mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-22 07:32:48 +00:00
e7147dba73
it. It's been assumed up til now that it would be in its immediate successor. However, this isn't necessarily the case. It could be in one of its successor's successors. Modify the code to more thoroughly check for an 'eh.selector' call in successors. It only looks at a successor if we get there as a result of an unconditional branch. Testcase ObjC/exceptions-4.m in r126968. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@126969 91177308-0d34-0410-b5e6-96231b3b80d8
478 lines
18 KiB
C++
478 lines
18 KiB
C++
//===-- FunctionLoweringInfo.cpp ------------------------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This implements routines for translating functions from LLVM IR into
|
|
// Machine IR.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "function-lowering-info"
|
|
#include "llvm/CodeGen/FunctionLoweringInfo.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/IntrinsicInst.h"
|
|
#include "llvm/LLVMContext.h"
|
|
#include "llvm/Module.h"
|
|
#include "llvm/Analysis/DebugInfo.h"
|
|
#include "llvm/CodeGen/Analysis.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineModuleInfo.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/Target/TargetRegisterInfo.h"
|
|
#include "llvm/Target/TargetData.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Target/TargetLowering.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include <algorithm>
|
|
using namespace llvm;
|
|
|
|
/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
|
|
/// PHI nodes or outside of the basic block that defines it, or used by a
|
|
/// switch or atomic instruction, which may expand to multiple basic blocks.
|
|
static bool isUsedOutsideOfDefiningBlock(const Instruction *I) {
|
|
if (I->use_empty()) return false;
|
|
if (isa<PHINode>(I)) return true;
|
|
const BasicBlock *BB = I->getParent();
|
|
for (Value::const_use_iterator UI = I->use_begin(), E = I->use_end();
|
|
UI != E; ++UI) {
|
|
const User *U = *UI;
|
|
if (cast<Instruction>(U)->getParent() != BB || isa<PHINode>(U))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
|
|
/// entry block, return true. This includes arguments used by switches, since
|
|
/// the switch may expand into multiple basic blocks.
|
|
static bool isOnlyUsedInEntryBlock(const Argument *A, bool EnableFastISel) {
|
|
// With FastISel active, we may be splitting blocks, so force creation
|
|
// of virtual registers for all non-dead arguments.
|
|
if (EnableFastISel)
|
|
return A->use_empty();
|
|
|
|
const BasicBlock *Entry = A->getParent()->begin();
|
|
for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end();
|
|
UI != E; ++UI) {
|
|
const User *U = *UI;
|
|
if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U))
|
|
return false; // Use not in entry block.
|
|
}
|
|
return true;
|
|
}
|
|
|
|
FunctionLoweringInfo::FunctionLoweringInfo(const TargetLowering &tli)
|
|
: TLI(tli) {
|
|
}
|
|
|
|
void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf) {
|
|
Fn = &fn;
|
|
MF = &mf;
|
|
RegInfo = &MF->getRegInfo();
|
|
|
|
// Check whether the function can return without sret-demotion.
|
|
SmallVector<ISD::OutputArg, 4> Outs;
|
|
GetReturnInfo(Fn->getReturnType(),
|
|
Fn->getAttributes().getRetAttributes(), Outs, TLI);
|
|
CanLowerReturn = TLI.CanLowerReturn(Fn->getCallingConv(), Fn->isVarArg(),
|
|
Outs, Fn->getContext());
|
|
|
|
// Create a vreg for each argument register that is not dead and is used
|
|
// outside of the entry block for the function.
|
|
for (Function::const_arg_iterator AI = Fn->arg_begin(), E = Fn->arg_end();
|
|
AI != E; ++AI)
|
|
if (!isOnlyUsedInEntryBlock(AI, EnableFastISel))
|
|
InitializeRegForValue(AI);
|
|
|
|
// Initialize the mapping of values to registers. This is only set up for
|
|
// instruction values that are used outside of the block that defines
|
|
// them.
|
|
Function::const_iterator BB = Fn->begin(), EB = Fn->end();
|
|
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I)
|
|
if (const AllocaInst *AI = dyn_cast<AllocaInst>(I))
|
|
if (const ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
|
|
const Type *Ty = AI->getAllocatedType();
|
|
uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
|
|
unsigned Align =
|
|
std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
|
|
AI->getAlignment());
|
|
|
|
TySize *= CUI->getZExtValue(); // Get total allocated size.
|
|
if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
|
|
|
|
// The object may need to be placed onto the stack near the stack
|
|
// protector if one exists. Determine here if this object is a suitable
|
|
// candidate. I.e., it would trigger the creation of a stack protector.
|
|
bool MayNeedSP =
|
|
(AI->isArrayAllocation() ||
|
|
(TySize > 8 && isa<ArrayType>(Ty) &&
|
|
cast<ArrayType>(Ty)->getElementType()->isIntegerTy(8)));
|
|
StaticAllocaMap[AI] =
|
|
MF->getFrameInfo()->CreateStackObject(TySize, Align, false, MayNeedSP);
|
|
}
|
|
|
|
for (; BB != EB; ++BB)
|
|
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
|
|
// Mark values used outside their block as exported, by allocating
|
|
// a virtual register for them.
|
|
if (isUsedOutsideOfDefiningBlock(I))
|
|
if (!isa<AllocaInst>(I) ||
|
|
!StaticAllocaMap.count(cast<AllocaInst>(I)))
|
|
InitializeRegForValue(I);
|
|
|
|
// Collect llvm.dbg.declare information. This is done now instead of
|
|
// during the initial isel pass through the IR so that it is done
|
|
// in a predictable order.
|
|
if (const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(I)) {
|
|
MachineModuleInfo &MMI = MF->getMMI();
|
|
if (MMI.hasDebugInfo() &&
|
|
DIVariable(DI->getVariable()).Verify() &&
|
|
!DI->getDebugLoc().isUnknown()) {
|
|
// Don't handle byval struct arguments or VLAs, for example.
|
|
// Non-byval arguments are handled here (they refer to the stack
|
|
// temporary alloca at this point).
|
|
const Value *Address = DI->getAddress();
|
|
if (Address) {
|
|
if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
|
|
Address = BCI->getOperand(0);
|
|
if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
|
|
DenseMap<const AllocaInst *, int>::iterator SI =
|
|
StaticAllocaMap.find(AI);
|
|
if (SI != StaticAllocaMap.end()) { // Check for VLAs.
|
|
int FI = SI->second;
|
|
MMI.setVariableDbgInfo(DI->getVariable(),
|
|
FI, DI->getDebugLoc());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This
|
|
// also creates the initial PHI MachineInstrs, though none of the input
|
|
// operands are populated.
|
|
for (BB = Fn->begin(); BB != EB; ++BB) {
|
|
MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(BB);
|
|
MBBMap[BB] = MBB;
|
|
MF->push_back(MBB);
|
|
|
|
// Transfer the address-taken flag. This is necessary because there could
|
|
// be multiple MachineBasicBlocks corresponding to one BasicBlock, and only
|
|
// the first one should be marked.
|
|
if (BB->hasAddressTaken())
|
|
MBB->setHasAddressTaken();
|
|
|
|
// Create Machine PHI nodes for LLVM PHI nodes, lowering them as
|
|
// appropriate.
|
|
for (BasicBlock::const_iterator I = BB->begin();
|
|
const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
|
|
if (PN->use_empty()) continue;
|
|
|
|
DebugLoc DL = PN->getDebugLoc();
|
|
unsigned PHIReg = ValueMap[PN];
|
|
assert(PHIReg && "PHI node does not have an assigned virtual register!");
|
|
|
|
SmallVector<EVT, 4> ValueVTs;
|
|
ComputeValueVTs(TLI, PN->getType(), ValueVTs);
|
|
for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
|
|
EVT VT = ValueVTs[vti];
|
|
unsigned NumRegisters = TLI.getNumRegisters(Fn->getContext(), VT);
|
|
const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
|
|
for (unsigned i = 0; i != NumRegisters; ++i)
|
|
BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i);
|
|
PHIReg += NumRegisters;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Mark landing pad blocks.
|
|
for (BB = Fn->begin(); BB != EB; ++BB)
|
|
if (const InvokeInst *Invoke = dyn_cast<InvokeInst>(BB->getTerminator()))
|
|
MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
|
|
}
|
|
|
|
/// clear - Clear out all the function-specific state. This returns this
|
|
/// FunctionLoweringInfo to an empty state, ready to be used for a
|
|
/// different function.
|
|
void FunctionLoweringInfo::clear() {
|
|
assert(CatchInfoFound.size() == CatchInfoLost.size() &&
|
|
"Not all catch info was assigned to a landing pad!");
|
|
|
|
MBBMap.clear();
|
|
ValueMap.clear();
|
|
StaticAllocaMap.clear();
|
|
#ifndef NDEBUG
|
|
CatchInfoLost.clear();
|
|
CatchInfoFound.clear();
|
|
#endif
|
|
LiveOutRegInfo.clear();
|
|
VisitedBBs.clear();
|
|
ArgDbgValues.clear();
|
|
ByValArgFrameIndexMap.clear();
|
|
RegFixups.clear();
|
|
}
|
|
|
|
/// CreateReg - Allocate a single virtual register for the given type.
|
|
unsigned FunctionLoweringInfo::CreateReg(EVT VT) {
|
|
return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT));
|
|
}
|
|
|
|
/// CreateRegs - Allocate the appropriate number of virtual registers of
|
|
/// the correctly promoted or expanded types. Assign these registers
|
|
/// consecutive vreg numbers and return the first assigned number.
|
|
///
|
|
/// In the case that the given value has struct or array type, this function
|
|
/// will assign registers for each member or element.
|
|
///
|
|
unsigned FunctionLoweringInfo::CreateRegs(const Type *Ty) {
|
|
SmallVector<EVT, 4> ValueVTs;
|
|
ComputeValueVTs(TLI, Ty, ValueVTs);
|
|
|
|
unsigned FirstReg = 0;
|
|
for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
|
|
EVT ValueVT = ValueVTs[Value];
|
|
EVT RegisterVT = TLI.getRegisterType(Ty->getContext(), ValueVT);
|
|
|
|
unsigned NumRegs = TLI.getNumRegisters(Ty->getContext(), ValueVT);
|
|
for (unsigned i = 0; i != NumRegs; ++i) {
|
|
unsigned R = CreateReg(RegisterVT);
|
|
if (!FirstReg) FirstReg = R;
|
|
}
|
|
}
|
|
return FirstReg;
|
|
}
|
|
|
|
/// GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the
|
|
/// register is a PHI destination and the PHI's LiveOutInfo is not valid. If
|
|
/// the register's LiveOutInfo is for a smaller bit width, it is extended to
|
|
/// the larger bit width by zero extension. The bit width must be no smaller
|
|
/// than the LiveOutInfo's existing bit width.
|
|
const FunctionLoweringInfo::LiveOutInfo *
|
|
FunctionLoweringInfo::GetLiveOutRegInfo(unsigned Reg, unsigned BitWidth) {
|
|
if (!LiveOutRegInfo.inBounds(Reg))
|
|
return NULL;
|
|
|
|
LiveOutInfo *LOI = &LiveOutRegInfo[Reg];
|
|
if (!LOI->IsValid)
|
|
return NULL;
|
|
|
|
if (BitWidth > LOI->KnownZero.getBitWidth()) {
|
|
LOI->NumSignBits = 1;
|
|
LOI->KnownZero = LOI->KnownZero.zextOrTrunc(BitWidth);
|
|
LOI->KnownOne = LOI->KnownOne.zextOrTrunc(BitWidth);
|
|
}
|
|
|
|
return LOI;
|
|
}
|
|
|
|
/// ComputePHILiveOutRegInfo - Compute LiveOutInfo for a PHI's destination
|
|
/// register based on the LiveOutInfo of its operands.
|
|
void FunctionLoweringInfo::ComputePHILiveOutRegInfo(const PHINode *PN) {
|
|
const Type *Ty = PN->getType();
|
|
if (!Ty->isIntegerTy() || Ty->isVectorTy())
|
|
return;
|
|
|
|
SmallVector<EVT, 1> ValueVTs;
|
|
ComputeValueVTs(TLI, Ty, ValueVTs);
|
|
assert(ValueVTs.size() == 1 &&
|
|
"PHIs with non-vector integer types should have a single VT.");
|
|
EVT IntVT = ValueVTs[0];
|
|
|
|
if (TLI.getNumRegisters(PN->getContext(), IntVT) != 1)
|
|
return;
|
|
IntVT = TLI.getTypeToTransformTo(PN->getContext(), IntVT);
|
|
unsigned BitWidth = IntVT.getSizeInBits();
|
|
|
|
unsigned DestReg = ValueMap[PN];
|
|
if (!TargetRegisterInfo::isVirtualRegister(DestReg))
|
|
return;
|
|
LiveOutRegInfo.grow(DestReg);
|
|
LiveOutInfo &DestLOI = LiveOutRegInfo[DestReg];
|
|
|
|
Value *V = PN->getIncomingValue(0);
|
|
if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
|
|
DestLOI.NumSignBits = 1;
|
|
APInt Zero(BitWidth, 0);
|
|
DestLOI.KnownZero = Zero;
|
|
DestLOI.KnownOne = Zero;
|
|
return;
|
|
}
|
|
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
|
|
APInt Val = CI->getValue().zextOrTrunc(BitWidth);
|
|
DestLOI.NumSignBits = Val.getNumSignBits();
|
|
DestLOI.KnownZero = ~Val;
|
|
DestLOI.KnownOne = Val;
|
|
} else {
|
|
assert(ValueMap.count(V) && "V should have been placed in ValueMap when its"
|
|
"CopyToReg node was created.");
|
|
unsigned SrcReg = ValueMap[V];
|
|
if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) {
|
|
DestLOI.IsValid = false;
|
|
return;
|
|
}
|
|
const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
|
|
if (!SrcLOI) {
|
|
DestLOI.IsValid = false;
|
|
return;
|
|
}
|
|
DestLOI = *SrcLOI;
|
|
}
|
|
|
|
assert(DestLOI.KnownZero.getBitWidth() == BitWidth &&
|
|
DestLOI.KnownOne.getBitWidth() == BitWidth &&
|
|
"Masks should have the same bit width as the type.");
|
|
|
|
for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
|
|
Value *V = PN->getIncomingValue(i);
|
|
if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
|
|
DestLOI.NumSignBits = 1;
|
|
APInt Zero(BitWidth, 0);
|
|
DestLOI.KnownZero = Zero;
|
|
DestLOI.KnownOne = Zero;
|
|
return;
|
|
}
|
|
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
|
|
APInt Val = CI->getValue().zextOrTrunc(BitWidth);
|
|
DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, Val.getNumSignBits());
|
|
DestLOI.KnownZero &= ~Val;
|
|
DestLOI.KnownOne &= Val;
|
|
continue;
|
|
}
|
|
|
|
assert(ValueMap.count(V) && "V should have been placed in ValueMap when "
|
|
"its CopyToReg node was created.");
|
|
unsigned SrcReg = ValueMap[V];
|
|
if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) {
|
|
DestLOI.IsValid = false;
|
|
return;
|
|
}
|
|
const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
|
|
if (!SrcLOI) {
|
|
DestLOI.IsValid = false;
|
|
return;
|
|
}
|
|
DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, SrcLOI->NumSignBits);
|
|
DestLOI.KnownZero &= SrcLOI->KnownZero;
|
|
DestLOI.KnownOne &= SrcLOI->KnownOne;
|
|
}
|
|
}
|
|
|
|
/// setByValArgumentFrameIndex - Record frame index for the byval
|
|
/// argument. This overrides previous frame index entry for this argument,
|
|
/// if any.
|
|
void FunctionLoweringInfo::setByValArgumentFrameIndex(const Argument *A,
|
|
int FI) {
|
|
assert (A->hasByValAttr() && "Argument does not have byval attribute!");
|
|
ByValArgFrameIndexMap[A] = FI;
|
|
}
|
|
|
|
/// getByValArgumentFrameIndex - Get frame index for the byval argument.
|
|
/// If the argument does not have any assigned frame index then 0 is
|
|
/// returned.
|
|
int FunctionLoweringInfo::getByValArgumentFrameIndex(const Argument *A) {
|
|
assert (A->hasByValAttr() && "Argument does not have byval attribute!");
|
|
DenseMap<const Argument *, int>::iterator I =
|
|
ByValArgFrameIndexMap.find(A);
|
|
if (I != ByValArgFrameIndexMap.end())
|
|
return I->second;
|
|
DEBUG(dbgs() << "Argument does not have assigned frame index!");
|
|
return 0;
|
|
}
|
|
|
|
/// AddCatchInfo - Extract the personality and type infos from an eh.selector
|
|
/// call, and add them to the specified machine basic block.
|
|
void llvm::AddCatchInfo(const CallInst &I, MachineModuleInfo *MMI,
|
|
MachineBasicBlock *MBB) {
|
|
// Inform the MachineModuleInfo of the personality for this landing pad.
|
|
const ConstantExpr *CE = cast<ConstantExpr>(I.getArgOperand(1));
|
|
assert(CE->getOpcode() == Instruction::BitCast &&
|
|
isa<Function>(CE->getOperand(0)) &&
|
|
"Personality should be a function");
|
|
MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0)));
|
|
|
|
// Gather all the type infos for this landing pad and pass them along to
|
|
// MachineModuleInfo.
|
|
std::vector<const GlobalVariable *> TyInfo;
|
|
unsigned N = I.getNumArgOperands();
|
|
|
|
for (unsigned i = N - 1; i > 1; --i) {
|
|
if (const ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(i))) {
|
|
unsigned FilterLength = CI->getZExtValue();
|
|
unsigned FirstCatch = i + FilterLength + !FilterLength;
|
|
assert(FirstCatch <= N && "Invalid filter length");
|
|
|
|
if (FirstCatch < N) {
|
|
TyInfo.reserve(N - FirstCatch);
|
|
for (unsigned j = FirstCatch; j < N; ++j)
|
|
TyInfo.push_back(ExtractTypeInfo(I.getArgOperand(j)));
|
|
MMI->addCatchTypeInfo(MBB, TyInfo);
|
|
TyInfo.clear();
|
|
}
|
|
|
|
if (!FilterLength) {
|
|
// Cleanup.
|
|
MMI->addCleanup(MBB);
|
|
} else {
|
|
// Filter.
|
|
TyInfo.reserve(FilterLength - 1);
|
|
for (unsigned j = i + 1; j < FirstCatch; ++j)
|
|
TyInfo.push_back(ExtractTypeInfo(I.getArgOperand(j)));
|
|
MMI->addFilterTypeInfo(MBB, TyInfo);
|
|
TyInfo.clear();
|
|
}
|
|
|
|
N = i;
|
|
}
|
|
}
|
|
|
|
if (N > 2) {
|
|
TyInfo.reserve(N - 2);
|
|
for (unsigned j = 2; j < N; ++j)
|
|
TyInfo.push_back(ExtractTypeInfo(I.getArgOperand(j)));
|
|
MMI->addCatchTypeInfo(MBB, TyInfo);
|
|
}
|
|
}
|
|
|
|
void llvm::CopyCatchInfo(const BasicBlock *SuccBB, const BasicBlock *LPad,
|
|
MachineModuleInfo *MMI, FunctionLoweringInfo &FLI) {
|
|
SmallPtrSet<const BasicBlock*, 4> Visited;
|
|
|
|
// The 'eh.selector' call may not be in the direct successor of a basic block,
|
|
// but could be several successors deeper. If we don't find it, try going one
|
|
// level further. <rdar://problem/8824861>
|
|
while (Visited.insert(SuccBB)) {
|
|
for (BasicBlock::const_iterator I = SuccBB->begin(), E = --SuccBB->end();
|
|
I != E; ++I)
|
|
if (const EHSelectorInst *EHSel = dyn_cast<EHSelectorInst>(I)) {
|
|
// Apply the catch info to LPad.
|
|
AddCatchInfo(*EHSel, MMI, FLI.MBBMap[LPad]);
|
|
#ifndef NDEBUG
|
|
if (!FLI.MBBMap[SuccBB]->isLandingPad())
|
|
FLI.CatchInfoFound.insert(EHSel);
|
|
#endif
|
|
return;
|
|
}
|
|
|
|
const BranchInst *Br = dyn_cast<BranchInst>(SuccBB->getTerminator());
|
|
if (Br && Br->isUnconditional())
|
|
SuccBB = Br->getSuccessor(0);
|
|
else
|
|
break;
|
|
}
|
|
}
|