ss\t{$src, $dst|$dst, $src}",
[(set FR32:$dst, (fround (loadf64 addr:$src)))]>;
def CVTSI2SDrr : SDI<0x2A, MRMSrcReg, (outs FR64:$dst), (ins GR32:$src),
"cvtsi2sd\t{$src, $dst|$dst, $src}",
[(set FR64:$dst, (sint_to_fp GR32:$src))]>;
def CVTSI2SDrm : SDI<0x2A, MRMSrcMem, (outs FR64:$dst), (ins i32mem:$src),
"cvtsi2sd\t{$src, $dst|$dst, $src}",
[(set FR64:$dst, (sint_to_fp (loadi32 addr:$src)))]>;
def CVTPD2DQrm : S3DI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
"cvtpd2dq\t{$src, $dst|$dst, $src}", []>;
def CVTPD2DQrr : S3DI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"cvtpd2dq\t{$src, $dst|$dst, $src}", []>;
def CVTDQ2PDrm : S3SI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
"cvtdq2pd\t{$src, $dst|$dst, $src}", []>;
def CVTDQ2PDrr : S3SI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"cvtdq2pd\t{$src, $dst|$dst, $src}", []>;
def CVTPS2DQrr : PDI<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"cvtps2dq\t{$src, $dst|$dst, $src}", []>;
def CVTPS2DQrm : PDI<0x5B, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
"cvtps2dq\t{$src, $dst|$dst, $src}", []>;
def CVTDQ2PSrr : PSI<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"cvtdq2ps\t{$src, $dst|$dst, $src}", []>;
def CVTDQ2PSrm : PSI<0x5B, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
"cvtdq2ps\t{$src, $dst|$dst, $src}", []>;
def COMISDrr: PDI<0x2F, MRMSrcReg, (outs), (ins VR128:$src1, VR128:$src2),
"comisd\t{$src2, $src1|$src1, $src2}", []>;
def COMISDrm: PDI<0x2F, MRMSrcMem, (outs), (ins VR128:$src1, f128mem:$src2),
"comisd\t{$src2, $src1|$src1, $src2}", []>;
// SSE2 instructions with XS prefix
def CVTSS2SDrr : I<0x5A, MRMSrcReg, (outs FR64:$dst), (ins FR32:$src),
"cvtss2sd\t{$src, $dst|$dst, $src}",
[(set FR64:$dst, (fextend FR32:$src))]>, XS,
Requires<[HasSSE2]>;
def CVTSS2SDrm : I<0x5A, MRMSrcMem, (outs FR64:$dst), (ins f32mem:$src),
"cvtss2sd\t{$src, $dst|$dst, $src}",
[(set FR64:$dst, (extloadf32 addr:$src))]>, XS,
Requires<[HasSSE2]>;
// Match intrinsics which expect XMM operand(s).
def Int_CVTSD2SIrr : SDI<0x2D, MRMSrcReg, (outs GR32:$dst), (ins VR128:$src),
"cvtsd2si\t{$src, $dst|$dst, $src}",
[(set GR32:$dst, (int_x86_sse2_cvtsd2si VR128:$src))]>;
def Int_CVTSD2SIrm : SDI<0x2D, MRMSrcMem, (outs GR32:$dst), (ins f128mem:$src),
"cvtsd2si\t{$src, $dst|$dst, $src}",
[(set GR32:$dst, (int_x86_sse2_cvtsd2si
(load addr:$src)))]>;
// Match intrinisics which expect MM and XMM operand(s).
def Int_CVTPD2PIrr : PDI<0x2D, MRMSrcReg, (outs VR64:$dst), (ins VR128:$src),
"cvtpd2pi\t{$src, $dst|$dst, $src}",
[(set VR64:$dst, (int_x86_sse_cvtpd2pi VR128:$src))]>;
def Int_CVTPD2PIrm : PDI<0x2D, MRMSrcMem, (outs VR64:$dst), (ins f128mem:$src),
"cvtpd2pi\t{$src, $dst|$dst, $src}",
[(set VR64:$dst, (int_x86_sse_cvtpd2pi
(memop addr:$src)))]>;
def Int_CVTTPD2PIrr: PDI<0x2C, MRMSrcReg, (outs VR64:$dst), (ins VR128:$src),
"cvttpd2pi\t{$src, $dst|$dst, $src}",
[(set VR64:$dst, (int_x86_sse_cvttpd2pi VR128:$src))]>;
def Int_CVTTPD2PIrm: PDI<0x2C, MRMSrcMem, (outs VR64:$dst), (ins f128mem:$src),
"cvttpd2pi\t{$src, $dst|$dst, $src}",
[(set VR64:$dst, (int_x86_sse_cvttpd2pi
(memop addr:$src)))]>;
def Int_CVTPI2PDrr : PDI<0x2A, MRMSrcReg, (outs VR128:$dst), (ins VR64:$src),
"cvtpi2pd\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse_cvtpi2pd VR64:$src))]>;
def Int_CVTPI2PDrm : PDI<0x2A, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src),
"cvtpi2pd\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse_cvtpi2pd
(load addr:$src)))]>;
// Aliases for intrinsics
def Int_CVTTSD2SIrr : SDI<0x2C, MRMSrcReg, (outs GR32:$dst), (ins VR128:$src),
"cvttsd2si\t{$src, $dst|$dst, $src}",
[(set GR32:$dst,
(int_x86_sse2_cvttsd2si VR128:$src))]>;
def Int_CVTTSD2SIrm : SDI<0x2C, MRMSrcMem, (outs GR32:$dst), (ins f128mem:$src),
"cvttsd2si\t{$src, $dst|$dst, $src}",
[(set GR32:$dst, (int_x86_sse2_cvttsd2si
(load addr:$src)))]>;
// Comparison instructions
let Constraints = "$src1 = $dst", neverHasSideEffects = 1 in {
def CMPSDrr : SDIi8<0xC2, MRMSrcReg,
(outs FR64:$dst), (ins FR64:$src1, FR64:$src, SSECC:$cc),
"cmp${cc}sd\t{$src, $dst|$dst, $src}", []>;
let mayLoad = 1 in
def CMPSDrm : SDIi8<0xC2, MRMSrcMem,
(outs FR64:$dst), (ins FR64:$src1, f64mem:$src, SSECC:$cc),
"cmp${cc}sd\t{$src, $dst|$dst, $src}", []>;
}
let Defs = [EFLAGS] in {
def UCOMISDrr: PDI<0x2E, MRMSrcReg, (outs), (ins FR64:$src1, FR64:$src2),
"ucomisd\t{$src2, $src1|$src1, $src2}",
[(X86cmp FR64:$src1, FR64:$src2), (implicit EFLAGS)]>;
def UCOMISDrm: PDI<0x2E, MRMSrcMem, (outs), (ins FR64:$src1, f64mem:$src2),
"ucomisd\t{$src2, $src1|$src1, $src2}",
[(X86cmp FR64:$src1, (loadf64 addr:$src2)),
(implicit EFLAGS)]>;
} // Defs = [EFLAGS]
// Aliases to match intrinsics which expect XMM operand(s).
let Constraints = "$src1 = $dst" in {
def Int_CMPSDrr : SDIi8<0xC2, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, VR128:$src,
SSECC:$cc),
"cmp${cc}sd\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_cmp_sd VR128:$src1,
VR128:$src, imm:$cc))]>;
def Int_CMPSDrm : SDIi8<0xC2, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, f64mem:$src,
SSECC:$cc),
"cmp${cc}sd\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_cmp_sd VR128:$src1,
(load addr:$src), imm:$cc))]>;
}
let Defs = [EFLAGS] in {
def Int_UCOMISDrr: PDI<0x2E, MRMSrcReg, (outs), (ins VR128:$src1, VR128:$src2),
"ucomisd\t{$src2, $src1|$src1, $src2}",
[(X86ucomi (v2f64 VR128:$src1), (v2f64 VR128:$src2)),
(implicit EFLAGS)]>;
def Int_UCOMISDrm: PDI<0x2E, MRMSrcMem, (outs),(ins VR128:$src1, f128mem:$src2),
"ucomisd\t{$src2, $src1|$src1, $src2}",
[(X86ucomi (v2f64 VR128:$src1), (load addr:$src2)),
(implicit EFLAGS)]>;
def Int_COMISDrr: PDI<0x2F, MRMSrcReg, (outs), (ins VR128:$src1, VR128:$src2),
"comisd\t{$src2, $src1|$src1, $src2}",
[(X86comi (v2f64 VR128:$src1), (v2f64 VR128:$src2)),
(implicit EFLAGS)]>;
def Int_COMISDrm: PDI<0x2F, MRMSrcMem, (outs), (ins VR128:$src1, f128mem:$src2),
"comisd\t{$src2, $src1|$src1, $src2}",
[(X86comi (v2f64 VR128:$src1), (load addr:$src2)),
(implicit EFLAGS)]>;
} // Defs = [EFLAGS]
// Aliases of packed SSE2 instructions for scalar use. These all have names
// that start with 'Fs'.
// Alias instructions that map fld0 to pxor for sse.
let isReMaterializable = 1, isAsCheapAsAMove = 1, isCodeGenOnly = 1,
canFoldAsLoad = 1 in
def FsFLD0SD : I<0xEF, MRMInitReg, (outs FR64:$dst), (ins),
"pxor\t$dst, $dst", [(set FR64:$dst, fpimm0)]>,
Requires<[HasSSE2]>, TB, OpSize;
// Alias instruction to do FR64 reg-to-reg copy using movapd. Upper bits are
// disregarded.
let neverHasSideEffects = 1 in
def FsMOVAPDrr : PDI<0x28, MRMSrcReg, (outs FR64:$dst), (ins FR64:$src),
"movapd\t{$src, $dst|$dst, $src}", []>;
// Alias instruction to load FR64 from f128mem using movapd. Upper bits are
// disregarded.
let canFoldAsLoad = 1 in
def FsMOVAPDrm : PDI<0x28, MRMSrcMem, (outs FR64:$dst), (ins f128mem:$src),
"movapd\t{$src, $dst|$dst, $src}",
[(set FR64:$dst, (alignedloadfsf64 addr:$src))]>;
// Alias bitwise logical operations using SSE logical ops on packed FP values.
let Constraints = "$src1 = $dst" in {
let isCommutable = 1 in {
def FsANDPDrr : PDI<0x54, MRMSrcReg, (outs FR64:$dst),
(ins FR64:$src1, FR64:$src2),
"andpd\t{$src2, $dst|$dst, $src2}",
[(set FR64:$dst, (X86fand FR64:$src1, FR64:$src2))]>;
def FsORPDrr : PDI<0x56, MRMSrcReg, (outs FR64:$dst),
(ins FR64:$src1, FR64:$src2),
"orpd\t{$src2, $dst|$dst, $src2}",
[(set FR64:$dst, (X86for FR64:$src1, FR64:$src2))]>;
def FsXORPDrr : PDI<0x57, MRMSrcReg, (outs FR64:$dst),
(ins FR64:$src1, FR64:$src2),
"xorpd\t{$src2, $dst|$dst, $src2}",
[(set FR64:$dst, (X86fxor FR64:$src1, FR64:$src2))]>;
}
def FsANDPDrm : PDI<0x54, MRMSrcMem, (outs FR64:$dst),
(ins FR64:$src1, f128mem:$src2),
"andpd\t{$src2, $dst|$dst, $src2}",
[(set FR64:$dst, (X86fand FR64:$src1,
(memopfsf64 addr:$src2)))]>;
def FsORPDrm : PDI<0x56, MRMSrcMem, (outs FR64:$dst),
(ins FR64:$src1, f128mem:$src2),
"orpd\t{$src2, $dst|$dst, $src2}",
[(set FR64:$dst, (X86for FR64:$src1,
(memopfsf64 addr:$src2)))]>;
def FsXORPDrm : PDI<0x57, MRMSrcMem, (outs FR64:$dst),
(ins FR64:$src1, f128mem:$src2),
"xorpd\t{$src2, $dst|$dst, $src2}",
[(set FR64:$dst, (X86fxor FR64:$src1,
(memopfsf64 addr:$src2)))]>;
let neverHasSideEffects = 1 in {
def FsANDNPDrr : PDI<0x55, MRMSrcReg,
(outs FR64:$dst), (ins FR64:$src1, FR64:$src2),
"andnpd\t{$src2, $dst|$dst, $src2}", []>;
let mayLoad = 1 in
def FsANDNPDrm : PDI<0x55, MRMSrcMem,
(outs FR64:$dst), (ins FR64:$src1, f128mem:$src2),
"andnpd\t{$src2, $dst|$dst, $src2}", []>;
}
}
/// basic_sse2_fp_binop_rm - SSE2 binops come in both scalar and vector forms.
///
/// In addition, we also have a special variant of the scalar form here to
/// represent the associated intrinsic operation. This form is unlike the
/// plain scalar form, in that it takes an entire vector (instead of a scalar)
/// and leaves the top elements unmodified (therefore these cannot be commuted).
///
/// These three forms can each be reg+reg or reg+mem, so there are a total of
/// six "instructions".
///
let Constraints = "$src1 = $dst" in {
multiclass basic_sse2_fp_binop_rm<bits<8> opc, string OpcodeStr,
SDNode OpNode, Intrinsic F64Int,
bit Commutable = 0> {
// Scalar operation, reg+reg.
def SDrr : SDI<opc, MRMSrcReg, (outs FR64:$dst), (ins FR64:$src1, FR64:$src2),
!strconcat(OpcodeStr, "sd\t{$src2, $dst|$dst, $src2}"),
[(set FR64:$dst, (OpNode FR64:$src1, FR64:$src2))]> {
let isCommutable = Commutable;
}
// Scalar operation, reg+mem.
def SDrm : SDI<opc, MRMSrcMem, (outs FR64:$dst),
(ins FR64:$src1, f64mem:$src2),
!strconcat(OpcodeStr, "sd\t{$src2, $dst|$dst, $src2}"),
[(set FR64:$dst, (OpNode FR64:$src1, (load addr:$src2)))]>;
// Vector operation, reg+reg.
def PDrr : PDI<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2),
!strconcat(OpcodeStr, "pd\t{$src2, $dst|$dst, $src2}"),
[(set VR128:$dst, (v2f64 (OpNode VR128:$src1, VR128:$src2)))]> {
let isCommutable = Commutable;
}
// Vector operation, reg+mem.
def PDrm : PDI<opc, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, f128mem:$src2),
!strconcat(OpcodeStr, "pd\t{$src2, $dst|$dst, $src2}"),
[(set VR128:$dst, (OpNode VR128:$src1, (memopv2f64 addr:$src2)))]>;
// Intrinsic operation, reg+reg.
def SDrr_Int : SDI<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2),
!strconcat(OpcodeStr, "sd\t{$src2, $dst|$dst, $src2}"),
[(set VR128:$dst, (F64Int VR128:$src1, VR128:$src2))]>;
// Intrinsic operation, reg+mem.
def SDrm_Int : SDI<opc, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, sdmem:$src2),
!strconcat(OpcodeStr, "sd\t{$src2, $dst|$dst, $src2}"),
[(set VR128:$dst, (F64Int VR128:$src1,
sse_load_f64:$src2))]>;
}
}
// Arithmetic instructions
defm ADD : basic_sse2_fp_binop_rm<0x58, "add", fadd, int_x86_sse2_add_sd, 1>;
defm MUL : basic_sse2_fp_binop_rm<0x59, "mul", fmul, int_x86_sse2_mul_sd, 1>;
defm SUB : basic_sse2_fp_binop_rm<0x5C, "sub", fsub, int_x86_sse2_sub_sd>;
defm DIV : basic_sse2_fp_binop_rm<0x5E, "div", fdiv, int_x86_sse2_div_sd>;
/// sse2_fp_binop_rm - Other SSE2 binops
///
/// This multiclass is like basic_sse2_fp_binop_rm, with the addition of
/// instructions for a full-vector intrinsic form. Operations that map
/// onto C operators don't use this form since they just use the plain
/// vector form instead of having a separate vector intrinsic form.
///
/// This provides a total of eight "instructions".
///
let Constraints = "$src1 = $dst" in {
multiclass sse2_fp_binop_rm<bits<8> opc, string OpcodeStr,
SDNode OpNode,
Intrinsic F64Int,
Intrinsic V2F64Int,
bit Commutable = 0> {
// Scalar operation, reg+reg.
def SDrr : SDI<opc, MRMSrcReg, (outs FR64:$dst), (ins FR64:$src1, FR64:$src2),
!strconcat(OpcodeStr, "sd\t{$src2, $dst|$dst, $src2}"),
[(set FR64:$dst, (OpNode FR64:$src1, FR64:$src2))]> {
let isCommutable = Commutable;
}
// Scalar operation, reg+mem.
def SDrm : SDI<opc, MRMSrcMem, (outs FR64:$dst),
(ins FR64:$src1, f64mem:$src2),
!strconcat(OpcodeStr, "sd\t{$src2, $dst|$dst, $src2}"),
[(set FR64:$dst, (OpNode FR64:$src1, (load addr:$src2)))]>;
// Vector operation, reg+reg.
def PDrr : PDI<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2),
!strconcat(OpcodeStr, "pd\t{$src2, $dst|$dst, $src2}"),
[(set VR128:$dst, (v2f64 (OpNode VR128:$src1, VR128:$src2)))]> {
let isCommutable = Commutable;
}
// Vector operation, reg+mem.
def PDrm : PDI<opc, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, f128mem:$src2),
!strconcat(OpcodeStr, "pd\t{$src2, $dst|$dst, $src2}"),
[(set VR128:$dst, (OpNode VR128:$src1, (memopv2f64 addr:$src2)))]>;
// Intrinsic operation, reg+reg.
def SDrr_Int : SDI<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2),
!strconcat(OpcodeStr, "sd\t{$src2, $dst|$dst, $src2}"),
[(set VR128:$dst, (F64Int VR128:$src1, VR128:$src2))]> {
let isCommutable = Commutable;
}
// Intrinsic operation, reg+mem.
def SDrm_Int : SDI<opc, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, sdmem:$src2),
!strconcat(OpcodeStr, "sd\t{$src2, $dst|$dst, $src2}"),
[(set VR128:$dst, (F64Int VR128:$src1,
sse_load_f64:$src2))]>;
// Vector intrinsic operation, reg+reg.
def PDrr_Int : PDI<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2),
!strconcat(OpcodeStr, "pd\t{$src2, $dst|$dst, $src2}"),
[(set VR128:$dst, (V2F64Int VR128:$src1, VR128:$src2))]> {
let isCommutable = Commutable;
}
// Vector intrinsic operation, reg+mem.
def PDrm_Int : PDI<opc, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, f128mem:$src2),
!strconcat(OpcodeStr, "pd\t{$src2, $dst|$dst, $src2}"),
[(set VR128:$dst, (V2F64Int VR128:$src1,
(memopv2f64 addr:$src2)))]>;
}
}
defm MAX : sse2_fp_binop_rm<0x5F, "max", X86fmax,
int_x86_sse2_max_sd, int_x86_sse2_max_pd>;
defm MIN : sse2_fp_binop_rm<0x5D, "min", X86fmin,
int_x86_sse2_min_sd, int_x86_sse2_min_pd>;
//===---------------------------------------------------------------------===//
// SSE packed FP Instructions
// Move Instructions
let neverHasSideEffects = 1 in
def MOVAPDrr : PDI<0x28, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"movapd\t{$src, $dst|$dst, $src}", []>;
let canFoldAsLoad = 1, isReMaterializable = 1, mayHaveSideEffects = 1 in
def MOVAPDrm : PDI<0x28, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
"movapd\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (alignedloadv2f64 addr:$src))]>;
def MOVAPDmr : PDI<0x29, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src),
"movapd\t{$src, $dst|$dst, $src}",
[(alignedstore (v2f64 VR128:$src), addr:$dst)]>;
let neverHasSideEffects = 1 in
def MOVUPDrr : PDI<0x10, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"movupd\t{$src, $dst|$dst, $src}", []>;
let canFoldAsLoad = 1 in
def MOVUPDrm : PDI<0x10, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
"movupd\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (loadv2f64 addr:$src))]>;
def MOVUPDmr : PDI<0x11, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src),
"movupd\t{$src, $dst|$dst, $src}",
[(store (v2f64 VR128:$src), addr:$dst)]>;
// Intrinsic forms of MOVUPD load and store
def MOVUPDrm_Int : PDI<0x10, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
"movupd\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_loadu_pd addr:$src))]>;
def MOVUPDmr_Int : PDI<0x11, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src),
"movupd\t{$src, $dst|$dst, $src}",
[(int_x86_sse2_storeu_pd addr:$dst, VR128:$src)]>;
let Constraints = "$src1 = $dst" in {
let AddedComplexity = 20 in {
def MOVLPDrm : PDI<0x12, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, f64mem:$src2),
"movlpd\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(v2f64 (movlp VR128:$src1,
(scalar_to_vector (loadf64 addr:$src2)))))]>;
def MOVHPDrm : PDI<0x16, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, f64mem:$src2),
"movhpd\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(v2f64 (movhp VR128:$src1,
(scalar_to_vector (loadf64 addr:$src2)))))]>;
} // AddedComplexity
} // Constraints = "$src1 = $dst"
def MOVLPDmr : PDI<0x13, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src),
"movlpd\t{$src, $dst|$dst, $src}",
[(store (f64 (vector_extract (v2f64 VR128:$src),
(iPTR 0))), addr:$dst)]>;
// v2f64 extract element 1 is always custom lowered to unpack high to low
// and extract element 0 so the non-store version isn't too horrible.
def MOVHPDmr : PDI<0x17, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src),
"movhpd\t{$src, $dst|$dst, $src}",
[(store (f64 (vector_extract
(v2f64 (unpckh VR128:$src, (undef))),
(iPTR 0))), addr:$dst)]>;
// SSE2 instructions without OpSize prefix
def Int_CVTDQ2PSrr : I<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"cvtdq2ps\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_cvtdq2ps VR128:$src))]>,
TB, Requires<[HasSSE2]>;
def Int_CVTDQ2PSrm : I<0x5B, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src),
"cvtdq2ps\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_cvtdq2ps
(bitconvert (memopv2i64 addr:$src))))]>,
TB, Requires<[HasSSE2]>;
// SSE2 instructions with XS prefix
def Int_CVTDQ2PDrr : I<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"cvtdq2pd\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_cvtdq2pd VR128:$src))]>,
XS, Requires<[HasSSE2]>;
def Int_CVTDQ2PDrm : I<0xE6, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src),
"cvtdq2pd\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_cvtdq2pd
(bitconvert (memopv2i64 addr:$src))))]>,
XS, Requires<[HasSSE2]>;
def Int_CVTPS2DQrr : PDI<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"cvtps2dq\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_cvtps2dq VR128:$src))]>;
def Int_CVTPS2DQrm : PDI<0x5B, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
"cvtps2dq\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_cvtps2dq
(memop addr:$src)))]>;
// SSE2 packed instructions with XS prefix
def Int_CVTTPS2DQrr : I<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"cvttps2dq\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_cvttps2dq VR128:$src))]>,
XS, Requires<[HasSSE2]>;
def Int_CVTTPS2DQrm : I<0x5B, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
"cvttps2dq\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_cvttps2dq
(memop addr:$src)))]>,
XS, Requires<[HasSSE2]>;
// SSE2 packed instructions with XD prefix
def Int_CVTPD2DQrr : I<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"cvtpd2dq\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_cvtpd2dq VR128:$src))]>,
XD, Requires<[HasSSE2]>;
def Int_CVTPD2DQrm : I<0xE6, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
"cvtpd2dq\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_cvtpd2dq
(memop addr:$src)))]>,
XD, Requires<[HasSSE2]>;
def Int_CVTTPD2DQrr : PDI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"cvttpd2dq\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_cvttpd2dq VR128:$src))]>;
def Int_CVTTPD2DQrm : PDI<0xE6, MRMSrcMem, (outs VR128:$dst),(ins f128mem:$src),
"cvttpd2dq\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_cvttpd2dq
(memop addr:$src)))]>;
// SSE2 instructions without OpSize prefix
def Int_CVTPS2PDrr : I<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"cvtps2pd\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_cvtps2pd VR128:$src))]>,
TB, Requires<[HasSSE2]>;
def Int_CVTPS2PDrm : I<0x5A, MRMSrcMem, (outs VR128:$dst), (ins f64mem:$src),
"cvtps2pd\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_cvtps2pd
(load addr:$src)))]>,
TB, Requires<[HasSSE2]>;
def Int_CVTPD2PSrr : PDI<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"cvtpd2ps\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_cvtpd2ps VR128:$src))]>;
def Int_CVTPD2PSrm : PDI<0x5A, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
"cvtpd2ps\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_cvtpd2ps
(memop addr:$src)))]>;
// Match intrinsics which expect XMM operand(s).
// Aliases for intrinsics
let Constraints = "$src1 = $dst" in {
def Int_CVTSI2SDrr: SDI<0x2A, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, GR32:$src2),
"cvtsi2sd\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst, (int_x86_sse2_cvtsi2sd VR128:$src1,
GR32:$src2))]>;
def Int_CVTSI2SDrm: SDI<0x2A, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, i32mem:$src2),
"cvtsi2sd\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst, (int_x86_sse2_cvtsi2sd VR128:$src1,
(loadi32 addr:$src2)))]>;
def Int_CVTSD2SSrr: SDI<0x5A, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
"cvtsd2ss\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst, (int_x86_sse2_cvtsd2ss VR128:$src1,
VR128:$src2))]>;
def Int_CVTSD2SSrm: SDI<0x5A, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, f64mem:$src2),
"cvtsd2ss\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst, (int_x86_sse2_cvtsd2ss VR128:$src1,
(load addr:$src2)))]>;
def Int_CVTSS2SDrr: I<0x5A, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
"cvtss2sd\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst, (int_x86_sse2_cvtss2sd VR128:$src1,
VR128:$src2))]>, XS,
Requires<[HasSSE2]>;
def Int_CVTSS2SDrm: I<0x5A, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, f32mem:$src2),
"cvtss2sd\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst, (int_x86_sse2_cvtss2sd VR128:$src1,
(load addr:$src2)))]>, XS,
Requires<[HasSSE2]>;
}
// Arithmetic
/// sse2_fp_unop_rm - SSE2 unops come in both scalar and vector forms.
///
/// In addition, we also have a special variant of the scalar form here to
/// represent the associated intrinsic operation. This form is unlike the
/// plain scalar form, in that it takes an entire vector (instead of a
/// scalar) and leaves the top elements undefined.
///
/// And, we have a special variant form for a full-vector intrinsic form.
///
/// These four forms can each have a reg or a mem operand, so there are a
/// total of eight "instructions".
///
multiclass sse2_fp_unop_rm<bits<8> opc, string OpcodeStr,
SDNode OpNode,
Intrinsic F64Int,
Intrinsic V2F64Int,
bit Commutable = 0> {
// Scalar operation, reg.
def SDr : SDI<opc, MRMSrcReg, (outs FR64:$dst), (ins FR64:$src),
!strconcat(OpcodeStr, "sd\t{$src, $dst|$dst, $src}"),
[(set FR64:$dst, (OpNode FR64:$src))]> {
let isCommutable = Commutable;
}
// Scalar operation, mem.
def SDm : SDI<opc, MRMSrcMem, (outs FR64:$dst), (ins f64mem:$src),
!strconcat(OpcodeStr, "sd\t{$src, $dst|$dst, $src}"),
[(set FR64:$dst, (OpNode (load addr:$src)))]>;
// Vector operation, reg.
def PDr : PDI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
!strconcat(OpcodeStr, "pd\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst, (v2f64 (OpNode VR128:$src)))]> {
let isCommutable = Commutable;
}
// Vector operation, mem.
def PDm : PDI<opc, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
!strconcat(OpcodeStr, "pd\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst, (OpNode (memopv2f64 addr:$src)))]>;
// Intrinsic operation, reg.
def SDr_Int : SDI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
!strconcat(OpcodeStr, "sd\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst, (F64Int VR128:$src))]> {
let isCommutable = Commutable;
}
// Intrinsic operation, mem.
def SDm_Int : SDI<opc, MRMSrcMem, (outs VR128:$dst), (ins sdmem:$src),
!strconcat(OpcodeStr, "sd\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst, (F64Int sse_load_f64:$src))]>;
// Vector intrinsic operation, reg
def PDr_Int : PDI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
!strconcat(OpcodeStr, "pd\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst, (V2F64Int VR128:$src))]> {
let isCommutable = Commutable;
}
// Vector intrinsic operation, mem
def PDm_Int : PDI<opc, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
!strconcat(OpcodeStr, "pd\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst, (V2F64Int (memopv2f64 addr:$src)))]>;
}
// Square root.
defm SQRT : sse2_fp_unop_rm<0x51, "sqrt", fsqrt,
int_x86_sse2_sqrt_sd, int_x86_sse2_sqrt_pd>;
// There is no f64 version of the reciprocal approximation instructions.
// Logical
let Constraints = "$src1 = $dst" in {
let isCommutable = 1 in {
def ANDPDrr : PDI<0x54, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
"andpd\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(and (bc_v2i64 (v2f64 VR128:$src1)),
(bc_v2i64 (v2f64 VR128:$src2))))]>;
def ORPDrr : PDI<0x56, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
"orpd\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(or (bc_v2i64 (v2f64 VR128:$src1)),
(bc_v2i64 (v2f64 VR128:$src2))))]>;
def XORPDrr : PDI<0x57, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
"xorpd\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(xor (bc_v2i64 (v2f64 VR128:$src1)),
(bc_v2i64 (v2f64 VR128:$src2))))]>;
}
def ANDPDrm : PDI<0x54, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, f128mem:$src2),
"andpd\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(and (bc_v2i64 (v2f64 VR128:$src1)),
(memopv2i64 addr:$src2)))]>;
def ORPDrm : PDI<0x56, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, f128mem:$src2),
"orpd\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(or (bc_v2i64 (v2f64 VR128:$src1)),
(memopv2i64 addr:$src2)))]>;
def XORPDrm : PDI<0x57, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, f128mem:$src2),
"xorpd\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(xor (bc_v2i64 (v2f64 VR128:$src1)),
(memopv2i64 addr:$src2)))]>;
def ANDNPDrr : PDI<0x55, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
"andnpd\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(and (vnot (bc_v2i64 (v2f64 VR128:$src1))),
(bc_v2i64 (v2f64 VR128:$src2))))]>;
def ANDNPDrm : PDI<0x55, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1,f128mem:$src2),
"andnpd\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(and (vnot (bc_v2i64 (v2f64 VR128:$src1))),
(memopv2i64 addr:$src2)))]>;
}
let Constraints = "$src1 = $dst" in {
def CMPPDrri : PDIi8<0xC2, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, VR128:$src, SSECC:$cc),
"cmp${cc}pd\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_cmp_pd VR128:$src1,
VR128:$src, imm:$cc))]>;
def CMPPDrmi : PDIi8<0xC2, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, f128mem:$src, SSECC:$cc),
"cmp${cc}pd\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_cmp_pd VR128:$src1,
(memop addr:$src), imm:$cc))]>;
}
def : Pat<(v2i64 (X86cmppd (v2f64 VR128:$src1), VR128:$src2, imm:$cc)),
(CMPPDrri VR128:$src1, VR128:$src2, imm:$cc)>;
def : Pat<(v2i64 (X86cmppd (v2f64 VR128:$src1), (memop addr:$src2), imm:$cc)),
(CMPPDrmi VR128:$src1, addr:$src2, imm:$cc)>;
// Shuffle and unpack instructions
let Constraints = "$src1 = $dst" in {
def SHUFPDrri : PDIi8<0xC6, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, VR128:$src2, i8imm:$src3),
"shufpd\t{$src3, $src2, $dst|$dst, $src2, $src3}",
[(set VR128:$dst,
(v2f64 (shufp:$src3 VR128:$src1, VR128:$src2)))]>;
def SHUFPDrmi : PDIi8<0xC6, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1,
f128mem:$src2, i8imm:$src3),
"shufpd\t{$src3, $src2, $dst|$dst, $src2, $src3}",
[(set VR128:$dst,
(v2f64 (shufp:$src3
VR128:$src1, (memopv2f64 addr:$src2))))]>;
let AddedComplexity = 10 in {
def UNPCKHPDrr : PDI<0x15, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
"unpckhpd\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(v2f64 (unpckh VR128:$src1, VR128:$src2)))]>;
def UNPCKHPDrm : PDI<0x15, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, f128mem:$src2),
"unpckhpd\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(v2f64 (unpckh VR128:$src1,
(memopv2f64 addr:$src2))))]>;
def UNPCKLPDrr : PDI<0x14, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
"unpcklpd\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(v2f64 (unpckl VR128:$src1, VR128:$src2)))]>;
def UNPCKLPDrm : PDI<0x14, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, f128mem:$src2),
"unpcklpd\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(unpckl VR128:$src1, (memopv2f64 addr:$src2)))]>;
} // AddedComplexity
} // Constraints = "$src1 = $dst"
//===---------------------------------------------------------------------===//
// SSE integer instructions
// Move Instructions
let neverHasSideEffects = 1 in
def MOVDQArr : PDI<0x6F, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"movdqa\t{$src, $dst|$dst, $src}", []>;
let canFoldAsLoad = 1, mayLoad = 1 in
def MOVDQArm : PDI<0x6F, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src),
"movdqa\t{$src, $dst|$dst, $src}",
[/*(set VR128:$dst, (alignedloadv2i64 addr:$src))*/]>;
let mayStore = 1 in
def MOVDQAmr : PDI<0x7F, MRMDestMem, (outs), (ins i128mem:$dst, VR128:$src),
"movdqa\t{$src, $dst|$dst, $src}",
[/*(alignedstore (v2i64 VR128:$src), addr:$dst)*/]>;
let canFoldAsLoad = 1, mayLoad = 1 in
def MOVDQUrm : I<0x6F, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src),
"movdqu\t{$src, $dst|$dst, $src}",
[/*(set VR128:$dst, (loadv2i64 addr:$src))*/]>,
XS, Requires<[HasSSE2]>;
let mayStore = 1 in
def MOVDQUmr : I<0x7F, MRMDestMem, (outs), (ins i128mem:$dst, VR128:$src),
"movdqu\t{$src, $dst|$dst, $src}",
[/*(store (v2i64 VR128:$src), addr:$dst)*/]>,
XS, Requires<[HasSSE2]>;
// Intrinsic forms of MOVDQU load and store
let canFoldAsLoad = 1 in
def MOVDQUrm_Int : I<0x6F, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src),
"movdqu\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_loadu_dq addr:$src))]>,
XS, Requires<[HasSSE2]>;
def MOVDQUmr_Int : I<0x7F, MRMDestMem, (outs), (ins i128mem:$dst, VR128:$src),
"movdqu\t{$src, $dst|$dst, $src}",
[(int_x86_sse2_storeu_dq addr:$dst, VR128:$src)]>,
XS, Requires<[HasSSE2]>;
let Constraints = "$src1 = $dst" in {
multiclass PDI_binop_rm_int<bits<8> opc, string OpcodeStr, Intrinsic IntId,
bit Commutable = 0> {
def rr : PDI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
[(set VR128:$dst, (IntId VR128:$src1, VR128:$src2))]> {
let isCommutable = Commutable;
}
def rm : PDI<opc, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, i128mem:$src2),
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
[(set VR128:$dst, (IntId VR128:$src1,
(bitconvert (memopv2i64 addr:$src2))))]>;
}
multiclass PDI_binop_rmi_int<bits<8> opc, bits<8> opc2, Format ImmForm,
string OpcodeStr,
Intrinsic IntId, Intrinsic IntId2> {
def rr : PDI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1,
VR128:$src2),
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
[(set VR128:$dst, (IntId VR128:$src1, VR128:$src2))]>;
def rm : PDI<opc, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1,
i128mem:$src2),
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
[(set VR128:$dst, (IntId VR128:$src1,
(bitconvert (memopv2i64 addr:$src2))))]>;
def ri : PDIi8<opc2, ImmForm, (outs VR128:$dst), (ins VR128:$src1,
i32i8imm:$src2),
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
[(set VR128:$dst, (IntId2 VR128:$src1, (i32 imm:$src2)))]>;
}
/// PDI_binop_rm - Simple SSE2 binary operator.
multiclass PDI_binop_rm<bits<8> opc, string OpcodeStr, SDNode OpNode,
ValueType OpVT, bit Commutable = 0> {
def rr : PDI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1,
VR128:$src2),
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
[(set VR128:$dst, (OpVT (OpNode VR128:$src1, VR128:$src2)))]> {
let isCommutable = Commutable;
}
def rm : PDI<opc, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1,
i128mem:$src2),
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
[(set VR128:$dst, (OpVT (OpNode VR128:$src1,
(bitconvert (memopv2i64 addr:$src2)))))]>;
}
/// PDI_binop_rm_v2i64 - Simple SSE2 binary operator whose type is v2i64.
///
/// FIXME: we could eliminate this and use PDI_binop_rm instead if tblgen knew
/// to collapse (bitconvert VT to VT) into its operand.
///
multiclass PDI_binop_rm_v2i64<bits<8> opc, string OpcodeStr, SDNode OpNode,
bit Commutable = 0> {
def rr : PDI<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2),
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
[(set VR128:$dst, (v2i64 (OpNode VR128:$src1, VR128:$src2)))]> {
let isCommutable = Commutable;
}
def rm : PDI<opc, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, i128mem:$src2),
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
[(set VR128:$dst, (OpNode VR128:$src1,
(memopv2i64 addr:$src2)))]>;
}
} // Constraints = "$src1 = $dst"
// 128-bit Integer Arithmetic
defm PADDB : PDI_binop_rm<0xFC, "paddb", add, v16i8, 1>;
defm PADDW : PDI_binop_rm<0xFD, "paddw", add, v8i16, 1>;
defm PADDD : PDI_binop_rm<0xFE, "paddd", add, v4i32, 1>;
defm PADDQ : PDI_binop_rm_v2i64<0xD4, "paddq", add, 1>;
defm PADDSB : PDI_binop_rm_int<0xEC, "paddsb" , int_x86_sse2_padds_b, 1>;
defm PADDSW : PDI_binop_rm_int<0xED, "paddsw" , int_x86_sse2_padds_w, 1>;
defm PADDUSB : PDI_binop_rm_int<0xDC, "paddusb", int_x86_sse2_paddus_b, 1>;
defm PADDUSW : PDI_binop_rm_int<0xDD, "paddusw", int_x86_sse2_paddus_w, 1>;
defm PSUBB : PDI_binop_rm<0xF8, "psubb", sub, v16i8>;
defm PSUBW : PDI_binop_rm<0xF9, "psubw", sub, v8i16>;
defm PSUBD : PDI_binop_rm<0xFA, "psubd", sub, v4i32>;
defm PSUBQ : PDI_binop_rm_v2i64<0xFB, "psubq", sub>;
defm PSUBSB : PDI_binop_rm_int<0xE8, "psubsb" , int_x86_sse2_psubs_b>;
defm PSUBSW : PDI_binop_rm_int<0xE9, "psubsw" , int_x86_sse2_psubs_w>;
defm PSUBUSB : PDI_binop_rm_int<0xD8, "psubusb", int_x86_sse2_psubus_b>;
defm PSUBUSW : PDI_binop_rm_int<0xD9, "psubusw", int_x86_sse2_psubus_w>;
defm PMULLW : PDI_binop_rm<0xD5, "pmullw", mul, v8i16, 1>;
defm PMULHUW : PDI_binop_rm_int<0xE4, "pmulhuw", int_x86_sse2_pmulhu_w, 1>;
defm PMULHW : PDI_binop_rm_int<0xE5, "pmulhw" , int_x86_sse2_pmulh_w , 1>;
defm PMULUDQ : PDI_binop_rm_int<0xF4, "pmuludq", int_x86_sse2_pmulu_dq, 1>;
defm PMADDWD : PDI_binop_rm_int<0xF5, "pmaddwd", int_x86_sse2_pmadd_wd, 1>;
defm PAVGB : PDI_binop_rm_int<0xE0, "pavgb", int_x86_sse2_pavg_b, 1>;
defm PAVGW : PDI_binop_rm_int<0xE3, "pavgw", int_x86_sse2_pavg_w, 1>;
defm PMINUB : PDI_binop_rm_int<0xDA, "pminub", int_x86_sse2_pminu_b, 1>;
defm PMINSW : PDI_binop_rm_int<0xEA, "pminsw", int_x86_sse2_pmins_w, 1>;
defm PMAXUB : PDI_binop_rm_int<0xDE, "pmaxub", int_x86_sse2_pmaxu_b, 1>;
defm PMAXSW : PDI_binop_rm_int<0xEE, "pmaxsw", int_x86_sse2_pmaxs_w, 1>;
defm PSADBW : PDI_binop_rm_int<0xF6, "psadbw", int_x86_sse2_psad_bw, 1>;
defm PSLLW : PDI_binop_rmi_int<0xF1, 0x71, MRM6r, "psllw",
int_x86_sse2_psll_w, int_x86_sse2_pslli_w>;
defm PSLLD : PDI_binop_rmi_int<0xF2, 0x72, MRM6r, "pslld",
int_x86_sse2_psll_d, int_x86_sse2_pslli_d>;
defm PSLLQ : PDI_binop_rmi_int<0xF3, 0x73, MRM6r, "psllq",
int_x86_sse2_psll_q, int_x86_sse2_pslli_q>;
defm PSRLW : PDI_binop_rmi_int<0xD1, 0x71, MRM2r, "psrlw",
int_x86_sse2_psrl_w, int_x86_sse2_psrli_w>;
defm PSRLD : PDI_binop_rmi_int<0xD2, 0x72, MRM2r, "psrld",
int_x86_sse2_psrl_d, int_x86_sse2_psrli_d>;
defm PSRLQ : PDI_binop_rmi_int<0xD3, 0x73, MRM2r, "psrlq",
int_x86_sse2_psrl_q, int_x86_sse2_psrli_q>;
defm PSRAW : PDI_binop_rmi_int<0xE1, 0x71, MRM4r, "psraw",
int_x86_sse2_psra_w, int_x86_sse2_psrai_w>;
defm PSRAD : PDI_binop_rmi_int<0xE2, 0x72, MRM4r, "psrad",
int_x86_sse2_psra_d, int_x86_sse2_psrai_d>;
// 128-bit logical shifts.
let Constraints = "$src1 = $dst", neverHasSideEffects = 1 in {
def PSLLDQri : PDIi8<0x73, MRM7r,
(outs VR128:$dst), (ins VR128:$src1, i32i8imm:$src2),
"pslldq\t{$src2, $dst|$dst, $src2}", []>;
def PSRLDQri : PDIi8<0x73, MRM3r,
(outs VR128:$dst), (ins VR128:$src1, i32i8imm:$src2),
"psrldq\t{$src2, $dst|$dst, $src2}", []>;
// PSRADQri doesn't exist in SSE[1-3].
}
let Predicates = [HasSSE2] in {
def : Pat<(int_x86_sse2_psll_dq VR128:$src1, imm:$src2),
(v2i64 (PSLLDQri VR128:$src1, (PSxLDQ_imm imm:$src2)))>;
def : Pat<(int_x86_sse2_psrl_dq VR128:$src1, imm:$src2),
(v2i64 (PSRLDQri VR128:$src1, (PSxLDQ_imm imm:$src2)))>;
def : Pat<(int_x86_sse2_psll_dq_bs VR128:$src1, imm:$src2),
(v2i64 (PSLLDQri VR128:$src1, imm:$src2))>;
def : Pat<(int_x86_sse2_psrl_dq_bs VR128:$src1, imm:$src2),
(v2i64 (PSRLDQri VR128:$src1, imm:$src2))>;
def : Pat<(v2f64 (X86fsrl VR128:$src1, i32immSExt8:$src2)),
(v2f64 (PSRLDQri VR128:$src1, (PSxLDQ_imm imm:$src2)))>;
// Shift up / down and insert zero's.
def : Pat<(v2i64 (X86vshl VR128:$src, (i8 imm:$amt))),
(v2i64 (PSLLDQri VR128:$src, (PSxLDQ_imm imm:$amt)))>;
def : Pat<(v2i64 (X86vshr VR128:$src, (i8 imm:$amt))),
(v2i64 (PSRLDQri VR128:$src, (PSxLDQ_imm imm:$amt)))>;
}
// Logical
defm PAND : PDI_binop_rm_v2i64<0xDB, "pand", and, 1>;
defm POR : PDI_binop_rm_v2i64<0xEB, "por" , or , 1>;
defm PXOR : PDI_binop_rm_v2i64<0xEF, "pxor", xor, 1>;
let Constraints = "$src1 = $dst" in {
def PANDNrr : PDI<0xDF, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
"pandn\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst, (v2i64 (and (vnot VR128:$src1),
VR128:$src2)))]>;
def PANDNrm : PDI<0xDF, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, i128mem:$src2),
"pandn\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst, (v2i64 (and (vnot VR128:$src1),
(memopv2i64 addr:$src2))))]>;
}
// SSE2 Integer comparison
defm PCMPEQB : PDI_binop_rm_int<0x74, "pcmpeqb", int_x86_sse2_pcmpeq_b>;
defm PCMPEQW : PDI_binop_rm_int<0x75, "pcmpeqw", int_x86_sse2_pcmpeq_w>;
defm PCMPEQD : PDI_binop_rm_int<0x76, "pcmpeqd", int_x86_sse2_pcmpeq_d>;
defm PCMPGTB : PDI_binop_rm_int<0x64, "pcmpgtb", int_x86_sse2_pcmpgt_b>;
defm PCMPGTW : PDI_binop_rm_int<0x65, "pcmpgtw", int_x86_sse2_pcmpgt_w>;
defm PCMPGTD : PDI_binop_rm_int<0x66, "pcmpgtd", int_x86_sse2_pcmpgt_d>;
def : Pat<(v16i8 (X86pcmpeqb VR128:$src1, VR128:$src2)),
(PCMPEQBrr VR128:$src1, VR128:$src2)>;
def : Pat<(v16i8 (X86pcmpeqb VR128:$src1, (memop addr:$src2))),
(PCMPEQBrm VR128:$src1, addr:$src2)>;
def : Pat<(v8i16 (X86pcmpeqw VR128:$src1, VR128:$src2)),
(PCMPEQWrr VR128:$src1, VR128:$src2)>;
def : Pat<(v8i16 (X86pcmpeqw VR128:$src1, (memop addr:$src2))),
(PCMPEQWrm VR128:$src1, addr:$src2)>;
def : Pat<(v4i32 (X86pcmpeqd VR128:$src1, VR128:$src2)),
(PCMPEQDrr VR128:$src1, VR128:$src2)>;
def : Pat<(v4i32 (X86pcmpeqd VR128:$src1, (memop addr:$src2))),
(PCMPEQDrm VR128:$src1, addr:$src2)>;
def : Pat<(v16i8 (X86pcmpgtb VR128:$src1, VR128:$src2)),
(PCMPGTBrr VR128:$src1, VR128:$src2)>;
def : Pat<(v16i8 (X86pcmpgtb VR128:$src1, (memop addr:$src2))),
(PCMPGTBrm VR128:$src1, addr:$src2)>;
def : Pat<(v8i16 (X86pcmpgtw VR128:$src1, VR128:$src2)),
(PCMPGTWrr VR128:$src1, VR128:$src2)>;
def : Pat<(v8i16 (X86pcmpgtw VR128:$src1, (memop addr:$src2))),
(PCMPGTWrm VR128:$src1, addr:$src2)>;
def : Pat<(v4i32 (X86pcmpgtd VR128:$src1, VR128:$src2)),
(PCMPGTDrr VR128:$src1, VR128:$src2)>;
def : Pat<(v4i32 (X86pcmpgtd VR128:$src1, (memop addr:$src2))),
(PCMPGTDrm VR128:$src1, addr:$src2)>;
// Pack instructions
defm PACKSSWB : PDI_binop_rm_int<0x63, "packsswb", int_x86_sse2_packsswb_128>;
defm PACKSSDW : PDI_binop_rm_int<0x6B, "packssdw", int_x86_sse2_packssdw_128>;
defm PACKUSWB : PDI_binop_rm_int<0x67, "packuswb", int_x86_sse2_packuswb_128>;
// Shuffle and unpack instructions
def PSHUFDri : PDIi8<0x70, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, i8imm:$src2),
"pshufd\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set VR128:$dst, (v4i32 (pshufd:$src2
VR128:$src1, (undef))))]>;
def PSHUFDmi : PDIi8<0x70, MRMSrcMem,
(outs VR128:$dst), (ins i128mem:$src1, i8imm:$src2),
"pshufd\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set VR128:$dst, (v4i32 (pshufd:$src2
(bc_v4i32(memopv2i64 addr:$src1)),
(undef))))]>;
// SSE2 with ImmT == Imm8 and XS prefix.
def PSHUFHWri : Ii8<0x70, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, i8imm:$src2),
"pshufhw\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set VR128:$dst, (v8i16 (pshufhw:$src2 VR128:$src1,
(undef))))]>,
XS, Requires<[HasSSE2]>;
def PSHUFHWmi : Ii8<0x70, MRMSrcMem,
(outs VR128:$dst), (ins i128mem:$src1, i8imm:$src2),
"pshufhw\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set VR128:$dst, (v8i16 (pshufhw:$src2
(bc_v8i16 (memopv2i64 addr:$src1)),
(undef))))]>,
XS, Requires<[HasSSE2]>;
// SSE2 with ImmT == Imm8 and XD prefix.
def PSHUFLWri : Ii8<0x70, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, i8imm:$src2),
"pshuflw\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set VR128:$dst, (v8i16 (pshuflw:$src2 VR128:$src1,
(undef))))]>,
XD, Requires<[HasSSE2]>;
def PSHUFLWmi : Ii8<0x70, MRMSrcMem,
(outs VR128:$dst), (ins i128mem:$src1, i8imm:$src2),
"pshuflw\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set VR128:$dst, (v8i16 (pshuflw:$src2
(bc_v8i16 (memopv2i64 addr:$src1)),
(undef))))]>,
XD, Requires<[HasSSE2]>;
let Constraints = "$src1 = $dst" in {
def PUNPCKLBWrr : PDI<0x60, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
"punpcklbw\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(v16i8 (unpckl VR128:$src1, VR128:$src2)))]>;
def PUNPCKLBWrm : PDI<0x60, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, i128mem:$src2),
"punpcklbw\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(unpckl VR128:$src1,
(bc_v16i8 (memopv2i64 addr:$src2))))]>;
def PUNPCKLWDrr : PDI<0x61, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
"punpcklwd\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(v8i16 (unpckl VR128:$src1, VR128:$src2)))]>;
def PUNPCKLWDrm : PDI<0x61, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, i128mem:$src2),
"punpcklwd\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(unpckl VR128:$src1,
(bc_v8i16 (memopv2i64 addr:$src2))))]>;
def PUNPCKLDQrr : PDI<0x62, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
"punpckldq\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(v4i32 (unpckl VR128:$src1, VR128:$src2)))]>;
def PUNPCKLDQrm : PDI<0x62, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, i128mem:$src2),
"punpckldq\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(unpckl VR128:$src1,
(bc_v4i32 (memopv2i64 addr:$src2))))]>;
def PUNPCKLQDQrr : PDI<0x6C, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
"punpcklqdq\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(v2i64 (unpckl VR128:$src1, VR128:$src2)))]>;
def PUNPCKLQDQrm : PDI<0x6C, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, i128mem:$src2),
"punpcklqdq\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(v2i64 (unpckl VR128:$src1,
(memopv2i64 addr:$src2))))]>;
def PUNPCKHBWrr : PDI<0x68, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
"punpckhbw\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(v16i8 (unpckh VR128:$src1, VR128:$src2)))]>;
def PUNPCKHBWrm : PDI<0x68, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, i128mem:$src2),
"punpckhbw\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(unpckh VR128:$src1,
(bc_v16i8 (memopv2i64 addr:$src2))))]>;
def PUNPCKHWDrr : PDI<0x69, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
"punpckhwd\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(v8i16 (unpckh VR128:$src1, VR128:$src2)))]>;
def PUNPCKHWDrm : PDI<0x69, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, i128mem:$src2),
"punpckhwd\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(unpckh VR128:$src1,
(bc_v8i16 (memopv2i64 addr:$src2))))]>;
def PUNPCKHDQrr : PDI<0x6A, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
"punpckhdq\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(v4i32 (unpckh VR128:$src1, VR128:$src2)))]>;
def PUNPCKHDQrm : PDI<0x6A, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, i128mem:$src2),
"punpckhdq\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(unpckh VR128:$src1,
(bc_v4i32 (memopv2i64 addr:$src2))))]>;
def PUNPCKHQDQrr : PDI<0x6D, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
"punpckhqdq\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(v2i64 (unpckh VR128:$src1, VR128:$src2)))]>;
def PUNPCKHQDQrm : PDI<0x6D, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, i128mem:$src2),
"punpckhqdq\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(v2i64 (unpckh VR128:$src1,
(memopv2i64 addr:$src2))))]>;
}
// Extract / Insert
def PEXTRWri : PDIi8<0xC5, MRMSrcReg,
(outs GR32:$dst), (ins VR128:$src1, i32i8imm:$src2),
"pextrw\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set GR32:$dst, (X86pextrw (v8i16 VR128:$src1),
imm:$src2))]>;
let Constraints = "$src1 = $dst" in {
def PINSRWrri : PDIi8<0xC4, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1,
GR32:$src2, i32i8imm:$src3),
"pinsrw\t{$src3, $src2, $dst|$dst, $src2, $src3}",
[(set VR128:$dst,
(X86pinsrw VR128:$src1, GR32:$src2, imm:$src3))]>;
def PINSRWrmi : PDIi8<0xC4, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1,
i16mem:$src2, i32i8imm:$src3),
"pinsrw\t{$src3, $src2, $dst|$dst, $src2, $src3}",
[(set VR128:$dst,
(X86pinsrw VR128:$src1, (extloadi16 addr:$src2),
imm:$src3))]>;
}
// Mask creation
def PMOVMSKBrr : PDI<0xD7, MRMSrcReg, (outs GR32:$dst), (ins VR128:$src),
"pmovmskb\t{$src, $dst|$dst, $src}",
[(set GR32:$dst, (int_x86_sse2_pmovmskb_128 VR128:$src))]>;
// Conditional store
let Uses = [EDI] in
def MASKMOVDQU : PDI<0xF7, MRMSrcReg, (outs), (ins VR128:$src, VR128:$mask),
"maskmovdqu\t{$mask, $src|$src, $mask}",
[(int_x86_sse2_maskmov_dqu VR128:$src, VR128:$mask, EDI)]>;
let Uses = [RDI] in
def MASKMOVDQU64 : PDI<0xF7, MRMSrcReg, (outs), (ins VR128:$src, VR128:$mask),
"maskmovdqu\t{$mask, $src|$src, $mask}",
[(int_x86_sse2_maskmov_dqu VR128:$src, VR128:$mask, RDI)]>;
// Non-temporal stores
def MOVNTPDmr : PDI<0x2B, MRMDestMem, (outs), (ins i128mem:$dst, VR128:$src),
"movntpd\t{$src, $dst|$dst, $src}",
[(int_x86_sse2_movnt_pd addr:$dst, VR128:$src)]>;
def MOVNTDQmr : PDI<0xE7, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src),
"movntdq\t{$src, $dst|$dst, $src}",
[(int_x86_sse2_movnt_dq addr:$dst, VR128:$src)]>;
def MOVNTImr : I<0xC3, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src),
"movnti\t{$src, $dst|$dst, $src}",
[(int_x86_sse2_movnt_i addr:$dst, GR32:$src)]>,
TB, Requires<[HasSSE2]>;
// Flush cache
def CLFLUSH : I<0xAE, MRM7m, (outs), (ins i8mem:$src),
"clflush\t$src", [(int_x86_sse2_clflush addr:$src)]>,
TB, Requires<[HasSSE2]>;
// Load, store, and memory fence
def LFENCE : I<0xAE, MRM5r, (outs), (ins),
"lfence", [(int_x86_sse2_lfence)]>, TB, Requires<[HasSSE2]>;
def MFENCE : I<0xAE, MRM6r, (outs), (ins),
"mfence", [(int_x86_sse2_mfence)]>, TB, Requires<[HasSSE2]>;
//TODO: custom lower this so as to never even generate the noop
def : Pat<(membarrier (i8 imm:$ll), (i8 imm:$ls), (i8 imm:$sl), (i8 imm:$ss),
(i8 0)), (NOOP)>;
def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
def : Pat<(membarrier (i8 imm:$ll), (i8 imm:$ls), (i8 imm:$sl), (i8 imm:$ss),
(i8 1)), (MFENCE)>;
// Alias instructions that map zero vector to pxor / xorp* for sse.
// We set canFoldAsLoad because this can be converted to a constant-pool
// load of an all-ones value if folding it would be beneficial.
let isReMaterializable = 1, isAsCheapAsAMove = 1, canFoldAsLoad = 1,
isCodeGenOnly = 1 in
def V_SETALLONES : PDI<0x76, MRMInitReg, (outs VR128:$dst), (ins),
"pcmpeqd\t$dst, $dst",
[(set VR128:$dst, (v4i32 immAllOnesV))]>;
// FR64 to 128-bit vector conversion.
let isAsCheapAsAMove = 1 in
def MOVSD2PDrr : SDI<0x10, MRMSrcReg, (outs VR128:$dst), (ins FR64:$src),
"movsd\t{$src, $dst|$dst, $src}",
[(set VR128:$dst,
(v2f64 (scalar_to_vector FR64:$src)))]>;
def MOVSD2PDrm : SDI<0x10, MRMSrcMem, (outs VR128:$dst), (ins f64mem:$src),
"movsd\t{$src, $dst|$dst, $src}",
[(set VR128:$dst,
(v2f64 (scalar_to_vector (loadf64 addr:$src))))]>;
def MOVDI2PDIrr : PDI<0x6E, MRMSrcReg, (outs VR128:$dst), (ins GR32:$src),
"movd\t{$src, $dst|$dst, $src}",
[(set VR128:$dst,
(v4i32 (scalar_to_vector GR32:$src)))]>;
def MOVDI2PDIrm : PDI<0x6E, MRMSrcMem, (outs VR128:$dst), (ins i32mem:$src),
"movd\t{$src, $dst|$dst, $src}",
[(set VR128:$dst,
(v4i32 (scalar_to_vector (loadi32 addr:$src))))]>;
def MOVDI2SSrr : PDI<0x6E, MRMSrcReg, (outs FR32:$dst), (ins GR32:$src),
"movd\t{$src, $dst|$dst, $src}",
[(set FR32:$dst, (bitconvert GR32:$src))]>;
def MOVDI2SSrm : PDI<0x6E, MRMSrcMem, (outs FR32:$dst), (ins i32mem:$src),
"movd\t{$src, $dst|$dst, $src}",
[(set FR32:$dst, (bitconvert (loadi32 addr:$src)))]>;
// SSE2 instructions with XS prefix
def MOVQI2PQIrm : I<0x7E, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src),
"movq\t{$src, $dst|$dst, $src}",
[(set VR128:$dst,
(v2i64 (scalar_to_vector (loadi64 addr:$src))))]>, XS,
Requires<[HasSSE2]>;
def MOVPQI2QImr : PDI<0xD6, MRMDestMem, (outs), (ins i64mem:$dst, VR128:$src),
"movq\t{$src, $dst|$dst, $src}",
[(store (i64 (vector_extract (v2i64 VR128:$src),
(iPTR 0))), addr:$dst)]>;
// FIXME: may not be able to eliminate this movss with coalescing the src and
// dest register classes are different. We really want to write this pattern
// like this:
// def : Pat<(f32 (vector_extract (v4f32 VR128:$src), (iPTR 0))),
// (f32 FR32:$src)>;
let isAsCheapAsAMove = 1 in
def MOVPD2SDrr : SDI<0x10, MRMSrcReg, (outs FR64:$dst), (ins VR128:$src),
"movsd\t{$src, $dst|$dst, $src}",
[(set FR64:$dst, (vector_extract (v2f64 VR128:$src),
(iPTR 0)))]>;
def MOVPD2SDmr : SDI<0x11, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src),
"movsd\t{$src, $dst|$dst, $src}",
[(store (f64 (vector_extract (v2f64 VR128:$src),
(iPTR 0))), addr:$dst)]>;
def MOVPDI2DIrr : PDI<0x7E, MRMDestReg, (outs GR32:$dst), (ins VR128:$src),
"movd\t{$src, $dst|$dst, $src}",
[(set GR32:$dst, (vector_extract (v4i32 VR128:$src),
(iPTR 0)))]>;
def MOVPDI2DImr : PDI<0x7E, MRMDestMem, (outs), (ins i32mem:$dst, VR128:$src),
"movd\t{$src, $dst|$dst, $src}",
[(store (i32 (vector_extract (v4i32 VR128:$src),
(iPTR 0))), addr:$dst)]>;
def MOVSS2DIrr : PDI<0x7E, MRMDestReg, (outs GR32:$dst), (ins FR32:$src),
"movd\t{$src, $dst|$dst, $src}",
[(set GR32:$dst, (bitconvert FR32:$src))]>;
def MOVSS2DImr : PDI<0x7E, MRMDestMem, (outs), (ins i32mem:$dst, FR32:$src),
"movd\t{$src, $dst|$dst, $src}",
[(store (i32 (bitconvert FR32:$src)), addr:$dst)]>;
// Move to lower bits of a VR128, leaving upper bits alone.
// Three operand (but two address) aliases.
let Constraints = "$src1 = $dst" in {
let neverHasSideEffects = 1 in
def MOVLSD2PDrr : SDI<0x10, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, FR64:$src2),
"movsd\t{$src2, $dst|$dst, $src2}", []>;
let AddedComplexity = 15 in
def MOVLPDrr : SDI<0x10, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
"movsd\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(v2f64 (movl VR128:$src1, VR128:$src2)))]>;
}
// Store / copy lower 64-bits of a XMM register.
def MOVLQ128mr : PDI<0xD6, MRMDestMem, (outs), (ins i64mem:$dst, VR128:$src),
"movq\t{$src, $dst|$dst, $src}",
[(int_x86_sse2_storel_dq addr:$dst, VR128:$src)]>;
// Move to lower bits of a VR128 and zeroing upper bits.
// Loading from memory automatically zeroing upper bits.
let AddedComplexity = 20 in {
def MOVZSD2PDrm : SDI<0x10, MRMSrcMem, (outs VR128:$dst), (ins f64mem:$src),
"movsd\t{$src, $dst|$dst, $src}",
[(set VR128:$dst,
(v2f64 (X86vzmovl (v2f64 (scalar_to_vector
(loadf64 addr:$src))))))]>;
def : Pat<(v2f64 (X86vzmovl (loadv2f64 addr:$src))),
(MOVZSD2PDrm addr:$src)>;
def : Pat<(v2f64 (X86vzmovl (bc_v2f64 (loadv4f32 addr:$src)))),
(MOVZSD2PDrm addr:$src)>;
def : Pat<(v2f64 (X86vzload addr:$src)), (MOVZSD2PDrm addr:$src)>;
}
// movd / movq to XMM register zero-extends
let AddedComplexity = 15 in {
def MOVZDI2PDIrr : PDI<0x6E, MRMSrcReg, (outs VR128:$dst), (ins GR32:$src),
"movd\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (v4i32 (X86vzmovl
(v4i32 (scalar_to_vector GR32:$src)))))]>;
// This is X86-64 only.
def MOVZQI2PQIrr : RPDI<0x6E, MRMSrcReg, (outs VR128:$dst), (ins GR64:$src),
"mov{d|q}\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (v2i64 (X86vzmovl
(v2i64 (scalar_to_vector GR64:$src)))))]>;
}
let AddedComplexity = 20 in {
def MOVZDI2PDIrm : PDI<0x6E, MRMSrcMem, (outs VR128:$dst), (ins i32mem:$src),
"movd\t{$src, $dst|$dst, $src}",
[(set VR128:$dst,
(v4i32 (X86vzmovl (v4i32 (scalar_to_vector
(loadi32 addr:$src))))))]>;
def : Pat<(v4i32 (X86vzmovl (loadv4i32 addr:$src))),
(MOVZDI2PDIrm addr:$src)>;
def : Pat<(v4i32 (X86vzmovl (bc_v4i32 (loadv4f32 addr:$src)))),
(MOVZDI2PDIrm addr:$src)>;
def : Pat<(v4i32 (X86vzmovl (bc_v4i32 (loadv2i64 addr:$src)))),
(MOVZDI2PDIrm addr:$src)>;
def MOVZQI2PQIrm : I<0x7E, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src),
"movq\t{$src, $dst|$dst, $src}",
[(set VR128:$dst,
(v2i64 (X86vzmovl (v2i64 (scalar_to_vector
(loadi64 addr:$src))))))]>, XS,
Requires<[HasSSE2]>;
def : Pat<(v2i64 (X86vzmovl (loadv2i64 addr:$src))),
(MOVZQI2PQIrm addr:$src)>;
def : Pat<(v2i64 (X86vzmovl (bc_v2i64 (loadv4f32 addr:$src)))),
(MOVZQI2PQIrm addr:$src)>;
def : Pat<(v2i64 (X86vzload addr:$src)), (MOVZQI2PQIrm addr:$src)>;
}
// Moving from XMM to XMM and clear upper 64 bits. Note, there is a bug in
// IA32 document. movq xmm1, xmm2 does clear the high bits.
let AddedComplexity = 15 in
def MOVZPQILo2PQIrr : I<0x7E, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"movq\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (v2i64 (X86vzmovl (v2i64 VR128:$src))))]>,
XS, Requires<[HasSSE2]>;
let AddedComplexity = 20 in {
def MOVZPQILo2PQIrm : I<0x7E, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src),
"movq\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (v2i64 (X86vzmovl
(loadv2i64 addr:$src))))]>,
XS, Requires<[HasSSE2]>;
def : Pat<(v2i64 (X86vzmovl (bc_v2i64 (loadv4i32 addr:$src)))),
(MOVZPQILo2PQIrm addr:$src)>;
}
//===---------------------------------------------------------------------===//
// SSE3 Instructions
//===---------------------------------------------------------------------===//
// Move Instructions
def MOVSHDUPrr : S3SI<0x16, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"movshdup\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (v4f32 (movshdup
VR128:$src, (undef))))]>;
def MOVSHDUPrm : S3SI<0x16, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
"movshdup\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (movshdup
(memopv4f32 addr:$src), (undef)))]>;
def MOVSLDUPrr : S3SI<0x12, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"movsldup\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (v4f32 (movsldup
VR128:$src, (undef))))]>;
def MOVSLDUPrm : S3SI<0x12, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
"movsldup\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (movsldup
(memopv4f32 addr:$src), (undef)))]>;
def MOVDDUPrr : S3DI<0x12, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"movddup\t{$src, $dst|$dst, $src}",
[(set VR128:$dst,(v2f64 (movddup VR128:$src, (undef))))]>;
def MOVDDUPrm : S3DI<0x12, MRMSrcMem, (outs VR128:$dst), (ins f64mem:$src),
"movddup\t{$src, $dst|$dst, $src}",
[(set VR128:$dst,
(v2f64 (movddup (scalar_to_vector (loadf64 addr:$src)),
(undef))))]>;
def : Pat<(movddup (bc_v2f64 (v2i64 (scalar_to_vector (loadi64 addr:$src)))),
(undef)),
(MOVDDUPrm addr:$src)>, Requires<[HasSSE3]>;
let AddedComplexity = 5 in {
def : Pat<(movddup (memopv2f64 addr:$src), (undef)),
(MOVDDUPrm addr:$src)>, Requires<[HasSSE3]>;
def : Pat<(movddup (bc_v4f32 (memopv2f64 addr:$src)), (undef)),
(MOVDDUPrm addr:$src)>, Requires<[HasSSE3]>;
def : Pat<(movddup (memopv2i64 addr:$src), (undef)),
(MOVDDUPrm addr:$src)>, Requires<[HasSSE3]>;
def : Pat<(movddup (bc_v4i32 (memopv2i64 addr:$src)), (undef)),
(MOVDDUPrm addr:$src)>, Requires<[HasSSE3]>;
}
// Arithmetic
let Constraints = "$src1 = $dst" in {
def ADDSUBPSrr : S3DI<0xD0, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
"addsubps\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst, (int_x86_sse3_addsub_ps VR128:$src1,
VR128:$src2))]>;
def ADDSUBPSrm : S3DI<0xD0, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, f128mem:$src2),
"addsubps\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst, (int_x86_sse3_addsub_ps VR128:$src1,
(memop addr:$src2)))]>;
def ADDSUBPDrr : S3I<0xD0, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
"addsubpd\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst, (int_x86_sse3_addsub_pd VR128:$src1,
VR128:$src2))]>;
def ADDSUBPDrm : S3I<0xD0, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, f128mem:$src2),
"addsubpd\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst, (int_x86_sse3_addsub_pd VR128:$src1,
(memop addr:$src2)))]>;
}
def LDDQUrm : S3DI<0xF0, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src),
"lddqu\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse3_ldu_dq addr:$src))]>;
// Horizontal ops
class S3D_Intrr<bits<8> o, string OpcodeStr, Intrinsic IntId>
: S3DI<o, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
[(set VR128:$dst, (v4f32 (IntId VR128:$src1, VR128:$src2)))]>;
class S3D_Intrm<bits<8> o, string OpcodeStr, Intrinsic IntId>
: S3DI<o, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, f128mem:$src2),
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
[(set VR128:$dst, (v4f32 (IntId VR128:$src1, (memop addr:$src2))))]>;
class S3_Intrr<bits<8> o, string OpcodeStr, Intrinsic IntId>
: S3I<o, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
[(set VR128:$dst, (v2f64 (IntId VR128:$src1, VR128:$src2)))]>;
class S3_Intrm<bits<8> o, string OpcodeStr, Intrinsic IntId>
: S3I<o, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, f128mem:$src2),
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
[(set VR128:$dst, (v2f64 (IntId VR128:$src1, (memopv2f64 addr:$src2))))]>;
let Constraints = "$src1 = $dst" in {
def HADDPSrr : S3D_Intrr<0x7C, "haddps", int_x86_sse3_hadd_ps>;
def HADDPSrm : S3D_Intrm<0x7C, "haddps", int_x86_sse3_hadd_ps>;
def HADDPDrr : S3_Intrr <0x7C, "haddpd", int_x86_sse3_hadd_pd>;
def HADDPDrm : S3_Intrm <0x7C, "haddpd", int_x86_sse3_hadd_pd>;
def HSUBPSrr : S3D_Intrr<0x7D, "hsubps", int_x86_sse3_hsub_ps>;
def HSUBPSrm : S3D_Intrm<0x7D, "hsubps", int_x86_sse3_hsub_ps>;
def HSUBPDrr : S3_Intrr <0x7D, "hsubpd", int_x86_sse3_hsub_pd>;
def HSUBPDrm : S3_Intrm <0x7D, "hsubpd", int_x86_sse3_hsub_pd>;
}
// Thread synchronization
def MONITOR : I<0x01, MRM1r, (outs), (ins), "monitor",
[(int_x86_sse3_monitor EAX, ECX, EDX)]>,TB, Requires<[HasSSE3]>;
def MWAIT : I<0x01, MRM1r, (outs), (ins), "mwait",
[(int_x86_sse3_mwait ECX, EAX)]>, TB, Requires<[HasSSE3]>;
// vector_shuffle v1, <undef> <1, 1, 3, 3>
let AddedComplexity = 15 in
def : Pat<(v4i32 (movshdup VR128:$src, (undef))),
(MOVSHDUPrr VR128:$src)>, Requires<[HasSSE3]>;
let AddedComplexity = 20 in
def : Pat<(v4i32 (movshdup (bc_v4i32 (memopv2i64 addr:$src)), (undef))),
(MOVSHDUPrm addr:$src)>, Requires<[HasSSE3]>;
// vector_shuffle v1, <undef> <0, 0, 2, 2>
let AddedComplexity = 15 in
def : Pat<(v4i32 (movsldup VR128:$src, (undef))),
(MOVSLDUPrr VR128:$src)>, Requires<[HasSSE3]>;
let AddedComplexity = 20 in
def : Pat<(v4i32 (movsldup (bc_v4i32 (memopv2i64 addr:$src)), (undef))),
(MOVSLDUPrm addr:$src)>, Requires<[HasSSE3]>;
//===---------------------------------------------------------------------===//
// SSSE3 Instructions
//===---------------------------------------------------------------------===//
/// SS3I_unop_rm_int_8 - Simple SSSE3 unary operator whose type is v*i8.
multiclass SS3I_unop_rm_int_8<bits<8> opc, string OpcodeStr,
Intrinsic IntId64, Intrinsic IntId128> {
def rr64 : SS38I<opc, MRMSrcReg, (outs VR64:$dst), (ins VR64:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set VR64:$dst, (IntId64 VR64:$src))]>;
def rm64 : SS38I<opc, MRMSrcMem, (outs VR64:$dst), (ins i64mem:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set VR64:$dst,
(IntId64 (bitconvert (memopv8i8 addr:$src))))]>;
def rr128 : SS38I<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst, (IntId128 VR128:$src))]>,
OpSize;
def rm128 : SS38I<opc, MRMSrcMem, (outs VR128:$dst),
(ins i128mem:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst,
(IntId128
(bitconvert (memopv16i8 addr:$src))))]>, OpSize;
}
/// SS3I_unop_rm_int_16 - Simple SSSE3 unary operator whose type is v*i16.
multiclass SS3I_unop_rm_int_16<bits<8> opc, string OpcodeStr,
Intrinsic IntId64, Intrinsic IntId128> {
def rr64 : SS38I<opc, MRMSrcReg, (outs VR64:$dst),
(ins VR64:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set VR64:$dst, (IntId64 VR64:$src))]>;
def rm64 : SS38I<opc, MRMSrcMem, (outs VR64:$dst),
(ins i64mem:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set VR64:$dst,
(IntId64
(bitconvert (memopv4i16 addr:$src))))]>;
def rr128 : SS38I<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst, (IntId128 VR128:$src))]>,
OpSize;
def rm128 : SS38I<opc, MRMSrcMem, (outs VR128:$dst),
(ins i128mem:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst,
(IntId128
(bitconvert (memopv8i16 addr:$src))))]>, OpSize;
}
/// SS3I_unop_rm_int_32 - Simple SSSE3 unary operator whose type is v*i32.
multiclass SS3I_unop_rm_int_32<bits<8> opc, string OpcodeStr,
Intrinsic IntId64, Intrinsic IntId128> {
def rr64 : SS38I<opc, MRMSrcReg, (outs VR64:$dst),
(ins VR64:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set VR64:$dst, (IntId64 VR64:$src))]>;
def rm64 : SS38I<opc, MRMSrcMem, (outs VR64:$dst),
(ins i64mem:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set VR64:$dst,
(IntId64
(bitconvert (memopv2i32 addr:$src))))]>;
def rr128 : SS38I<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst, (IntId128 VR128:$src))]>,
OpSize;
def rm128 : SS38I<opc, MRMSrcMem, (outs VR128:$dst),
(ins i128mem:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst,
(IntId128
(bitconvert (memopv4i32 addr:$src))))]>, OpSize;
}
defm PABSB : SS3I_unop_rm_int_8 <0x1C, "pabsb",
int_x86_ssse3_pabs_b,
int_x86_ssse3_pabs_b_128>;
defm PABSW : SS3I_unop_rm_int_16<0x1D, "pabsw",
int_x86_ssse3_pabs_w,
int_x86_ssse3_pabs_w_128>;
defm PABSD : SS3I_unop_rm_int_32<0x1E, "pabsd",
int_x86_ssse3_pabs_d,
int_x86_ssse3_pabs_d_128>;
/// SS3I_binop_rm_int_8 - Simple SSSE3 binary operator whose type is v*i8.
let Constraints = "$src1 = $dst" in {
multiclass SS3I_binop_rm_int_8<bits<8> opc, string OpcodeStr,
Intrinsic IntId64, Intrinsic IntId128,
bit Commutable = 0> {
def rr64 : SS38I<opc, MRMSrcReg, (outs VR64:$dst),
(ins VR64:$src1, VR64:$src2),
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
[(set VR64:$dst, (IntId64 VR64:$src1, VR64:$src2))]> {
let isCommutable = Commutable;
}
def rm64 : SS38I<opc, MRMSrcMem, (outs VR64:$dst),
(ins VR64:$src1, i64mem:$src2),
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
[(set VR64:$dst,
(IntId64 VR64:$src1,
(bitconvert (memopv8i8 addr:$src2))))]>;
def rr128 : SS38I<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2),
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
[(set VR128:$dst, (IntId128 VR128:$src1, VR128:$src2))]>,
OpSize {
let isCommutable = Commutable;
}
def rm128 : SS38I<opc, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, i128mem:$src2),
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
[(set VR128:$dst,
(IntId128 VR128:$src1,
(bitconvert (memopv16i8 addr:$src2))))]>, OpSize;
}
}
/// SS3I_binop_rm_int_16 - Simple SSSE3 binary operator whose type is v*i16.
let Constraints = "$src1 = $dst" in {
multiclass SS3I_binop_rm_int_16<bits<8> opc, string OpcodeStr,
Intrinsic IntId64, Intrinsic IntId128,
bit Commutable = 0> {
def rr64 : SS38I<opc, MRMSrcReg, (outs VR64:$dst),
(ins VR64:$src1, VR64:$src2),
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
[(set VR64:$dst, (IntId64 VR64:$src1, VR64:$src2))]> {
let isCommutable = Commutable;
}
def rm64 : SS38I<opc, MRMSrcMem, (outs VR64:$dst),
(ins VR64:$src1, i64mem:$src2),
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
[(set VR64:$dst,
(IntId64 VR64:$src1,
(bitconvert (memopv4i16 addr:$src2))))]>;
def rr128 : SS38I<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2),
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
[(set VR128:$dst, (IntId128 VR128:$src1, VR128:$src2))]>,
OpSize {
let isCommutable = Commutable;
}
def rm128 : SS38I<opc, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, i128mem:$src2),
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
[(set VR128:$dst,
(IntId128 VR128:$src1,
(bitconvert (memopv8i16 addr:$src2))))]>, OpSize;
}
}
/// SS3I_binop_rm_int_32 - Simple SSSE3 binary operator whose type is v*i32.
let Constraints = "$src1 = $dst" in {
multiclass SS3I_binop_rm_int_32<bits<8> opc, string OpcodeStr,
Intrinsic IntId64, Intrinsic IntId128,
bit Commutable = 0> {
def rr64 : SS38I<opc, MRMSrcReg, (outs VR64:$dst),
(ins VR64:$src1, VR64:$src2),
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
[(set VR64:$dst, (IntId64 VR64:$src1, VR64:$src2))]> {
let isCommutable = Commutable;
}
def rm64 : SS38I<opc, MRMSrcMem, (outs VR64:$dst),
(ins VR64:$src1, i64mem:$src2),
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
[(set VR64:$dst,
(IntId64 VR64:$src1,
(bitconvert (memopv2i32 addr:$src2))))]>;
def rr128 : SS38I<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2),
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
[(set VR128:$dst, (IntId128 VR128:$src1, VR128:$src2))]>,
OpSize {
let isCommutable = Commutable;
}
def rm128 : SS38I<opc, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, i128mem:$src2),
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
[(set VR128:$dst,
(IntId128 VR128:$src1,
(bitconvert (memopv4i32 addr:$src2))))]>, OpSize;
}
}
defm PHADDW : SS3I_binop_rm_int_16<0x01, "phaddw",
int_x86_ssse3_phadd_w,
int_x86_ssse3_phadd_w_128>;
defm PHADDD : SS3I_binop_rm_int_32<0x02, "phaddd",
int_x86_ssse3_phadd_d,
int_x86_ssse3_phadd_d_128>;
defm PHADDSW : SS3I_binop_rm_int_16<0x03, "phaddsw",
int_x86_ssse3_phadd_sw,
int_x86_ssse3_phadd_sw_128>;
defm PHSUBW : SS3I_binop_rm_int_16<0x05, "phsubw",
int_x86_ssse3_phsub_w,
int_x86_ssse3_phsub_w_128>;
defm PHSUBD : SS3I_binop_rm_int_32<0x06, "phsubd",
int_x86_ssse3_phsub_d,
int_x86_ssse3_phsub_d_128>;
defm PHSUBSW : SS3I_binop_rm_int_16<0x07, "phsubsw",
int_x86_ssse3_phsub_sw,
int_x86_ssse3_phsub_sw_128>;
defm PMADDUBSW : SS3I_binop_rm_int_8 <0x04, "pmaddubsw",
int_x86_ssse3_pmadd_ub_sw,
int_x86_ssse3_pmadd_ub_sw_128>;
defm PMULHRSW : SS3I_binop_rm_int_16<0x0B, "pmulhrsw",
int_x86_ssse3_pmul_hr_sw,
int_x86_ssse3_pmul_hr_sw_128, 1>;
defm PSHUFB : SS3I_binop_rm_int_8 <0x00, "pshufb",
int_x86_ssse3_pshuf_b,
int_x86_ssse3_pshuf_b_128>;
defm PSIGNB : SS3I_binop_rm_int_8 <0x08, "psignb",
int_x86_ssse3_psign_b,
int_x86_ssse3_psign_b_128>;
defm PSIGNW : SS3I_binop_rm_int_16<0x09, "psignw",
int_x86_ssse3_psign_w,
int_x86_ssse3_psign_w_128>;
defm PSIGND : SS3I_binop_rm_int_32<0x0A, "psignd",
int_x86_ssse3_psign_d,
int_x86_ssse3_psign_d_128>;
let Constraints = "$src1 = $dst" in {
def PALIGNR64rr : SS3AI<0x0F, MRMSrcReg, (outs VR64:$dst),
(ins VR64:$src1, VR64:$src2, i16imm:$src3),
"palignr\t{$src3, $src2, $dst|$dst, $src2, $src3}",
[(set VR64:$dst,
(int_x86_ssse3_palign_r
VR64:$src1, VR64:$src2,
imm:$src3))]>;
def PALIGNR64rm : SS3AI<0x0F, MRMSrcMem, (outs VR64:$dst),
(ins VR64:$src1, i64mem:$src2, i16imm:$src3),
"palignr\t{$src3, $src2, $dst|$dst, $src2, $src3}",
[(set VR64:$dst,
(int_x86_ssse3_palign_r
VR64:$src1,
(bitconvert (memopv2i32 addr:$src2)),
imm:$src3))]>;
def PALIGNR128rr : SS3AI<0x0F, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2, i32imm:$src3),
"palignr\t{$src3, $src2, $dst|$dst, $src2, $src3}",
[(set VR128:$dst,
(int_x86_ssse3_palign_r_128
VR128:$src1, VR128:$src2,
imm:$src3))]>, OpSize;
def PALIGNR128rm : SS3AI<0x0F, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, i128mem:$src2, i32imm:$src3),
"palignr\t{$src3, $src2, $dst|$dst, $src2, $src3}",
[(set VR128:$dst,
(int_x86_ssse3_palign_r_128
VR128:$src1,
(bitconvert (memopv4i32 addr:$src2)),
imm:$src3))]>, OpSize;
}
def : Pat<(X86pshufb VR128:$src, VR128:$mask),
(PSHUFBrr128 VR128:$src, VR128:$mask)>, Requires<[HasSSSE3]>;
def : Pat<(X86pshufb VR128:$src, (bc_v16i8 (memopv2i64 addr:$mask))),
(PSHUFBrm128 VR128:$src, addr:$mask)>, Requires<[HasSSSE3]>;
//===---------------------------------------------------------------------===//
// Non-Instruction Patterns
//===---------------------------------------------------------------------===//
// extload f32 -> f64. This matches load+fextend because we have a hack in
// the isel (PreprocessForFPConvert) that can introduce loads after dag
// combine.
// Since these loads aren't folded into the fextend, we have to match it
// explicitly here.
let Predicates = [HasSSE2] in
def : Pat<(fextend (loadf32 addr:$src)),
(CVTSS2SDrm addr:$src)>;
// bit_convert
let Predicates = [HasSSE2] in {
def : Pat<(v2i64 (bitconvert (v4i32 VR128:$src))), (v2i64 VR128:$src)>;
def : Pat<(v2i64 (bitconvert (v8i16 VR128:$src))), (v2i64 VR128:$src)>;
def : Pat<(v2i64 (bitconvert (v16i8 VR128:$src))), (v2i64 VR128:$src)>;
def : Pat<(v2i64 (bitconvert (v2f64 VR128:$src))), (v2i64 VR128:$src)>;
def : Pat<(v2i64 (bitconvert (v4f32 VR128:$src))), (v2i64 VR128:$src)>;
def : Pat<(v4i32 (bitconvert (v2i64 VR128:$src))), (v4i32 VR128:$src)>;
def : Pat<(v4i32 (bitconvert (v8i16 VR128:$src))), (v4i32 VR128:$src)>;
def : Pat<(v4i32 (bitconvert (v16i8 VR128:$src))), (v4i32 VR128:$src)>;
def : Pat<(v4i32 (bitconvert (v2f64 VR128:$src))), (v4i32 VR128:$src)>;
def : Pat<(v4i32 (bitconvert (v4f32 VR128:$src))), (v4i32 VR128:$src)>;
def : Pat<(v8i16 (bitconvert (v2i64 VR128:$src))), (v8i16 VR128:$src)>;
def : Pat<(v8i16 (bitconvert (v4i32 VR128:$src))), (v8i16 VR128:$src)>;
def : Pat<(v8i16 (bitconvert (v16i8 VR128:$src))), (v8i16 VR128:$src)>;
def : Pat<(v8i16 (bitconvert (v2f64 VR128:$src))), (v8i16 VR128:$src)>;
def : Pat<(v8i16 (bitconvert (v4f32 VR128:$src))), (v8i16 VR128:$src)>;
def : Pat<(v16i8 (bitconvert (v2i64 VR128:$src))), (v16i8 VR128:$src)>;
def : Pat<(v16i8 (bitconvert (v4i32 VR128:$src))), (v16i8 VR128:$src)>;
def : Pat<(v16i8 (bitconvert (v8i16 VR128:$src))), (v16i8 VR128:$src)>;
def : Pat<(v16i8 (bitconvert (v2f64 VR128:$src))), (v16i8 VR128:$src)>;
def : Pat<(v16i8 (bitconvert (v4f32 VR128:$src))), (v16i8 VR128:$src)>;
def : Pat<(v4f32 (bitconvert (v2i64 VR128:$src))), (v4f32 VR128:$src)>;
def : Pat<(v4f32 (bitconvert (v4i32 VR128:$src))), (v4f32 VR128:$src)>;
def : Pat<(v4f32 (bitconvert (v8i16 VR128:$src))), (v4f32 VR128:$src)>;
def : Pat<(v4f32 (bitconvert (v16i8 VR128:$src))), (v4f32 VR128:$src)>;
def : Pat<(v4f32 (bitconvert (v2f64 VR128:$src))), (v4f32 VR128:$src)>;
def : Pat<(v2f64 (bitconvert (v2i64 VR128:$src))), (v2f64 VR128:$src)>;
def : Pat<(v2f64 (bitconvert (v4i32 VR128:$src))), (v2f64 VR128:$src)>;
def : Pat<(v2f64 (bitconvert (v8i16 VR128:$src))), (v2f64 VR128:$src)>;
def : Pat<(v2f64 (bitconvert (v16i8 VR128:$src))), (v2f64 VR128:$src)>;
def : Pat<(v2f64 (bitconvert (v4f32 VR128:$src))), (v2f64 VR128:$src)>;
}
// Move scalar to XMM zero-extended
// movd to XMM register zero-extends
let AddedComplexity = 15 in {
// Zeroing a VR128 then do a MOVS{S|D} to the lower bits.
def : Pat<(v2f64 (X86vzmovl (v2f64 (scalar_to_vector FR64:$src)))),
(MOVLSD2PDrr (V_SET0), FR64:$src)>, Requires<[HasSSE2]>;
def : Pat<(v4f32 (X86vzmovl (v4f32 (scalar_to_vector FR32:$src)))),
(MOVLSS2PSrr (V_SET0), FR32:$src)>, Requires<[HasSSE1]>;
def : Pat<(v4f32 (X86vzmovl (v4f32 VR128:$src))),
(MOVLPSrr (V_SET0), VR128:$src)>, Requires<[HasSSE1]>;
def : Pat<(v4i32 (X86vzmovl (v4i32 VR128:$src))),
(MOVLPSrr (V_SET0), VR128:$src)>, Requires<[HasSSE1]>;
}
// Splat v2f64 / v2i64
let AddedComplexity = 10 in {
def : Pat<(splat_lo (v2f64 VR128:$src), (undef)),
(UNPCKLPDrr VR128:$src, VR128:$src)>, Requires<[HasSSE2]>;
def : Pat<(unpckh (v2f64 VR128:$src), (undef)),
(UNPCKHPDrr VR128:$src, VR128:$src)>, Requires<[HasSSE2]>;
def : Pat<(splat_lo (v2i64 VR128:$src), (undef)),
(PUNPCKLQDQrr VR128:$src, VR128:$src)>, Requires<[HasSSE2]>;
def : Pat<(unpckh (v2i64 VR128:$src), (undef)),
(PUNPCKHQDQrr VR128:$src, VR128:$src)>, Requires<[HasSSE2]>;
}
// Special unary SHUFPSrri case.
def : Pat<(v4f32 (pshufd:$src3 VR128:$src1, (undef))),
(SHUFPSrri VR128:$src1, VR128:$src1,
(SHUFFLE_get_shuf_imm VR128:$src3))>,
Requires<[HasSSE1]>;
let AddedComplexity = 5 in
def : Pat<(v4f32 (pshufd:$src2 VR128:$src1, (undef))),
(PSHUFDri VR128:$src1, (SHUFFLE_get_shuf_imm VR128:$src2))>,
Requires<[HasSSE2]>;
// Special unary SHUFPDrri case.
def : Pat<(v2i64 (pshufd:$src3 VR128:$src1, (undef))),
(SHUFPDrri VR128:$src1, VR128:$src1,
(SHUFFLE_get_shuf_imm VR128:$src3))>,
Requires<[HasSSE2]>;
// Special unary SHUFPDrri case.
def : Pat<(v2f64 (pshufd:$src3 VR128:$src1, (undef))),
(SHUFPDrri VR128:$src1, VR128:$src1,
(SHUFFLE_get_shuf_imm VR128:$src3))>,
Requires<[HasSSE2]>;
// Unary v4f32 shuffle with PSHUF* in order to fold a load.
def : Pat<(pshufd:$src2 (bc_v4i32 (memopv4f32 addr:$src1)), (undef)),
(PSHUFDmi addr:$src1, (SHUFFLE_get_shuf_imm VR128:$src2))>,
Requires<[HasSSE2]>;
// Special binary v4i32 shuffle cases with SHUFPS.
def : Pat<(v4i32 (shufp:$src3 VR128:$src1, (v4i32 VR128:$src2))),
(SHUFPSrri VR128:$src1, VR128:$src2,
(SHUFFLE_get_shuf_imm VR128:$src3))>,
Requires<[HasSSE2]>;
def : Pat<(v4i32 (shufp:$src3 VR128:$src1, (bc_v4i32 (memopv2i64 addr:$src2)))),
(SHUFPSrmi VR128:$src1, addr:$src2,
(SHUFFLE_get_shuf_imm VR128:$src3))>,
Requires<[HasSSE2]>;
// Special binary v2i64 shuffle cases using SHUFPDrri.
def : Pat<(v2i64 (shufp:$src3 VR128:$src1, VR128:$src2)),
(SHUFPDrri VR128:$src1, VR128:$src2,
(SHUFFLE_get_shuf_imm VR128:$src3))>,
Requires<[HasSSE2]>;
// vector_shuffle v1, <undef>, <0, 0, 1, 1, ...>
let AddedComplexity = 15 in {
def : Pat<(v4i32 (unpckl_undef:$src2 VR128:$src, (undef))),
(PSHUFDri VR128:$src, (SHUFFLE_get_shuf_imm VR128:$src2))>,
Requires<[OptForSpeed, HasSSE2]>;
def : Pat<(v4f32 (unpckl_undef:$src2 VR128:$src, (undef))),
(PSHUFDri VR128:$src, (SHUFFLE_get_shuf_imm VR128:$src2))>,
Requires<[OptForSpeed, HasSSE2]>;
}
let AddedComplexity = 10 in {
def : Pat<(v4f32 (unpckl_undef VR128:$src, (undef))),
(UNPCKLPSrr VR128:$src, VR128:$src)>, Requires<[HasSSE1]>;
def : Pat<(v16i8 (unpckl_undef VR128:$src, (undef))),
(PUNPCKLBWrr VR128:$src, VR128:$src)>, Requires<[HasSSE2]>;
def : Pat<(v8i16 (unpckl_undef VR128:$src, (undef))),
(PUNPCKLWDrr VR128:$src, VR128:$src)>, Requires<[HasSSE2]>;
def : Pat<(v4i32 (unpckl_undef VR128:$src, (undef))),
(PUNPCKLDQrr VR128:$src, VR128:$src)>, Requires<[HasSSE2]>;
}
// vector_shuffle v1, <undef>, <2, 2, 3, 3, ...>
let AddedComplexity = 15 in {
def : Pat<(v4i32 (unpckh_undef:$src2 VR128:$src, (undef))),
(PSHUFDri VR128:$src, (SHUFFLE_get_shuf_imm VR128:$src2))>,
Requires<[OptForSpeed, HasSSE2]>;
def : Pat<(v4f32 (unpckh_undef:$src2 VR128:$src, (undef))),
(PSHUFDri VR128:$src, (SHUFFLE_get_shuf_imm VR128:$src2))>,
Requires<[OptForSpeed, HasSSE2]>;
}
let AddedComplexity = 10 in {
def : Pat<(v4f32 (unpckh_undef VR128:$src, (undef))),
(UNPCKHPSrr VR128:$src, VR128:$src)>, Requires<[HasSSE1]>;
def : Pat<(v16i8 (unpckh_undef VR128:$src, (undef))),
(PUNPCKHBWrr VR128:$src, VR128:$src)>, Requires<[HasSSE2]>;
def : Pat<(v8i16 (unpckh_undef VR128:$src, (undef))),
(PUNPCKHWDrr VR128:$src, VR128:$src)>, Requires<[HasSSE2]>;
def : Pat<(v4i32 (unpckh_undef VR128:$src, (undef))),
(PUNPCKHDQrr VR128:$src, VR128:$src)>, Requires<[HasSSE2]>;
}
let AddedComplexity = 20 in {
// vector_shuffle v1, v2 <0, 1, 4, 5> using MOVLHPS
def : Pat<(v4i32 (movhp VR128:$src1, VR128:$src2)),
(MOVLHPSrr VR128:$src1, VR128:$src2)>;
// vector_shuffle v1, v2 <6, 7, 2, 3> using MOVHLPS
def : Pat<(v4i32 (movhlps VR128:$src1, VR128:$src2)),
(MOVHLPSrr VR128:$src1, VR128:$src2)>;
// vector_shuffle v1, undef <2, ?, ?, ?> using MOVHLPS
def : Pat<(v4f32 (movhlps_undef VR128:$src1, (undef))),
(MOVHLPSrr VR128:$src1, VR128:$src1)>;
def : Pat<(v4i32 (movhlps_undef VR128:$src1, (undef))),
(MOVHLPSrr VR128:$src1, VR128:$src1)>;
}
let AddedComplexity = 20 in {
// vector_shuffle v1, (load v2) <4, 5, 2, 3> using MOVLPS
// vector_shuffle v1, (load v2) <0, 1, 4, 5> using MOVHPS
def : Pat<(v4f32 (movlp VR128:$src1, (load addr:$src2))),
(MOVLPSrm VR128:$src1, addr:$src2)>, Requires<[HasSSE1]>;
def : Pat<(v2f64 (movlp VR128:$src1, (load addr:$src2))),
(MOVLPDrm VR128:$src1, addr:$src2)>, Requires<[HasSSE2]>;
def : Pat<(v4f32 (movhp VR128:$src1, (load addr:$src2))),
(MOVHPSrm VR128:$src1, addr:$src2)>, Requires<[HasSSE1]>;
def : Pat<(v2f64 (movhp VR128:$src1, (load addr:$src2))),
(MOVHPDrm VR128:$src1, addr:$src2)>, Requires<[HasSSE2]>;
def : Pat<(v4i32 (movlp VR128:$src1, (load addr:$src2))),
(MOVLPSrm VR128:$src1, addr:$src2)>, Requires<[HasSSE2]>;
def : Pat<(v2i64 (movlp VR128:$src1, (load addr:$src2))),
(MOVLPDrm VR128:$src1, addr:$src2)>, Requires<[HasSSE2]>;
def : Pat<(v4i32 (movhp VR128:$src1, (load addr:$src2))),
(MOVHPSrm VR128:$src1, addr:$src2)>, Requires<[HasSSE1]>;
def : Pat<(v2i64 (movhp VR128:$src1, (load addr:$src2))),
(MOVHPDrm VR128:$src1, addr:$src2)>, Requires<[HasSSE2]>;
}
// (store (vector_shuffle (load addr), v2, <4, 5, 2, 3>), addr) using MOVLPS
// (store (vector_shuffle (load addr), v2, <0, 1, 4, 5>), addr) using MOVHPS
def : Pat<(store (v4f32 (movlp (load addr:$src1), VR128:$src2)), addr:$src1),
(MOVLPSmr addr:$src1, VR128:$src2)>, Requires<[HasSSE1]>;
def : Pat<(store (v2f64 (movlp (load addr:$src1), VR128:$src2)), addr:$src1),
(MOVLPDmr addr:$src1, VR128:$src2)>, Requires<[HasSSE2]>;
def : Pat<(store (v4f32 (movhp (load addr:$src1), VR128:$src2)), addr:$src1),
(MOVHPSmr addr:$src1, VR128:$src2)>, Requires<[HasSSE1]>;
def : Pat<(store (v2f64 (movhp (load addr:$src1), VR128:$src2)), addr:$src1),
(MOVHPDmr addr:$src1, VR128:$src2)>, Requires<[HasSSE2]>;
def : Pat<(store (v4i32 (movlp (bc_v4i32 (loadv2i64 addr:$src1)), VR128:$src2)),
addr:$src1),
(MOVLPSmr addr:$src1, VR128:$src2)>, Requires<[HasSSE1]>;
def : Pat<(store (v2i64 (movlp (load addr:$src1), VR128:$src2)), addr:$src1),
(MOVLPDmr addr:$src1, VR128:$src2)>, Requires<[HasSSE2]>;
def : Pat<(store (v4i32 (movhp (bc_v4i32 (loadv2i64 addr:$src1)), VR128:$src2)),
addr:$src1),
(MOVHPSmr addr:$src1, VR128:$src2)>, Requires<[HasSSE1]>;
def : Pat<(store (v2i64 (movhp (load addr:$src1), VR128:$src2)), addr:$src1),
(MOVHPDmr addr:$src1, VR128:$src2)>, Requires<[HasSSE2]>;
let AddedComplexity = 15 in {
// Setting the lowest element in the vector.
def : Pat<(v4i32 (movl VR128:$src1, VR128:$src2)),
(MOVLPSrr VR128:$src1, VR128:$src2)>, Requires<[HasSSE2]>;
def : Pat<(v2i64 (movl VR128:$src1, VR128:$src2)),
(MOVLPDrr VR128:$src1, VR128:$src2)>, Requires<[HasSSE2]>;
// vector_shuffle v1, v2 <4, 5, 2, 3> using MOVLPDrr (movsd)
def : Pat<(v4f32 (movlp VR128:$src1, VR128:$src2)),
(MOVLPDrr VR128:$src1, VR128:$src2)>, Requires<[HasSSE2]>;
def : Pat<(v4i32 (movlp VR128:$src1, VR128:$src2)),
(MOVLPDrr VR128:$src1, VR128:$src2)>, Requires<[HasSSE2]>;
}
// vector_shuffle v1, v2 <4, 5, 2, 3> using SHUFPSrri (we prefer movsd, but
// fall back to this for SSE1)
def : Pat<(v4f32 (movlp:$src3 VR128:$src1, (v4f32 VR128:$src2))),
(SHUFPSrri VR128:$src2, VR128:$src1,
(SHUFFLE_get_shuf_imm VR128:$src3))>, Requires<[HasSSE1]>;
// Set lowest element and zero upper elements.
let AddedComplexity = 15 in
def : Pat<(v2f64 (movl immAllZerosV_bc, VR128:$src)),
(MOVZPQILo2PQIrr VR128:$src)>, Requires<[HasSSE2]>;
def : Pat<(v2f64 (X86vzmovl (v2f64 VR128:$src))),
(MOVZPQILo2PQIrr VR128:$src)>, Requires<[HasSSE2]>;
// Some special case pandn patterns.
def : Pat<(v2i64 (and (xor VR128:$src1, (bc_v2i64 (v4i32 immAllOnesV))),
VR128:$src2)),
(PANDNrr VR128:$src1, VR128:$src2)>, Requires<[HasSSE2]>;
def : Pat<(v2i64 (and (xor VR128:$src1, (bc_v2i64 (v8i16 immAllOnesV))),
VR128:$src2)),
(PANDNrr VR128:$src1, VR128:$src2)>, Requires<[HasSSE2]>;
def : Pat<(v2i64 (and (xor VR128:$src1, (bc_v2i64 (v16i8 immAllOnesV))),
VR128:$src2)),
(PANDNrr VR128:$src1, VR128:$src2)>, Requires<[HasSSE2]>;
def : Pat<(v2i64 (and (xor VR128:$src1, (bc_v2i64 (v4i32 immAllOnesV))),
(memop addr:$src2))),
(PANDNrm VR128:$src1, addr:$src2)>, Requires<[HasSSE2]>;
def : Pat<(v2i64 (and (xor VR128:$src1, (bc_v2i64 (v8i16 immAllOnesV))),
(memop addr:$src2))),
(PANDNrm VR128:$src1, addr:$src2)>, Requires<[HasSSE2]>;
def : Pat<(v2i64 (and (xor VR128:$src1, (bc_v2i64 (v16i8 immAllOnesV))),
(memop addr:$src2))),
(PANDNrm VR128:$src1, addr:$src2)>, Requires<[HasSSE2]>;
// vector -> vector casts
def : Pat<(v4f32 (sint_to_fp (v4i32 VR128:$src))),
(Int_CVTDQ2PSrr VR128:$src)>, Requires<[HasSSE2]>;
def : Pat<(v4i32 (fp_to_sint (v4f32 VR128:$src))),
(Int_CVTTPS2DQrr VR128:$src)>, Requires<[HasSSE2]>;
def : Pat<(v2f64 (sint_to_fp (v2i32 VR64:$src))),
(Int_CVTPI2PDrr VR64:$src)>, Requires<[HasSSE2]>;
def : Pat<(v2i32 (fp_to_sint (v2f64 VR128:$src))),
(Int_CVTTPD2PIrr VR128:$src)>, Requires<[HasSSE2]>;
// Use movaps / movups for SSE integer load / store (one byte shorter).
def : Pat<(alignedloadv4i32 addr:$src),
(MOVAPSrm addr:$src)>, Requires<[HasSSE1]>;
def : Pat<(loadv4i32 addr:$src),
(MOVUPSrm addr:$src)>, Requires<[HasSSE1]>;
def : Pat<(alignedloadv2i64 addr:$src),
(MOVAPSrm addr:$src)>, Requires<[HasSSE2]>;
def : Pat<(loadv2i64 addr:$src),
(MOVUPSrm addr:$src)>, Requires<[HasSSE2]>;
def : Pat<(alignedstore (v2i64 VR128:$src), addr:$dst),
(MOVAPSmr addr:$dst, VR128:$src)>, Requires<[HasSSE2]>;
def : Pat<(alignedstore (v4i32 VR128:$src), addr:$dst),
(MOVAPSmr addr:$dst, VR128:$src)>, Requires<[HasSSE2]>;
def : Pat<(alignedstore (v8i16 VR128:$src), addr:$dst),
(MOVAPSmr addr:$dst, VR128:$src)>, Requires<[HasSSE2]>;
def : Pat<(alignedstore (v16i8 VR128:$src), addr:$dst),
(MOVAPSmr addr:$dst, VR128:$src)>, Requires<[HasSSE2]>;
def : Pat<(store (v2i64 VR128:$src), addr:$dst),
(MOVUPSmr addr:$dst, VR128:$src)>, Requires<[HasSSE2]>;
def : Pat<(store (v4i32 VR128:$src), addr:$dst),
(MOVUPSmr addr:$dst, VR128:$src)>, Requires<[HasSSE2]>;
def : Pat<(store (v8i16 VR128:$src), addr:$dst),
(MOVUPSmr addr:$dst, VR128:$src)>, Requires<[HasSSE2]>;
def : Pat<(store (v16i8 VR128:$src), addr:$dst),
(MOVUPSmr addr:$dst, VR128:$src)>, Requires<[HasSSE2]>;
//===----------------------------------------------------------------------===//
// SSE4.1 Instructions
//===----------------------------------------------------------------------===//
multiclass sse41_fp_unop_rm<bits<8> opcps, bits<8> opcpd,
string OpcodeStr,
Intrinsic V4F32Int,
Intrinsic V2F64Int> {
// Intrinsic operation, reg.
// Vector intrinsic operation, reg
def PSr_Int : SS4AIi8<opcps, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, i32i8imm:$src2),
!strconcat(OpcodeStr,
"ps\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set VR128:$dst, (V4F32Int VR128:$src1, imm:$src2))]>,
OpSize;
// Vector intrinsic operation, mem
def PSm_Int : SS4AIi8<opcps, MRMSrcMem,
(outs VR128:$dst), (ins f128mem:$src1, i32i8imm:$src2),
!strconcat(OpcodeStr,
"ps\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set VR128:$dst,
(V4F32Int (memopv4f32 addr:$src1),imm:$src2))]>,
OpSize;
// Vector intrinsic operation, reg
def PDr_Int : SS4AIi8<opcpd, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, i32i8imm:$src2),
!strconcat(OpcodeStr,
"pd\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set VR128:$dst, (V2F64Int VR128:$src1, imm:$src2))]>,
OpSize;
// Vector intrinsic operation, mem
def PDm_Int : SS4AIi8<opcpd, MRMSrcMem,
(outs VR128:$dst), (ins f128mem:$src1, i32i8imm:$src2),
!strconcat(OpcodeStr,
"pd\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set VR128:$dst,
(V2F64Int (memopv2f64 addr:$src1),imm:$src2))]>,
OpSize;
}
let Constraints = "$src1 = $dst" in {
multiclass sse41_fp_binop_rm<bits<8> opcss, bits<8> opcsd,
string OpcodeStr,
Intrinsic F32Int,
Intrinsic F64Int> {
// Intrinsic operation, reg.
def SSr_Int : SS4AIi8<opcss, MRMSrcReg,
(outs VR128:$dst),
(ins VR128:$src1, VR128:$src2, i32i8imm:$src3),
!strconcat(OpcodeStr,
"ss\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
[(set VR128:$dst,
(F32Int VR128:$src1, VR128:$src2, imm:$src3))]>,
OpSize;
// Intrinsic operation, mem.
def SSm_Int : SS4AIi8<opcss, MRMSrcMem,
(outs VR128:$dst),
(ins VR128:$src1, ssmem:$src2, i32i8imm:$src3),
!strconcat(OpcodeStr,
"ss\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
[(set VR128:$dst,
(F32Int VR128:$src1, sse_load_f32:$src2, imm:$src3))]>,
OpSize;
// Intrinsic operation, reg.
def SDr_Int : SS4AIi8<opcsd, MRMSrcReg,
(outs VR128:$dst),
(ins VR128:$src1, VR128:$src2, i32i8imm:$src3),
!strconcat(OpcodeStr,
"sd\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
[(set VR128:$dst,
(F64Int VR128:$src1, VR128:$src2, imm:$src3))]>,
OpSize;
// Intrinsic operation, mem.
def SDm_Int : SS4AIi8<opcsd, MRMSrcMem,
(outs VR128:$dst),
(ins VR128:$src1, sdmem:$src2, i32i8imm:$src3),
!strconcat(OpcodeStr,
"sd\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
[(set VR128:$dst,
(F64Int VR128:$src1, sse_load_f64:$src2, imm:$src3))]>,
OpSize;
}
}
// FP round - roundss, roundps, roundsd, roundpd
defm ROUND : sse41_fp_unop_rm<0x08, 0x09, "round",
int_x86_sse41_round_ps, int_x86_sse41_round_pd>;
defm ROUND : sse41_fp_binop_rm<0x0A, 0x0B, "round",
int_x86_sse41_round_ss, int_x86_sse41_round_sd>;
// SS41I_unop_rm_int_v16 - SSE 4.1 unary operator whose type is v8i16.
multiclass SS41I_unop_rm_int_v16<bits<8> opc, string OpcodeStr,
Intrinsic IntId128> {
def rr128 : SS48I<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst, (IntId128 VR128:$src))]>, OpSize;
def rm128 : SS48I<opc, MRMSrcMem, (outs VR128:$dst),
(ins i128mem:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst,
(IntId128
(bitconvert (memopv8i16 addr:$src))))]>, OpSize;
}
defm PHMINPOSUW : SS41I_unop_rm_int_v16 <0x41, "phminposuw",
int_x86_sse41_phminposuw>;
/// SS41I_binop_rm_int - Simple SSE 4.1 binary operator
let Constraints = "$src1 = $dst" in {
multiclass SS41I_binop_rm_int<bits<8> opc, string OpcodeStr,
Intrinsic IntId128, bit Commutable = 0> {
def rr : SS48I<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2),
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
[(set VR128:$dst, (IntId128 VR128:$src1, VR128:$src2))]>,
OpSize {
let isCommutable = Commutable;
}
def rm : SS48I<opc, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, i128mem:$src2),
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
[(set VR128:$dst,
(IntId128 VR128:$src1,
(bitconvert (memopv16i8 addr:$src2))))]>, OpSize;
}
}
defm PCMPEQQ : SS41I_binop_rm_int<0x29, "pcmpeqq",
int_x86_sse41_pcmpeqq, 1>;
defm PACKUSDW : SS41I_binop_rm_int<0x2B, "packusdw",
int_x86_sse41_packusdw, 0>;
defm PMINSB : SS41I_binop_rm_int<0x38, "pminsb",
int_x86_sse41_pminsb, 1>;
defm PMINSD : SS41I_binop_rm_int<0x39, "pminsd",
int_x86_sse41_pminsd, 1>;
defm PMINUD : SS41I_binop_rm_int<0x3B, "pminud",
int_x86_sse41_pminud, 1>;
defm PMINUW : SS41I_binop_rm_int<0x3A, "pminuw",
int_x86_sse41_pminuw, 1>;
defm PMAXSB : SS41I_binop_rm_int<0x3C, "pmaxsb",
int_x86_sse41_pmaxsb, 1>;
defm PMAXSD : SS41I_binop_rm_int<0x3D, "pmaxsd",
int_x86_sse41_pmaxsd, 1>;
defm PMAXUD : SS41I_binop_rm_int<0x3F, "pmaxud",
int_x86_sse41_pmaxud, 1>;
defm PMAXUW : SS41I_binop_rm_int<0x3E, "pmaxuw",
int_x86_sse41_pmaxuw, 1>;
defm PMULDQ : SS41I_binop_rm_int<0x28, "pmuldq", int_x86_sse41_pmuldq, 1>;
def : Pat<(v2i64 (X86pcmpeqq VR128:$src1, VR128:$src2)),
(PCMPEQQrr VR128:$src1, VR128:$src2)>;
def : Pat<(v2i64 (X86pcmpeqq VR128:$src1, (memop addr:$src2))),
(PCMPEQQrm VR128:$src1, addr:$src2)>;
/// SS41I_binop_rm_int - Simple SSE 4.1 binary operator
let Constraints = "$src1 = $dst" in {
multiclass SS41I_binop_patint<bits<8> opc, string OpcodeStr, ValueType OpVT,
SDNode OpNode, Intrinsic IntId128,
bit Commutable = 0> {
def rr : SS48I<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2),
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
[(set VR128:$dst, (OpNode (OpVT VR128:$src1),
VR128:$src2))]>, OpSize {
let isCommutable = Commutable;
}
def rr_int : SS48I<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2),
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
[(set VR128:$dst, (IntId128 VR128:$src1, VR128:$src2))]>,
OpSize {
let isCommutable = Commutable;
}
def rm : SS48I<opc, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, i128mem:$src2),
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
[(set VR128:$dst,
(OpNode VR128:$src1, (memop addr:$src2)))]>, OpSize;
def rm_int : SS48I<opc, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, i128mem:$src2),
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
[(set VR128:$dst,
(IntId128 VR128:$src1, (memop addr:$src2)))]>,
OpSize;
}
}
defm PMULLD : SS41I_binop_patint<0x40, "pmulld", v4i32, mul,
int_x86_sse41_pmulld, 1>;
/// SS41I_binop_rmi_int - SSE 4.1 binary operator with 8-bit immediate
let Constraints = "$src1 = $dst" in {
multiclass SS41I_binop_rmi_int<bits<8> opc, string OpcodeStr,
Intrinsic IntId128, bit Commutable = 0> {
def rri : SS4AIi8<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2, i32i8imm:$src3),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
[(set VR128:$dst,
(IntId128 VR128:$src1, VR128:$src2, imm:$src3))]>,
OpSize {
let isCommutable = Commutable;
}
def rmi : SS4AIi8<opc, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, i128mem:$src2, i32i8imm:$src3),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
[(set VR128:$dst,
(IntId128 VR128:$src1,
(bitconvert (memopv16i8 addr:$src2)), imm:$src3))]>,
OpSize;
}
}
defm BLENDPS : SS41I_binop_rmi_int<0x0C, "blendps",
int_x86_sse41_blendps, 0>;
defm BLENDPD : SS41I_binop_rmi_int<0x0D, "blendpd",
int_x86_sse41_blendpd, 0>;
defm PBLENDW : SS41I_binop_rmi_int<0x0E, "pblendw",
int_x86_sse41_pblendw, 0>;
defm DPPS : SS41I_binop_rmi_int<0x40, "dpps",
int_x86_sse41_dpps, 1>;
defm DPPD : SS41I_binop_rmi_int<0x41, "dppd",
int_x86_sse41_dppd, 1>;
defm MPSADBW : SS41I_binop_rmi_int<0x42, "mpsadbw",
int_x86_sse41_mpsadbw, 1>;
/// SS41I_ternary_int - SSE 4.1 ternary operator
let Uses = [XMM0], Constraints = "$src1 = $dst" in {
multiclass SS41I_ternary_int<bits<8> opc, string OpcodeStr, Intrinsic IntId> {
def rr0 : SS48I<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2),
!strconcat(OpcodeStr,
"\t{%xmm0, $src2, $dst|$dst, $src2, %xmm0}"),
[(set VR128:$dst, (IntId VR128:$src1, VR128:$src2, XMM0))]>,
OpSize;
def rm0 : SS48I<opc, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, i128mem:$src2),
!strconcat(OpcodeStr,
"\t{%xmm0, $src2, $dst|$dst, $src2, %xmm0}"),
[(set VR128:$dst,
(IntId VR128:$src1,
(bitconvert (memopv16i8 addr:$src2)), XMM0))]>, OpSize;
}
}
defm BLENDVPD : SS41I_ternary_int<0x15, "blendvpd", int_x86_sse41_blendvpd>;
defm BLENDVPS : SS41I_ternary_int<0x14, "blendvps", int_x86_sse41_blendvps>;
defm PBLENDVB : SS41I_ternary_int<0x10, "pblendvb", int_x86_sse41_pblendvb>;
multiclass SS41I_binop_rm_int8<bits<8> opc, string OpcodeStr, Intrinsic IntId> {
def rr : SS48I<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst, (IntId VR128:$src))]>, OpSize;
def rm : SS48I<opc, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst,
(IntId (bitconvert (v2i64 (scalar_to_vector (loadi64 addr:$src))))))]>,
OpSize;
}
defm PMOVSXBW : SS41I_binop_rm_int8<0x20, "pmovsxbw", int_x86_sse41_pmovsxbw>;
defm PMOVSXWD : SS41I_binop_rm_int8<0x23, "pmovsxwd", int_x86_sse41_pmovsxwd>;
defm PMOVSXDQ : SS41I_binop_rm_int8<0x25, "pmovsxdq", int_x86_sse41_pmovsxdq>;
defm PMOVZXBW : SS41I_binop_rm_int8<0x30, "pmovzxbw", int_x86_sse41_pmovzxbw>;
defm PMOVZXWD : SS41I_binop_rm_int8<0x33, "pmovzxwd", int_x86_sse41_pmovzxwd>;
defm PMOVZXDQ : SS41I_binop_rm_int8<0x35, "pmovzxdq", int_x86_sse41_pmovzxdq>;
// Common patterns involving scalar load.
def : Pat<(int_x86_sse41_pmovsxbw (vzmovl_v2i64 addr:$src)),
(PMOVSXBWrm addr:$src)>, Requires<[HasSSE41]>;
def : Pat<(int_x86_sse41_pmovsxbw (vzload_v2i64 addr:$src)),
(PMOVSXBWrm addr:$src)>, Requires<[HasSSE41]>;
def : Pat<(int_x86_sse41_pmovsxwd (vzmovl_v2i64 addr:$src)),
(PMOVSXWDrm addr:$src)>, Requires<[HasSSE41]>;
def : Pat<(int_x86_sse41_pmovsxwd (vzload_v2i64 addr:$src)),
(PMOVSXWDrm addr:$src)>, Requires<[HasSSE41]>;
def : Pat<(int_x86_sse41_pmovsxdq (vzmovl_v2i64 addr:$src)),
(PMOVSXDQrm addr:$src)>, Requires<[HasSSE41]>;
def : Pat<(int_x86_sse41_pmovsxdq (vzload_v2i64 addr:$src)),
(PMOVSXDQrm addr:$src)>, Requires<[HasSSE41]>;
def : Pat<(int_x86_sse41_pmovzxbw (vzmovl_v2i64 addr:$src)),
(PMOVZXBWrm addr:$src)>, Requires<[HasSSE41]>;
def : Pat<(int_x86_sse41_pmovzxbw (vzload_v2i64 addr:$src)),
(PMOVZXBWrm addr:$src)>, Requires<[HasSSE41]>;
def : Pat<(int_x86_sse41_pmovzxwd (vzmovl_v2i64 addr:$src)),
(PMOVZXWDrm addr:$src)>, Requires<[HasSSE41]>;
def : Pat<(int_x86_sse41_pmovzxwd (vzload_v2i64 addr:$src)),
(PMOVZXWDrm addr:$src)>, Requires<[HasSSE41]>;
def : Pat<(int_x86_sse41_pmovzxdq (vzmovl_v2i64 addr:$src)),
(PMOVZXDQrm addr:$src)>, Requires<[HasSSE41]>;
def : Pat<(int_x86_sse41_pmovzxdq (vzload_v2i64 addr:$src)),
(PMOVZXDQrm addr:$src)>, Requires<[HasSSE41]>;
multiclass SS41I_binop_rm_int4<bits<8> opc, string OpcodeStr, Intrinsic IntId> {
def rr : SS48I<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst, (IntId VR128:$src))]>, OpSize;
def rm : SS48I<opc, MRMSrcMem, (outs VR128:$dst), (ins i32mem:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst,
(IntId (bitconvert (v4i32 (scalar_to_vector (loadi32 addr:$src))))))]>,
OpSize;
}
defm PMOVSXBD : SS41I_binop_rm_int4<0x21, "pmovsxbd", int_x86_sse41_pmovsxbd>;
defm PMOVSXWQ : SS41I_binop_rm_int4<0x24, "pmovsxwq", int_x86_sse41_pmovsxwq>;
defm PMOVZXBD : SS41I_binop_rm_int4<0x31, "pmovzxbd", int_x86_sse41_pmovzxbd>;
defm PMOVZXWQ : SS41I_binop_rm_int4<0x34, "pmovzxwq", int_x86_sse41_pmovzxwq>;
// Common patterns involving scalar load
def : Pat<(int_x86_sse41_pmovsxbd (vzmovl_v4i32 addr:$src)),
(PMOVSXBDrm addr:$src)>, Requires<[HasSSE41]>;
def : Pat<(int_x86_sse41_pmovsxwq (vzmovl_v4i32 addr:$src)),
(PMOVSXWQrm addr:$src)>, Requires<[HasSSE41]>;
def : Pat<(int_x86_sse41_pmovzxbd (vzmovl_v4i32 addr:$src)),
(PMOVZXBDrm addr:$src)>, Requires<[HasSSE41]>;
def : Pat<(int_x86_sse41_pmovzxwq (vzmovl_v4i32 addr:$src)),
(PMOVZXWQrm addr:$src)>, Requires<[HasSSE41]>;
multiclass SS41I_binop_rm_int2<bits<8> opc, string OpcodeStr, Intrinsic IntId> {
def rr : SS48I<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst, (IntId VR128:$src))]>, OpSize;
// Expecting a i16 load any extended to i32 value.
def rm : SS48I<opc, MRMSrcMem, (outs VR128:$dst), (ins i16mem:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst, (IntId (bitconvert
(v4i32 (scalar_to_vector (loadi16_anyext addr:$src))))))]>,
OpSize;
}
defm PMOVSXBQ : SS41I_binop_rm_int2<0x22, "pmovsxbq", int_x86_sse41_pmovsxbq>;
defm PMOVZXBQ : SS41I_binop_rm_int2<0x32, "pmovzxbq", int_x86_sse41_pmovzxbq>;
// Common patterns involving scalar load
def : Pat<(int_x86_sse41_pmovsxbq
(bitconvert (v4i32 (X86vzmovl
(v4i32 (scalar_to_vector (loadi32 addr:$src))))))),
(PMOVSXBQrm addr:$src)>, Requires<[HasSSE41]>;
def : Pat<(int_x86_sse41_pmovzxbq
(bitconvert (v4i32 (X86vzmovl
(v4i32 (scalar_to_vector (loadi32 addr:$src))))))),
(PMOVZXBQrm addr:$src)>, Requires<[HasSSE41]>;
/// SS41I_binop_ext8 - SSE 4.1 extract 8 bits to 32 bit reg or 8 bit mem
multiclass SS41I_extract8<bits<8> opc, string OpcodeStr> {
def rr : SS4AIi8<opc, MRMDestReg, (outs GR32:$dst),
(ins VR128:$src1, i32i8imm:$src2),
!strconcat(OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set GR32:$dst, (X86pextrb (v16i8 VR128:$src1), imm:$src2))]>,
OpSize;
def mr : SS4AIi8<opc, MRMDestMem, (outs),
(ins i8mem:$dst, VR128:$src1, i32i8imm:$src2),
!strconcat(OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[]>, OpSize;
// FIXME:
// There's an AssertZext in the way of writing the store pattern
// (store (i8 (trunc (X86pextrb (v16i8 VR128:$src1), imm:$src2))), addr:$dst)
}
defm PEXTRB : SS41I_extract8<0x14, "pextrb">;
/// SS41I_extract16 - SSE 4.1 extract 16 bits to memory destination
multiclass SS41I_extract16<bits<8> opc, string OpcodeStr> {
def mr : SS4AIi8<opc, MRMDestMem, (outs),
(ins i16mem:$dst, VR128:$src1, i32i8imm:$src2),
!strconcat(OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[]>, OpSize;
// FIXME:
// There's an AssertZext in the way of writing the store pattern
// (store (i16 (trunc (X86pextrw (v16i8 VR128:$src1), imm:$src2))), addr:$dst)
}
defm PEXTRW : SS41I_extract16<0x15, "pextrw">;
/// SS41I_extract32 - SSE 4.1 extract 32 bits to int reg or memory destination
multiclass SS41I_extract32<bits<8> opc, string OpcodeStr> {
def rr : SS4AIi8<opc, MRMDestReg, (outs GR32:$dst),
(ins VR128:$src1, i32i8imm:$src2),
!strconcat(OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set GR32:$dst,
(extractelt (v4i32 VR128:$src1), imm:$src2))]>, OpSize;
def mr : SS4AIi8<opc, MRMDestMem, (outs),
(ins i32mem:$dst, VR128:$src1, i32i8imm:$src2),
!strconcat(OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(store (extractelt (v4i32 VR128:$src1), imm:$src2),
addr:$dst)]>, OpSize;
}
defm PEXTRD : SS41I_extract32<0x16, "pextrd">;
/// SS41I_extractf32 - SSE 4.1 extract 32 bits fp value to int reg or memory
/// destination
multiclass SS41I_extractf32<bits<8> opc, string OpcodeStr> {
def rr : SS4AIi8<opc, MRMDestReg, (outs GR32:$dst),
(ins VR128:$src1, i32i8imm:$src2),
!strconcat(OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set GR32:$dst,
(extractelt (bc_v4i32 (v4f32 VR128:$src1)), imm:$src2))]>,
OpSize;
def mr : SS4AIi8<opc, MRMDestMem, (outs),
(ins f32mem:$dst, VR128:$src1, i32i8imm:$src2),
!strconcat(OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(store (extractelt (bc_v4i32 (v4f32 VR128:$src1)), imm:$src2),
addr:$dst)]>, OpSize;
}
defm EXTRACTPS : SS41I_extractf32<0x17, "extractps">;
// Also match an EXTRACTPS store when the store is done as f32 instead of i32.
def : Pat<(store (f32 (bitconvert (extractelt (bc_v4i32 (v4f32 VR128:$src1)),
imm:$src2))),
addr:$dst),
(EXTRACTPSmr addr:$dst, VR128:$src1, imm:$src2)>,
Requires<[HasSSE41]>;
let Constraints = "$src1 = $dst" in {
multiclass SS41I_insert8<bits<8> opc, string OpcodeStr> {
def rr : SS4AIi8<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, GR32:$src2, i32i8imm:$src3),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
[(set VR128:$dst,
(X86pinsrb VR128:$src1, GR32:$src2, imm:$src3))]>, OpSize;
def rm : SS4AIi8<opc, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, i8mem:$src2, i32i8imm:$src3),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
[(set VR128:$dst,
(X86pinsrb VR128:$src1, (extloadi8 addr:$src2),
imm:$src3))]>, OpSize;
}
}
defm PINSRB : SS41I_insert8<0x20, "pinsrb">;
let Constraints = "$src1 = $dst" in {
multiclass SS41I_insert32<bits<8> opc, string OpcodeStr> {
def rr : SS4AIi8<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, GR32:$src2, i32i8imm:$src3),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
[(set VR128:$dst,
(v4i32 (insertelt VR128:$src1, GR32:$src2, imm:$src3)))]>,
OpSize;
def rm : SS4AIi8<opc, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, i32mem:$src2, i32i8imm:$src3),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
[(set VR128:$dst,
(v4i32 (insertelt VR128:$src1, (loadi32 addr:$src2),
imm:$src3)))]>, OpSize;
}
}
defm PINSRD : SS41I_insert32<0x22, "pinsrd">;
// insertps has a few different modes, there's the first two here below which
// are optimized inserts that won't zero arbitrary elements in the destination
// vector. The next one matches the intrinsic and could zero arbitrary elements
// in the target vector.
let Constraints = "$src1 = $dst" in {
multiclass SS41I_insertf32<bits<8> opc, string OpcodeStr> {
def rr : SS4AIi8<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2, i32i8imm:$src3),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
[(set VR128:$dst,
(X86insrtps VR128:$src1, VR128:$src2, imm:$src3))]>,
OpSize;
def rm : SS4AIi8<opc, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, f32mem:$src2, i32i8imm:$src3),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
[(set VR128:$dst,
(X86insrtps VR128:$src1,
(v4f32 (scalar_to_vector (loadf32 addr:$src2))),
imm:$src3))]>, OpSize;
}
}
defm INSERTPS : SS41I_insertf32<0x21, "insertps">;
def : Pat<(int_x86_sse41_insertps VR128:$src1, VR128:$src2, imm:$src3),
(INSERTPSrr VR128:$src1, VR128:$src2, imm:$src3)>;
// ptest instruction we'll lower to this in X86ISelLowering primarily from
// the intel intrinsic that corresponds to this.
let Defs = [EFLAGS] in {
def PTESTrr : SS48I<0x17, MRMSrcReg, (outs), (ins VR128:$src1, VR128:$src2),
"ptest \t{$src2, $src1|$src1, $src2}",
[(X86ptest VR128:$src1, VR128:$src2),
(implicit EFLAGS)]>, OpSize;
def PTESTrm : SS48I<0x17, MRMSrcMem, (outs), (ins VR128:$src1, i128mem:$src2),
"ptest \t{$src2, $src1|$src1, $src2}",
[(X86ptest VR128:$src1, (load addr:$src2)),
(implicit EFLAGS)]>, OpSize;
}
def MOVNTDQArm : SS48I<0x2A, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src),
"movntdqa\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse41_movntdqa addr:$src))]>;
//===----------------------------------------------------------------------===//
// SSE4.2 Instructions
//===----------------------------------------------------------------------===//
/// SS42I_binop_rm_int - Simple SSE 4.2 binary operator
let Constraints = "$src1 = $dst" in {
multiclass SS42I_binop_rm_int<bits<8> opc, string OpcodeStr,
Intrinsic IntId128, bit Commutable = 0> {
def rr : SS428I<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2),
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
[(set VR128:$dst, (IntId128 VR128:$src1, VR128:$src2))]>,
OpSize {
let isCommutable = Commutable;
}
def rm : SS428I<opc, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, i128mem:$src2),
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
[(set VR128:$dst,
(IntId128 VR128:$src1,
(bitconvert (memopv16i8 addr:$src2))))]>, OpSize;
}
}
defm PCMPGTQ : SS42I_binop_rm_int<0x37, "pcmpgtq", int_x86_sse42_pcmpgtq>;
def : Pat<(v2i64 (X86pcmpgtq VR128:$src1, VR128:$src2)),
(PCMPGTQrr VR128:$src1, VR128:$src2)>;
def : Pat<(v2i64 (X86pcmpgtq VR128:$src1, (memop addr:$src2))),
(PCMPGTQrm VR128:$src1, addr:$src2)>;
// crc intrinsic instruction
// This set of instructions are only rm, the only difference is the size
// of r and m.
let Constraints = "$src1 = $dst" in {
def CRC32m8 : SS42FI<0xF0, MRMSrcMem, (outs GR32:$dst),
(ins GR32:$src1, i8mem:$src2),
"crc32 \t{$src2, $src1|$src1, $src2}",
[(set GR32:$dst,
(int_x86_sse42_crc32_8 GR32:$src1,
(load addr:$src2)))]>, OpSize;
def CRC32r8 : SS42FI<0xF0, MRMSrcReg, (outs GR32:$dst),
(ins GR32:$src1, GR8:$src2),
"crc32 \t{$src2, $src1|$src1, $src2}",
[(set GR32:$dst,
(int_x86_sse42_crc32_8 GR32:$src1, GR8:$src2))]>,
OpSize;
def CRC32m16 : SS42FI<0xF1, MRMSrcMem, (outs GR32:$dst),
(ins GR32:$src1, i16mem:$src2),
"crc32 \t{$src2, $src1|$src1, $src2}",
[(set GR32:$dst,
(int_x86_sse42_crc32_16 GR32:$src1,
(load addr:$src2)))]>,
OpSize;
def CRC32r16 : SS42FI<0xF1, MRMSrcReg, (outs GR32:$dst),
(ins GR32:$src1, GR16:$src2),
"crc32 \t{$src2, $src1|$src1, $src2}",
[(set GR32:$dst,
(int_x86_sse42_crc32_16 GR32:$src1, GR16:$src2))]>,
OpSize;
def CRC32m32 : SS42FI<0xF1, MRMSrcMem, (outs GR32:$dst),
(ins GR32:$src1, i32mem:$src2),
"crc32 \t{$src2, $src1|$src1, $src2}",
[(set GR32:$dst,
(int_x86_sse42_crc32_32 GR32:$src1,
(load addr:$src2)))]>, OpSize;
def CRC32r32 : SS42FI<0xF1, MRMSrcReg, (outs GR32:$dst),
(ins GR32:$src1, GR32:$src2),
"crc32 \t{$src2, $src1|$src1, $src2}",
[(set GR32:$dst,
(int_x86_sse42_crc32_32 GR32:$src1, GR32:$src2))]>,
OpSize;
def CRC64m64 : SS42FI<0xF0, MRMSrcMem, (outs GR64:$dst),
(ins GR64:$src1, i64mem:$src2),
"crc32 \t{$src2, $src1|$src1, $src2}",
[(set GR64:$dst,
(int_x86_sse42_crc32_64 GR64:$src1,
(load addr:$src2)))]>,
OpSize, REX_W;
def CRC64r64 : SS42FI<0xF0, MRMSrcReg, (outs GR64:$dst),
(ins GR64:$src1, GR64:$src2),
"crc32 \t{$src2, $src1|$src1, $src2}",
[(set GR64:$dst,
(int_x86_sse42_crc32_64 GR64:$src1, GR64:$src2))]>,
OpSize, REX_W;
}
// String/text processing instructions.
let Defs = [EFLAGS], usesCustomDAGSchedInserter = 1 in {
def PCMPISTRM128REG : SS42AI<0, Pseudo, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2, i8imm:$src3),
"#PCMPISTRM128rr PSEUDO!",
[(set VR128:$dst,
(int_x86_sse42_pcmpistrm128 VR128:$src1, VR128:$src2,
imm:$src3))]>, OpSize;
def PCMPISTRM128MEM : SS42AI<0, Pseudo, (outs VR128:$dst),
(ins VR128:$src1, i128mem:$src2, i8imm:$src3),
"#PCMPISTRM128rm PSEUDO!",
[(set VR128:$dst,
(int_x86_sse42_pcmpistrm128 VR128:$src1,
(load addr:$src2),
imm:$src3))]>, OpSize;
}
let Defs = [XMM0, EFLAGS] in {
def PCMPISTRM128rr : SS42AI<0x62, MRMSrcReg, (outs),
(ins VR128:$src1, VR128:$src2, i8imm:$src3),
"pcmpistrm\t{$src3, $src2, $src1|$src1, $src2, $src3}",
[]>, OpSize;
def PCMPISTRM128rm : SS42AI<0x62, MRMSrcMem, (outs),
(ins VR128:$src1, i128mem:$src2, i8imm:$src3),
"pcmpistrm\t{$src3, $src2, $src1|$src1, $src2, $src3}",
[]>, OpSize;
}
let Defs = [EFLAGS], Uses = [EAX, EDX],
usesCustomDAGSchedInserter = 1 in {
def PCMPESTRM128REG : SS42AI<0, Pseudo, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src3, i8imm:$src5),
"#PCMPESTRM128rr PSEUDO!",
[(set VR128:$dst,
(int_x86_sse42_pcmpestrm128 VR128:$src1, EAX,
VR128:$src3,
EDX, imm:$src5))]>, OpSize;
def PCMPESTRM128MEM : SS42AI<0, Pseudo, (outs VR128:$dst),
(ins VR128:$src1, i128mem:$src3, i8imm:$src5),
"#PCMPESTRM128rm PSEUDO!",
[(set VR128:$dst,
(int_x86_sse42_pcmpestrm128 VR128:$src1, EAX,
(load addr:$src3),
EDX, imm:$src5))]>, OpSize;
}
let Defs = [XMM0, EFLAGS], Uses = [EAX, EDX] in {
def PCMPESTRM128rr : SS42AI<0x60, MRMSrcReg, (outs),
(ins VR128:$src1, VR128:$src3, i8imm:$src5),
"pcmpestrm\t{$src5, $src3, $src1|$src1, $src3, $src5}",
[]>, OpSize;
def PCMPESTRM128rm : SS42AI<0x60, MRMSrcMem, (outs),
(ins VR128:$src1, i128mem:$src3, i8imm:$src5),
"pcmpestrm\t{$src5, $src3, $src1|$src1, $src3, $src5}",
[]>, OpSize;
}
let Defs = [ECX, EFLAGS] in {
multiclass SS42AI_pcmpistri<Intrinsic IntId128> {
def rr : SS42AI<0x63, MRMSrcReg, (outs),
(ins VR128:$src1, VR128:$src2, i8imm:$src3),
"pcmpistri\t{$src3, $src2, $src1|$src1, $src2, $src3}",
[(set ECX,
(IntId128 VR128:$src1, VR128:$src2, imm:$src3)),
(implicit EFLAGS)]>,
OpSize;
def rm : SS42AI<0x63, MRMSrcMem, (outs),
(ins VR128:$src1, i128mem:$src2, i8imm:$src3),
"pcmpistri\t{$src3, $src2, $src1|$src1, $src2, $src3}",
[(set ECX,
(IntId128 VR128:$src1, (load addr:$src2), imm:$src3)),
(implicit EFLAGS)]>,
OpSize;
}
}
defm PCMPISTRI : SS42AI_pcmpistri<int_x86_sse42_pcmpistri128>;
defm PCMPISTRIA : SS42AI_pcmpistri<int_x86_sse42_pcmpistria128>;
defm PCMPISTRIC : SS42AI_pcmpistri<int_x86_sse42_pcmpistric128>;
defm PCMPISTRIO : SS42AI_pcmpistri<int_x86_sse42_pcmpistrio128>;
defm PCMPISTRIS : SS42AI_pcmpistri<int_x86_sse42_pcmpistris128>;
defm PCMPISTRIZ : SS42AI_pcmpistri<int_x86_sse42_pcmpistriz128>;
let Defs = [ECX, EFLAGS] in {
let Uses = [EAX, EDX] in {
multiclass SS42AI_pcmpestri<Intrinsic IntId128> {
def rr : SS42AI<0x61, MRMSrcReg, (outs),
(ins VR128:$src1, VR128:$src3, i8imm:$src5),
"pcmpestri\t{$src5, $src3, $src1|$src1, $src3, $src5}",
[(set ECX,
(IntId128 VR128:$src1, EAX, VR128:$src3, EDX, imm:$src5)),
(implicit EFLAGS)]>,
OpSize;
def rm : SS42AI<0x61, MRMSrcMem, (outs),
(ins VR128:$src1, i128mem:$src3, i8imm:$src5),
"pcmpestri\t{$src5, $src3, $src1|$src1, $src3, $src5}",
[(set ECX,
(IntId128 VR128:$src1, EAX, (load addr:$src3),
EDX, imm:$src5)),
(implicit EFLAGS)]>,
OpSize;
}
}
}
defm PCMPESTRI : SS42AI_pcmpestri<int_x86_sse42_pcmpestri128>;
defm PCMPESTRIA : SS42AI_pcmpestri<int_x86_sse42_pcmpestria128>;
defm PCMPESTRIC : SS42AI_pcmpestri<int_x86_sse42_pcmpestric128>;
defm PCMPESTRIO : SS42AI_pcmpestri<int_x86_sse42_pcmpestrio128>;
defm PCMPESTRIS : SS42AI_pcmpestri<int_x86_sse42_pcmpestris128>;
defm PCMPESTRIZ : SS42AI_pcmpestri<int_x86_sse42_pcmpestriz128>;