llvm-6502/lib/VMCore/PassManagerT.h
Chris Lattner 05ad462d1b Checkin new pass framework. This one is more useful and automatically
creates analysis results for passes that need them.   MethodPass's never
have to worry about being invoked on external methods.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@1594 91177308-0d34-0410-b5e6-96231b3b80d8
2002-01-30 23:20:39 +00:00

396 lines
14 KiB
C++

//===- llvm/PassManager.h - Container for Passes -----------------*- C++ -*--=//
//
// This file defines the PassManager class. This class is used to hold,
// maintain, and optimize execution of Pass's. The PassManager class ensures
// that analysis results are available before a pass runs, and that Pass's are
// destroyed when the PassManager is destroyed.
//
// The PassManagerT template is instantiated three times to do its job.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_PASSMANAGER_H
#define LLVM_PASSMANAGER_H
#include "llvm/Pass.h"
#include <string>
// PassManager - Top level PassManagerT instantiation intended to be used.
typedef PassManagerT<Module> PassManager;
//===----------------------------------------------------------------------===//
// PMDebug class - a set of debugging functions that are enabled when compiling
// with -g on. If compiling at -O, all functions are inlined noops.
//
struct PMDebug {
#ifdef NDEBUG
inline static void PrintPassStructure(Pass *) {}
inline static void PrintPassInformation(unsigned,const char*,Pass*,Value*) {}
inline static void PrintAnalysisSetInfo(unsigned,const char*,
const Pass::AnalysisSet &) {}
#else
// If compiled in debug mode, these functions can be enabled by setting
// -debug-pass on the command line of the tool being used.
//
static void PrintPassStructure(Pass *P);
static void PrintPassInformation(unsigned,const char*,Pass *, Value *);
static void PrintAnalysisSetInfo(unsigned,const char*,const Pass::AnalysisSet&);
#endif
};
//===----------------------------------------------------------------------===//
// Declare the PassManagerTraits which will be specialized...
//
template<class UnitType> class PassManagerTraits; // Do not define.
//===----------------------------------------------------------------------===//
// PassManagerT - Container object for passes. The PassManagerT destructor
// deletes all passes contained inside of the PassManagerT, so you shouldn't
// delete passes manually, and all passes should be dynamically allocated.
//
template<typename UnitType>
class PassManagerT : public PassManagerTraits<UnitType>,public AnalysisResolver{
typedef typename PassManagerTraits<UnitType>::PassClass PassClass;
typedef typename PassManagerTraits<UnitType>::SubPassClass SubPassClass;
typedef typename PassManagerTraits<UnitType>::BatcherClass BatcherClass;
typedef typename PassManagerTraits<UnitType>::ParentClass ParentClass;
typedef PassManagerTraits<UnitType> Traits;
friend typename PassManagerTraits<UnitType>::PassClass;
friend typename PassManagerTraits<UnitType>::SubPassClass;
friend class PassManagerTraits<UnitType>;
std::vector<PassClass*> Passes; // List of pass's to run
// The parent of this pass manager...
const ParentClass *Parent;
// The current batcher if one is in use, or null
BatcherClass *Batcher;
// CurrentAnalyses - As the passes are being run, this map contains the
// analyses that are available to the current pass for use. This is accessed
// through the getAnalysis() function in this class and in Pass.
//
std::map<AnalysisID, Pass*> CurrentAnalyses;
public:
PassManagerT(ParentClass *Par = 0) : Parent(Par), Batcher(0) {}
~PassManagerT() {
// Delete all of the contained passes...
for (std::vector<PassClass*>::iterator I = Passes.begin(), E = Passes.end();
I != E; ++I)
delete *I;
}
// run - Run all of the queued passes on the specified module in an optimal
// way.
virtual bool runOnUnit(UnitType *M) {
bool MadeChanges = false;
closeBatcher();
CurrentAnalyses.clear();
// Output debug information...
if (Parent == 0) PMDebug::PrintPassStructure(this);
// Run all of the passes
for (unsigned i = 0, e = Passes.size(); i < e; ++i) {
PassClass *P = Passes[i];
PMDebug::PrintPassInformation(getDepth(), "Executing Pass", P, (Value*)M);
// Get information about what analyses the pass uses...
std::vector<AnalysisID> Required, Destroyed, Provided;
P->getAnalysisUsageInfo(Required, Destroyed, Provided);
PMDebug::PrintAnalysisSetInfo(getDepth(), "Required", Required);
#ifndef NDEBUG
// All Required analyses should be available to the pass as it runs!
for (Pass::AnalysisSet::iterator I = Required.begin(),
E = Required.end(); I != E; ++I) {
assert(getAnalysisOrNullUp(*I) && "Analysis used but not available!");
}
#endif
// Run the sub pass!
MadeChanges |= Traits::runPass(P, M);
PMDebug::PrintAnalysisSetInfo(getDepth(), "Destroyed", Destroyed);
PMDebug::PrintAnalysisSetInfo(getDepth(), "Provided", Provided);
// Erase all analyses in the destroyed set...
for (Pass::AnalysisSet::iterator I = Destroyed.begin(),
E = Destroyed.end(); I != E; ++I)
CurrentAnalyses.erase(*I);
// Add all analyses in the provided set...
for (Pass::AnalysisSet::iterator I = Provided.begin(),
E = Provided.end(); I != E; ++I)
CurrentAnalyses[*I] = P;
}
return MadeChanges;
}
// add - Add a pass to the queue of passes to run. This passes ownership of
// the Pass to the PassManager. When the PassManager is destroyed, the pass
// will be destroyed as well, so there is no need to delete the pass. Also,
// all passes MUST be new'd.
//
void add(PassClass *P) {
// Get information about what analyses the pass uses...
std::vector<AnalysisID> Required, Destroyed, Provided;
P->getAnalysisUsageInfo(Required, Destroyed, Provided);
// Loop over all of the analyses used by this pass,
for (std::vector<AnalysisID>::iterator I = Required.begin(),
E = Required.end(); I != E; ++I) {
if (getAnalysisOrNullDown(*I) == 0)
add(I->createPass());
}
// Tell the pass to add itself to this PassManager... the way it does so
// depends on the class of the pass, and is critical to laying out passes in
// an optimal order..
//
P->addToPassManager(this, Destroyed, Provided);
}
#ifndef NDEBUG
// dumpPassStructure - Implement the -debug-passes=PassStructure option
virtual void dumpPassStructure(unsigned Offset = 0) {
std::cerr << std::string(Offset*2, ' ') << "Pass Manager\n";
for (std::vector<PassClass*>::iterator I = Passes.begin(), E = Passes.end();
I != E; ++I)
(*I)->dumpPassStructure(Offset+1);
}
#endif
public:
Pass *getAnalysisOrNullDown(AnalysisID ID) {
std::map<AnalysisID, Pass*>::iterator I = CurrentAnalyses.find(ID);
if (I == CurrentAnalyses.end()) {
if (Batcher)
return ((AnalysisResolver*)Batcher)->getAnalysisOrNullDown(ID);
return 0;
}
return I->second;
}
Pass *getAnalysisOrNullUp(AnalysisID ID) {
std::map<AnalysisID, Pass*>::iterator I = CurrentAnalyses.find(ID);
if (I == CurrentAnalyses.end()) {
if (Parent)
return ((AnalysisResolver*)Parent)->getAnalysisOrNullUp(ID);
return 0;
}
return I->second;
}
virtual unsigned getDepth() const {
if (Parent == 0) return 0;
return 1 + ((AnalysisResolver*)Parent)->getDepth();
}
private:
// addPass - These functions are used to implement the subclass specific
// behaviors present in PassManager. Basically the add(Pass*) method ends up
// reflecting its behavior into a Pass::addToPassManager call. Subclasses of
// Pass override it specifically so that they can reflect the type
// information inherent in "this" back to the PassManager.
//
// For generic Pass subclasses (which are interprocedural passes), we simply
// add the pass to the end of the pass list and terminate any accumulation of
// MethodPasses that are present.
//
void addPass(PassClass *P, Pass::AnalysisSet &Destroyed,
Pass::AnalysisSet &Provided) {
// Providers are analysis classes which are forbidden to modify the module
// they are operating on, so they are allowed to be reordered to before the
// batcher...
//
if (Batcher && Provided.empty())
closeBatcher(); // This pass cannot be batched!
// Set the Resolver instance variable in the Pass so that it knows where to
// find this object...
//
setAnalysisResolver(P, this);
Passes.push_back(P);
// Erase all analyses in the destroyed set...
for (std::vector<AnalysisID>::iterator I = Destroyed.begin(),
E = Destroyed.end(); I != E; ++I)
CurrentAnalyses.erase(*I);
// Add all analyses in the provided set...
for (std::vector<AnalysisID>::iterator I = Provided.begin(),
E = Provided.end(); I != E; ++I)
CurrentAnalyses[*I] = P;
}
// For MethodPass subclasses, we must be sure to batch the MethodPasses
// together in a MethodPassBatcher object so that all of the analyses are run
// together a method at a time.
//
void addPass(SubPassClass *MP, Pass::AnalysisSet &Destroyed,
Pass::AnalysisSet &Provided) {
if (Batcher == 0) // If we don't have a batcher yet, make one now.
Batcher = new BatcherClass(this);
// The Batcher will queue them passes up
MP->addToPassManager(Batcher, Destroyed, Provided);
}
// closeBatcher - Terminate the batcher that is being worked on.
void closeBatcher() {
if (Batcher) {
Passes.push_back(Batcher);
Batcher = 0;
}
}
};
//===----------------------------------------------------------------------===//
// PassManagerTraits<BasicBlock> Specialization
//
// This pass manager is used to group together all of the BasicBlockPass's
// into a single unit.
//
template<> struct PassManagerTraits<BasicBlock> : public BasicBlockPass {
// PassClass - The type of passes tracked by this PassManager
typedef BasicBlockPass PassClass;
// SubPassClass - The types of classes that should be collated together
// This is impossible to match, so BasicBlock instantiations of PassManagerT
// do not collate.
//
typedef PassManagerT<Module> SubPassClass;
// BatcherClass - The type to use for collation of subtypes... This class is
// never instantiated for the PassManager<BasicBlock>, but it must be an
// instance of PassClass to typecheck.
//
typedef PassClass BatcherClass;
// ParentClass - The type of the parent PassManager...
typedef PassManagerT<Method> ParentClass;
// runPass - Specify how the pass should be run on the UnitType
static bool runPass(PassClass *P, BasicBlock *M) {
// todo, init and finalize
return P->runOnBasicBlock(M);
}
// run - Implement the Pass interface...
virtual bool runOnBasicBlock(BasicBlock *BB);
};
//===----------------------------------------------------------------------===//
// PassManagerTraits<Method> Specialization
//
// This pass manager is used to group together all of the MethodPass's
// into a single unit.
//
template<> struct PassManagerTraits<Method> : public MethodPass {
// PassClass - The type of passes tracked by this PassManager
typedef MethodPass PassClass;
// SubPassClass - The types of classes that should be collated together
typedef BasicBlockPass SubPassClass;
// BatcherClass - The type to use for collation of subtypes...
typedef PassManagerT<BasicBlock> BatcherClass;
// ParentClass - The type of the parent PassManager...
typedef PassManagerT<Module> ParentClass;
// PMType - The type of the passmanager that subclasses this class
typedef PassManagerT<Method> PMType;
// runPass - Specify how the pass should be run on the UnitType
static bool runPass(PassClass *P, Method *M) {
return P->runOnMethod(M);
}
// Implement the MethodPass interface...
virtual bool doInitialization(Module *M);
virtual bool runOnMethod(Method *M);
virtual bool doFinalization(Module *M);
};
//===----------------------------------------------------------------------===//
// PassManagerTraits<Module> Specialization
//
// This is the top level PassManager implementation that holds generic passes.
//
template<> struct PassManagerTraits<Module> : public Pass {
// PassClass - The type of passes tracked by this PassManager
typedef Pass PassClass;
// SubPassClass - The types of classes that should be collated together
typedef MethodPass SubPassClass;
// BatcherClass - The type to use for collation of subtypes...
typedef PassManagerT<Method> BatcherClass;
// ParentClass - The type of the parent PassManager...
typedef void ParentClass;
// runPass - Specify how the pass should be run on the UnitType
static bool runPass(PassClass *P, Module *M) { return P->run(M); }
// run - Implement the Pass interface...
virtual bool run(Module *M) {
return ((PassManagerT<Module>*)this)->runOnUnit(M);
}
};
//===----------------------------------------------------------------------===//
// PassManagerTraits Method Implementations
//
// PassManagerTraits<BasicBlock> Implementations
//
inline bool PassManagerTraits<BasicBlock>::runOnBasicBlock(BasicBlock *BB) {
return ((PassManagerT<BasicBlock>*)this)->runOnUnit(BB);
}
// PassManagerTraits<Method> Implementations
//
inline bool PassManagerTraits<Method>::doInitialization(Module *M) {
bool Changed = false;
for (unsigned i = 0, e = ((PMType*)this)->Passes.size(); i != e; ++i)
((PMType*)this)->Passes[i]->doInitialization(M);
return Changed;
}
inline bool PassManagerTraits<Method>::runOnMethod(Method *M) {
return ((PMType*)this)->runOnUnit(M);
}
// PassManagerTraits<Module> Implementations
//
inline bool PassManagerTraits<Method>::doFinalization(Module *M) {
bool Changed = false;
for (unsigned i = 0, e = ((PMType*)this)->Passes.size(); i != e; ++i)
((PMType*)this)->Passes[i]->doFinalization(M);
return Changed;
}
#endif