mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-11-01 00:11:00 +00:00
92dfe2001e
isRegister, isImmediate, and isMachineBasicBlock, which are equivalent, and more popular. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@41958 91177308-0d34-0410-b5e6-96231b3b80d8
1205 lines
46 KiB
C++
1205 lines
46 KiB
C++
//===-- SimpleRegisterCoalescing.cpp - Register Coalescing ----------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by the LLVM research group and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements a simple register coalescing pass that attempts to
|
|
// aggressively coalesce every register copy that it can.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "regcoalescing"
|
|
#include "llvm/CodeGen/SimpleRegisterCoalescing.h"
|
|
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
|
|
#include "VirtRegMap.h"
|
|
#include "llvm/Value.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/CodeGen/LiveVariables.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/CodeGen/SSARegMap.h"
|
|
#include "llvm/CodeGen/RegisterCoalescer.h"
|
|
#include "llvm/Target/MRegisterInfo.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
using namespace llvm;
|
|
|
|
STATISTIC(numJoins , "Number of interval joins performed");
|
|
STATISTIC(numPeep , "Number of identity moves eliminated after coalescing");
|
|
STATISTIC(numAborts , "Number of times interval joining aborted");
|
|
|
|
char SimpleRegisterCoalescing::ID = 0;
|
|
namespace {
|
|
static cl::opt<bool>
|
|
EnableJoining("join-liveintervals",
|
|
cl::desc("Coalesce copies (default=true)"),
|
|
cl::init(true));
|
|
|
|
RegisterPass<SimpleRegisterCoalescing>
|
|
X("simple-register-coalescing", "Simple Register Coalescing");
|
|
|
|
// Declare that we implement the RegisterCoalescer interface
|
|
RegisterAnalysisGroup<RegisterCoalescer, true/*The Default*/> V(X);
|
|
}
|
|
|
|
const PassInfo *llvm::SimpleRegisterCoalescingID = X.getPassInfo();
|
|
|
|
void SimpleRegisterCoalescing::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
//AU.addPreserved<LiveVariables>();
|
|
AU.addPreserved<LiveIntervals>();
|
|
AU.addPreservedID(PHIEliminationID);
|
|
AU.addPreservedID(TwoAddressInstructionPassID);
|
|
AU.addRequired<LiveVariables>();
|
|
AU.addRequired<LiveIntervals>();
|
|
AU.addRequired<LoopInfo>();
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
/// AdjustCopiesBackFrom - We found a non-trivially-coalescable copy with IntA
|
|
/// being the source and IntB being the dest, thus this defines a value number
|
|
/// in IntB. If the source value number (in IntA) is defined by a copy from B,
|
|
/// see if we can merge these two pieces of B into a single value number,
|
|
/// eliminating a copy. For example:
|
|
///
|
|
/// A3 = B0
|
|
/// ...
|
|
/// B1 = A3 <- this copy
|
|
///
|
|
/// In this case, B0 can be extended to where the B1 copy lives, allowing the B1
|
|
/// value number to be replaced with B0 (which simplifies the B liveinterval).
|
|
///
|
|
/// This returns true if an interval was modified.
|
|
///
|
|
bool SimpleRegisterCoalescing::AdjustCopiesBackFrom(LiveInterval &IntA, LiveInterval &IntB,
|
|
MachineInstr *CopyMI) {
|
|
unsigned CopyIdx = li_->getDefIndex(li_->getInstructionIndex(CopyMI));
|
|
|
|
// BValNo is a value number in B that is defined by a copy from A. 'B3' in
|
|
// the example above.
|
|
LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx);
|
|
VNInfo *BValNo = BLR->valno;
|
|
|
|
// Get the location that B is defined at. Two options: either this value has
|
|
// an unknown definition point or it is defined at CopyIdx. If unknown, we
|
|
// can't process it.
|
|
if (!BValNo->reg) return false;
|
|
assert(BValNo->def == CopyIdx &&
|
|
"Copy doesn't define the value?");
|
|
|
|
// AValNo is the value number in A that defines the copy, A0 in the example.
|
|
LiveInterval::iterator AValLR = IntA.FindLiveRangeContaining(CopyIdx-1);
|
|
VNInfo *AValNo = AValLR->valno;
|
|
|
|
// If AValNo is defined as a copy from IntB, we can potentially process this.
|
|
|
|
// Get the instruction that defines this value number.
|
|
unsigned SrcReg = AValNo->reg;
|
|
if (!SrcReg) return false; // Not defined by a copy.
|
|
|
|
// If the value number is not defined by a copy instruction, ignore it.
|
|
|
|
// If the source register comes from an interval other than IntB, we can't
|
|
// handle this.
|
|
if (rep(SrcReg) != IntB.reg) return false;
|
|
|
|
// Get the LiveRange in IntB that this value number starts with.
|
|
LiveInterval::iterator ValLR = IntB.FindLiveRangeContaining(AValNo->def-1);
|
|
|
|
// Make sure that the end of the live range is inside the same block as
|
|
// CopyMI.
|
|
MachineInstr *ValLREndInst = li_->getInstructionFromIndex(ValLR->end-1);
|
|
if (!ValLREndInst ||
|
|
ValLREndInst->getParent() != CopyMI->getParent()) return false;
|
|
|
|
// Okay, we now know that ValLR ends in the same block that the CopyMI
|
|
// live-range starts. If there are no intervening live ranges between them in
|
|
// IntB, we can merge them.
|
|
if (ValLR+1 != BLR) return false;
|
|
|
|
// If a live interval is a physical register, conservatively check if any
|
|
// of its sub-registers is overlapping the live interval of the virtual
|
|
// register. If so, do not coalesce.
|
|
if (MRegisterInfo::isPhysicalRegister(IntB.reg) &&
|
|
*mri_->getSubRegisters(IntB.reg)) {
|
|
for (const unsigned* SR = mri_->getSubRegisters(IntB.reg); *SR; ++SR)
|
|
if (li_->hasInterval(*SR) && IntA.overlaps(li_->getInterval(*SR))) {
|
|
DOUT << "Interfere with sub-register ";
|
|
DEBUG(li_->getInterval(*SR).print(DOUT, mri_));
|
|
return false;
|
|
}
|
|
}
|
|
|
|
DOUT << "\nExtending: "; IntB.print(DOUT, mri_);
|
|
|
|
unsigned FillerStart = ValLR->end, FillerEnd = BLR->start;
|
|
// We are about to delete CopyMI, so need to remove it as the 'instruction
|
|
// that defines this value #'. Update the the valnum with the new defining
|
|
// instruction #.
|
|
BValNo->def = FillerStart;
|
|
BValNo->reg = 0;
|
|
|
|
// Okay, we can merge them. We need to insert a new liverange:
|
|
// [ValLR.end, BLR.begin) of either value number, then we merge the
|
|
// two value numbers.
|
|
IntB.addRange(LiveRange(FillerStart, FillerEnd, BValNo));
|
|
|
|
// If the IntB live range is assigned to a physical register, and if that
|
|
// physreg has aliases,
|
|
if (MRegisterInfo::isPhysicalRegister(IntB.reg)) {
|
|
// Update the liveintervals of sub-registers.
|
|
for (const unsigned *AS = mri_->getSubRegisters(IntB.reg); *AS; ++AS) {
|
|
LiveInterval &AliasLI = li_->getInterval(*AS);
|
|
AliasLI.addRange(LiveRange(FillerStart, FillerEnd,
|
|
AliasLI.getNextValue(FillerStart, 0, li_->getVNInfoAllocator())));
|
|
}
|
|
}
|
|
|
|
// Okay, merge "B1" into the same value number as "B0".
|
|
if (BValNo != ValLR->valno)
|
|
IntB.MergeValueNumberInto(BValNo, ValLR->valno);
|
|
DOUT << " result = "; IntB.print(DOUT, mri_);
|
|
DOUT << "\n";
|
|
|
|
// If the source instruction was killing the source register before the
|
|
// merge, unset the isKill marker given the live range has been extended.
|
|
int UIdx = ValLREndInst->findRegisterUseOperandIdx(IntB.reg, true);
|
|
if (UIdx != -1)
|
|
ValLREndInst->getOperand(UIdx).unsetIsKill();
|
|
|
|
// Finally, delete the copy instruction.
|
|
li_->RemoveMachineInstrFromMaps(CopyMI);
|
|
CopyMI->eraseFromParent();
|
|
++numPeep;
|
|
return true;
|
|
}
|
|
|
|
/// JoinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
|
|
/// which are the src/dst of the copy instruction CopyMI. This returns true
|
|
/// if the copy was successfully coalesced away, or if it is never possible
|
|
/// to coalesce this copy, due to register constraints. It returns
|
|
/// false if it is not currently possible to coalesce this interval, but
|
|
/// it may be possible if other things get coalesced.
|
|
bool SimpleRegisterCoalescing::JoinCopy(MachineInstr *CopyMI,
|
|
unsigned SrcReg, unsigned DstReg, bool PhysOnly) {
|
|
DOUT << li_->getInstructionIndex(CopyMI) << '\t' << *CopyMI;
|
|
|
|
// Get representative registers.
|
|
unsigned repSrcReg = rep(SrcReg);
|
|
unsigned repDstReg = rep(DstReg);
|
|
|
|
// If they are already joined we continue.
|
|
if (repSrcReg == repDstReg) {
|
|
DOUT << "\tCopy already coalesced.\n";
|
|
return true; // Not coalescable.
|
|
}
|
|
|
|
bool SrcIsPhys = MRegisterInfo::isPhysicalRegister(repSrcReg);
|
|
bool DstIsPhys = MRegisterInfo::isPhysicalRegister(repDstReg);
|
|
if (PhysOnly && !SrcIsPhys && !DstIsPhys)
|
|
// Only joining physical registers with virtual registers in this round.
|
|
return true;
|
|
|
|
// If they are both physical registers, we cannot join them.
|
|
if (SrcIsPhys && DstIsPhys) {
|
|
DOUT << "\tCan not coalesce physregs.\n";
|
|
return true; // Not coalescable.
|
|
}
|
|
|
|
// We only join virtual registers with allocatable physical registers.
|
|
if (SrcIsPhys && !allocatableRegs_[repSrcReg]) {
|
|
DOUT << "\tSrc reg is unallocatable physreg.\n";
|
|
return true; // Not coalescable.
|
|
}
|
|
if (DstIsPhys && !allocatableRegs_[repDstReg]) {
|
|
DOUT << "\tDst reg is unallocatable physreg.\n";
|
|
return true; // Not coalescable.
|
|
}
|
|
|
|
// If they are not of the same register class, we cannot join them.
|
|
if (differingRegisterClasses(repSrcReg, repDstReg)) {
|
|
DOUT << "\tSrc/Dest are different register classes.\n";
|
|
return true; // Not coalescable.
|
|
}
|
|
|
|
LiveInterval &SrcInt = li_->getInterval(repSrcReg);
|
|
LiveInterval &DstInt = li_->getInterval(repDstReg);
|
|
assert(SrcInt.reg == repSrcReg && DstInt.reg == repDstReg &&
|
|
"Register mapping is horribly broken!");
|
|
|
|
DOUT << "\t\tInspecting "; SrcInt.print(DOUT, mri_);
|
|
DOUT << " and "; DstInt.print(DOUT, mri_);
|
|
DOUT << ": ";
|
|
|
|
// Check if it is necessary to propagate "isDead" property before intervals
|
|
// are joined.
|
|
MachineOperand *mopd = CopyMI->findRegisterDefOperand(DstReg);
|
|
bool isDead = mopd->isDead();
|
|
bool isShorten = false;
|
|
unsigned SrcStart = 0, RemoveStart = 0;
|
|
unsigned SrcEnd = 0, RemoveEnd = 0;
|
|
if (isDead) {
|
|
unsigned CopyIdx = li_->getInstructionIndex(CopyMI);
|
|
LiveInterval::iterator SrcLR =
|
|
SrcInt.FindLiveRangeContaining(li_->getUseIndex(CopyIdx));
|
|
RemoveStart = SrcStart = SrcLR->start;
|
|
RemoveEnd = SrcEnd = SrcLR->end;
|
|
// The instruction which defines the src is only truly dead if there are
|
|
// no intermediate uses and there isn't a use beyond the copy.
|
|
// FIXME: find the last use, mark is kill and shorten the live range.
|
|
if (SrcEnd > li_->getDefIndex(CopyIdx)) {
|
|
isDead = false;
|
|
} else {
|
|
MachineOperand *MOU;
|
|
MachineInstr *LastUse= lastRegisterUse(SrcStart, CopyIdx, repSrcReg, MOU);
|
|
if (LastUse) {
|
|
// Shorten the liveinterval to the end of last use.
|
|
MOU->setIsKill();
|
|
isDead = false;
|
|
isShorten = true;
|
|
RemoveStart = li_->getDefIndex(li_->getInstructionIndex(LastUse));
|
|
RemoveEnd = SrcEnd;
|
|
} else {
|
|
MachineInstr *SrcMI = li_->getInstructionFromIndex(SrcStart);
|
|
if (SrcMI) {
|
|
MachineOperand *mops = findDefOperand(SrcMI, repSrcReg);
|
|
if (mops)
|
|
// A dead def should have a single cycle interval.
|
|
++RemoveStart;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// We need to be careful about coalescing a source physical register with a
|
|
// virtual register. Once the coalescing is done, it cannot be broken and
|
|
// these are not spillable! If the destination interval uses are far away,
|
|
// think twice about coalescing them!
|
|
if (!mopd->isDead() && (SrcIsPhys || DstIsPhys)) {
|
|
LiveInterval &JoinVInt = SrcIsPhys ? DstInt : SrcInt;
|
|
unsigned JoinVReg = SrcIsPhys ? repDstReg : repSrcReg;
|
|
unsigned JoinPReg = SrcIsPhys ? repSrcReg : repDstReg;
|
|
const TargetRegisterClass *RC = mf_->getSSARegMap()->getRegClass(JoinVReg);
|
|
unsigned Threshold = allocatableRCRegs_[RC].count();
|
|
|
|
// If the virtual register live interval is long has it has low use desity,
|
|
// do not join them, instead mark the physical register as its allocation
|
|
// preference.
|
|
unsigned Length = JoinVInt.getSize() / InstrSlots::NUM;
|
|
LiveVariables::VarInfo &vi = lv_->getVarInfo(JoinVReg);
|
|
if (Length > Threshold &&
|
|
(((float)vi.NumUses / Length) < (1.0 / Threshold))) {
|
|
JoinVInt.preference = JoinPReg;
|
|
++numAborts;
|
|
DOUT << "\tMay tie down a physical register, abort!\n";
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Okay, attempt to join these two intervals. On failure, this returns false.
|
|
// Otherwise, if one of the intervals being joined is a physreg, this method
|
|
// always canonicalizes DstInt to be it. The output "SrcInt" will not have
|
|
// been modified, so we can use this information below to update aliases.
|
|
bool Swapped = false;
|
|
if (JoinIntervals(DstInt, SrcInt, Swapped)) {
|
|
if (isDead) {
|
|
// Result of the copy is dead. Propagate this property.
|
|
if (SrcStart == 0) {
|
|
assert(MRegisterInfo::isPhysicalRegister(repSrcReg) &&
|
|
"Live-in must be a physical register!");
|
|
// Live-in to the function but dead. Remove it from entry live-in set.
|
|
// JoinIntervals may end up swapping the two intervals.
|
|
mf_->begin()->removeLiveIn(repSrcReg);
|
|
} else {
|
|
MachineInstr *SrcMI = li_->getInstructionFromIndex(SrcStart);
|
|
if (SrcMI) {
|
|
MachineOperand *mops = findDefOperand(SrcMI, repSrcReg);
|
|
if (mops)
|
|
mops->setIsDead();
|
|
}
|
|
}
|
|
}
|
|
|
|
if (isShorten || isDead) {
|
|
// Shorten the destination live interval.
|
|
if (Swapped)
|
|
SrcInt.removeRange(RemoveStart, RemoveEnd);
|
|
}
|
|
} else {
|
|
// Coalescing failed.
|
|
|
|
// If we can eliminate the copy without merging the live ranges, do so now.
|
|
if (AdjustCopiesBackFrom(SrcInt, DstInt, CopyMI))
|
|
return true;
|
|
|
|
// Otherwise, we are unable to join the intervals.
|
|
DOUT << "Interference!\n";
|
|
return false;
|
|
}
|
|
|
|
LiveInterval *ResSrcInt = &SrcInt;
|
|
LiveInterval *ResDstInt = &DstInt;
|
|
if (Swapped) {
|
|
std::swap(repSrcReg, repDstReg);
|
|
std::swap(ResSrcInt, ResDstInt);
|
|
}
|
|
assert(MRegisterInfo::isVirtualRegister(repSrcReg) &&
|
|
"LiveInterval::join didn't work right!");
|
|
|
|
// If we're about to merge live ranges into a physical register live range,
|
|
// we have to update any aliased register's live ranges to indicate that they
|
|
// have clobbered values for this range.
|
|
if (MRegisterInfo::isPhysicalRegister(repDstReg)) {
|
|
// Unset unnecessary kills.
|
|
if (!ResDstInt->containsOneValue()) {
|
|
for (LiveInterval::Ranges::const_iterator I = ResSrcInt->begin(),
|
|
E = ResSrcInt->end(); I != E; ++I)
|
|
unsetRegisterKills(I->start, I->end, repDstReg);
|
|
}
|
|
|
|
// Update the liveintervals of sub-registers.
|
|
for (const unsigned *AS = mri_->getSubRegisters(repDstReg); *AS; ++AS)
|
|
li_->getInterval(*AS).MergeInClobberRanges(*ResSrcInt,
|
|
li_->getVNInfoAllocator());
|
|
} else {
|
|
// Merge use info if the destination is a virtual register.
|
|
LiveVariables::VarInfo& dVI = lv_->getVarInfo(repDstReg);
|
|
LiveVariables::VarInfo& sVI = lv_->getVarInfo(repSrcReg);
|
|
dVI.NumUses += sVI.NumUses;
|
|
}
|
|
|
|
DOUT << "\n\t\tJoined. Result = "; ResDstInt->print(DOUT, mri_);
|
|
DOUT << "\n";
|
|
|
|
// Remember these liveintervals have been joined.
|
|
JoinedLIs.set(repSrcReg - MRegisterInfo::FirstVirtualRegister);
|
|
if (MRegisterInfo::isVirtualRegister(repDstReg))
|
|
JoinedLIs.set(repDstReg - MRegisterInfo::FirstVirtualRegister);
|
|
|
|
// repSrcReg is guarateed to be the register whose live interval that is
|
|
// being merged.
|
|
li_->removeInterval(repSrcReg);
|
|
r2rMap_[repSrcReg] = repDstReg;
|
|
|
|
// Finally, delete the copy instruction.
|
|
li_->RemoveMachineInstrFromMaps(CopyMI);
|
|
CopyMI->eraseFromParent();
|
|
++numPeep;
|
|
++numJoins;
|
|
return true;
|
|
}
|
|
|
|
/// ComputeUltimateVN - Assuming we are going to join two live intervals,
|
|
/// compute what the resultant value numbers for each value in the input two
|
|
/// ranges will be. This is complicated by copies between the two which can
|
|
/// and will commonly cause multiple value numbers to be merged into one.
|
|
///
|
|
/// VN is the value number that we're trying to resolve. InstDefiningValue
|
|
/// keeps track of the new InstDefiningValue assignment for the result
|
|
/// LiveInterval. ThisFromOther/OtherFromThis are sets that keep track of
|
|
/// whether a value in this or other is a copy from the opposite set.
|
|
/// ThisValNoAssignments/OtherValNoAssignments keep track of value #'s that have
|
|
/// already been assigned.
|
|
///
|
|
/// ThisFromOther[x] - If x is defined as a copy from the other interval, this
|
|
/// contains the value number the copy is from.
|
|
///
|
|
static unsigned ComputeUltimateVN(VNInfo *VNI,
|
|
SmallVector<VNInfo*, 16> &NewVNInfo,
|
|
DenseMap<VNInfo*, VNInfo*> &ThisFromOther,
|
|
DenseMap<VNInfo*, VNInfo*> &OtherFromThis,
|
|
SmallVector<int, 16> &ThisValNoAssignments,
|
|
SmallVector<int, 16> &OtherValNoAssignments) {
|
|
unsigned VN = VNI->id;
|
|
|
|
// If the VN has already been computed, just return it.
|
|
if (ThisValNoAssignments[VN] >= 0)
|
|
return ThisValNoAssignments[VN];
|
|
// assert(ThisValNoAssignments[VN] != -2 && "Cyclic case?");
|
|
|
|
// If this val is not a copy from the other val, then it must be a new value
|
|
// number in the destination.
|
|
DenseMap<VNInfo*, VNInfo*>::iterator I = ThisFromOther.find(VNI);
|
|
if (I == ThisFromOther.end()) {
|
|
NewVNInfo.push_back(VNI);
|
|
return ThisValNoAssignments[VN] = NewVNInfo.size()-1;
|
|
}
|
|
VNInfo *OtherValNo = I->second;
|
|
|
|
// Otherwise, this *is* a copy from the RHS. If the other side has already
|
|
// been computed, return it.
|
|
if (OtherValNoAssignments[OtherValNo->id] >= 0)
|
|
return ThisValNoAssignments[VN] = OtherValNoAssignments[OtherValNo->id];
|
|
|
|
// Mark this value number as currently being computed, then ask what the
|
|
// ultimate value # of the other value is.
|
|
ThisValNoAssignments[VN] = -2;
|
|
unsigned UltimateVN =
|
|
ComputeUltimateVN(OtherValNo, NewVNInfo, OtherFromThis, ThisFromOther,
|
|
OtherValNoAssignments, ThisValNoAssignments);
|
|
return ThisValNoAssignments[VN] = UltimateVN;
|
|
}
|
|
|
|
static bool InVector(VNInfo *Val, const SmallVector<VNInfo*, 8> &V) {
|
|
return std::find(V.begin(), V.end(), Val) != V.end();
|
|
}
|
|
|
|
/// SimpleJoin - Attempt to joint the specified interval into this one. The
|
|
/// caller of this method must guarantee that the RHS only contains a single
|
|
/// value number and that the RHS is not defined by a copy from this
|
|
/// interval. This returns false if the intervals are not joinable, or it
|
|
/// joins them and returns true.
|
|
bool SimpleRegisterCoalescing::SimpleJoin(LiveInterval &LHS, LiveInterval &RHS) {
|
|
assert(RHS.containsOneValue());
|
|
|
|
// Some number (potentially more than one) value numbers in the current
|
|
// interval may be defined as copies from the RHS. Scan the overlapping
|
|
// portions of the LHS and RHS, keeping track of this and looking for
|
|
// overlapping live ranges that are NOT defined as copies. If these exist, we
|
|
// cannot coalesce.
|
|
|
|
LiveInterval::iterator LHSIt = LHS.begin(), LHSEnd = LHS.end();
|
|
LiveInterval::iterator RHSIt = RHS.begin(), RHSEnd = RHS.end();
|
|
|
|
if (LHSIt->start < RHSIt->start) {
|
|
LHSIt = std::upper_bound(LHSIt, LHSEnd, RHSIt->start);
|
|
if (LHSIt != LHS.begin()) --LHSIt;
|
|
} else if (RHSIt->start < LHSIt->start) {
|
|
RHSIt = std::upper_bound(RHSIt, RHSEnd, LHSIt->start);
|
|
if (RHSIt != RHS.begin()) --RHSIt;
|
|
}
|
|
|
|
SmallVector<VNInfo*, 8> EliminatedLHSVals;
|
|
|
|
while (1) {
|
|
// Determine if these live intervals overlap.
|
|
bool Overlaps = false;
|
|
if (LHSIt->start <= RHSIt->start)
|
|
Overlaps = LHSIt->end > RHSIt->start;
|
|
else
|
|
Overlaps = RHSIt->end > LHSIt->start;
|
|
|
|
// If the live intervals overlap, there are two interesting cases: if the
|
|
// LHS interval is defined by a copy from the RHS, it's ok and we record
|
|
// that the LHS value # is the same as the RHS. If it's not, then we cannot
|
|
// coalesce these live ranges and we bail out.
|
|
if (Overlaps) {
|
|
// If we haven't already recorded that this value # is safe, check it.
|
|
if (!InVector(LHSIt->valno, EliminatedLHSVals)) {
|
|
// Copy from the RHS?
|
|
unsigned SrcReg = LHSIt->valno->reg;
|
|
if (rep(SrcReg) != RHS.reg)
|
|
return false; // Nope, bail out.
|
|
|
|
EliminatedLHSVals.push_back(LHSIt->valno);
|
|
}
|
|
|
|
// We know this entire LHS live range is okay, so skip it now.
|
|
if (++LHSIt == LHSEnd) break;
|
|
continue;
|
|
}
|
|
|
|
if (LHSIt->end < RHSIt->end) {
|
|
if (++LHSIt == LHSEnd) break;
|
|
} else {
|
|
// One interesting case to check here. It's possible that we have
|
|
// something like "X3 = Y" which defines a new value number in the LHS,
|
|
// and is the last use of this liverange of the RHS. In this case, we
|
|
// want to notice this copy (so that it gets coalesced away) even though
|
|
// the live ranges don't actually overlap.
|
|
if (LHSIt->start == RHSIt->end) {
|
|
if (InVector(LHSIt->valno, EliminatedLHSVals)) {
|
|
// We already know that this value number is going to be merged in
|
|
// if coalescing succeeds. Just skip the liverange.
|
|
if (++LHSIt == LHSEnd) break;
|
|
} else {
|
|
// Otherwise, if this is a copy from the RHS, mark it as being merged
|
|
// in.
|
|
if (rep(LHSIt->valno->reg) == RHS.reg) {
|
|
EliminatedLHSVals.push_back(LHSIt->valno);
|
|
|
|
// We know this entire LHS live range is okay, so skip it now.
|
|
if (++LHSIt == LHSEnd) break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (++RHSIt == RHSEnd) break;
|
|
}
|
|
}
|
|
|
|
// If we got here, we know that the coalescing will be successful and that
|
|
// the value numbers in EliminatedLHSVals will all be merged together. Since
|
|
// the most common case is that EliminatedLHSVals has a single number, we
|
|
// optimize for it: if there is more than one value, we merge them all into
|
|
// the lowest numbered one, then handle the interval as if we were merging
|
|
// with one value number.
|
|
VNInfo *LHSValNo;
|
|
if (EliminatedLHSVals.size() > 1) {
|
|
// Loop through all the equal value numbers merging them into the smallest
|
|
// one.
|
|
VNInfo *Smallest = EliminatedLHSVals[0];
|
|
for (unsigned i = 1, e = EliminatedLHSVals.size(); i != e; ++i) {
|
|
if (EliminatedLHSVals[i]->id < Smallest->id) {
|
|
// Merge the current notion of the smallest into the smaller one.
|
|
LHS.MergeValueNumberInto(Smallest, EliminatedLHSVals[i]);
|
|
Smallest = EliminatedLHSVals[i];
|
|
} else {
|
|
// Merge into the smallest.
|
|
LHS.MergeValueNumberInto(EliminatedLHSVals[i], Smallest);
|
|
}
|
|
}
|
|
LHSValNo = Smallest;
|
|
} else {
|
|
assert(!EliminatedLHSVals.empty() && "No copies from the RHS?");
|
|
LHSValNo = EliminatedLHSVals[0];
|
|
}
|
|
|
|
// Okay, now that there is a single LHS value number that we're merging the
|
|
// RHS into, update the value number info for the LHS to indicate that the
|
|
// value number is defined where the RHS value number was.
|
|
const VNInfo *VNI = RHS.getValNumInfo(0);
|
|
LHSValNo->def = VNI->def;
|
|
LHSValNo->reg = VNI->reg;
|
|
|
|
// Okay, the final step is to loop over the RHS live intervals, adding them to
|
|
// the LHS.
|
|
LHS.addKills(LHSValNo, VNI->kills);
|
|
LHS.MergeRangesInAsValue(RHS, LHSValNo);
|
|
LHS.weight += RHS.weight;
|
|
if (RHS.preference && !LHS.preference)
|
|
LHS.preference = RHS.preference;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// JoinIntervals - Attempt to join these two intervals. On failure, this
|
|
/// returns false. Otherwise, if one of the intervals being joined is a
|
|
/// physreg, this method always canonicalizes LHS to be it. The output
|
|
/// "RHS" will not have been modified, so we can use this information
|
|
/// below to update aliases.
|
|
bool SimpleRegisterCoalescing::JoinIntervals(LiveInterval &LHS,
|
|
LiveInterval &RHS, bool &Swapped) {
|
|
// Compute the final value assignment, assuming that the live ranges can be
|
|
// coalesced.
|
|
SmallVector<int, 16> LHSValNoAssignments;
|
|
SmallVector<int, 16> RHSValNoAssignments;
|
|
DenseMap<VNInfo*, VNInfo*> LHSValsDefinedFromRHS;
|
|
DenseMap<VNInfo*, VNInfo*> RHSValsDefinedFromLHS;
|
|
SmallVector<VNInfo*, 16> NewVNInfo;
|
|
|
|
// If a live interval is a physical register, conservatively check if any
|
|
// of its sub-registers is overlapping the live interval of the virtual
|
|
// register. If so, do not coalesce.
|
|
if (MRegisterInfo::isPhysicalRegister(LHS.reg) &&
|
|
*mri_->getSubRegisters(LHS.reg)) {
|
|
for (const unsigned* SR = mri_->getSubRegisters(LHS.reg); *SR; ++SR)
|
|
if (li_->hasInterval(*SR) && RHS.overlaps(li_->getInterval(*SR))) {
|
|
DOUT << "Interfere with sub-register ";
|
|
DEBUG(li_->getInterval(*SR).print(DOUT, mri_));
|
|
return false;
|
|
}
|
|
} else if (MRegisterInfo::isPhysicalRegister(RHS.reg) &&
|
|
*mri_->getSubRegisters(RHS.reg)) {
|
|
for (const unsigned* SR = mri_->getSubRegisters(RHS.reg); *SR; ++SR)
|
|
if (li_->hasInterval(*SR) && LHS.overlaps(li_->getInterval(*SR))) {
|
|
DOUT << "Interfere with sub-register ";
|
|
DEBUG(li_->getInterval(*SR).print(DOUT, mri_));
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Compute ultimate value numbers for the LHS and RHS values.
|
|
if (RHS.containsOneValue()) {
|
|
// Copies from a liveinterval with a single value are simple to handle and
|
|
// very common, handle the special case here. This is important, because
|
|
// often RHS is small and LHS is large (e.g. a physreg).
|
|
|
|
// Find out if the RHS is defined as a copy from some value in the LHS.
|
|
int RHSVal0DefinedFromLHS = -1;
|
|
int RHSValID = -1;
|
|
VNInfo *RHSValNoInfo = NULL;
|
|
VNInfo *RHSValNoInfo0 = RHS.getValNumInfo(0);
|
|
unsigned RHSSrcReg = RHSValNoInfo0->reg;
|
|
if ((RHSSrcReg == 0 || rep(RHSSrcReg) != LHS.reg)) {
|
|
// If RHS is not defined as a copy from the LHS, we can use simpler and
|
|
// faster checks to see if the live ranges are coalescable. This joiner
|
|
// can't swap the LHS/RHS intervals though.
|
|
if (!MRegisterInfo::isPhysicalRegister(RHS.reg)) {
|
|
return SimpleJoin(LHS, RHS);
|
|
} else {
|
|
RHSValNoInfo = RHSValNoInfo0;
|
|
}
|
|
} else {
|
|
// It was defined as a copy from the LHS, find out what value # it is.
|
|
RHSValNoInfo = LHS.getLiveRangeContaining(RHSValNoInfo0->def-1)->valno;
|
|
RHSValID = RHSValNoInfo->id;
|
|
RHSVal0DefinedFromLHS = RHSValID;
|
|
}
|
|
|
|
LHSValNoAssignments.resize(LHS.getNumValNums(), -1);
|
|
RHSValNoAssignments.resize(RHS.getNumValNums(), -1);
|
|
NewVNInfo.resize(LHS.getNumValNums(), NULL);
|
|
|
|
// Okay, *all* of the values in LHS that are defined as a copy from RHS
|
|
// should now get updated.
|
|
for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
|
|
i != e; ++i) {
|
|
VNInfo *VNI = *i;
|
|
unsigned VN = VNI->id;
|
|
if (unsigned LHSSrcReg = VNI->reg) {
|
|
if (rep(LHSSrcReg) != RHS.reg) {
|
|
// If this is not a copy from the RHS, its value number will be
|
|
// unmodified by the coalescing.
|
|
NewVNInfo[VN] = VNI;
|
|
LHSValNoAssignments[VN] = VN;
|
|
} else if (RHSValID == -1) {
|
|
// Otherwise, it is a copy from the RHS, and we don't already have a
|
|
// value# for it. Keep the current value number, but remember it.
|
|
LHSValNoAssignments[VN] = RHSValID = VN;
|
|
NewVNInfo[VN] = RHSValNoInfo;
|
|
LHSValsDefinedFromRHS[VNI] = RHSValNoInfo0;
|
|
} else {
|
|
// Otherwise, use the specified value #.
|
|
LHSValNoAssignments[VN] = RHSValID;
|
|
if (VN == (unsigned)RHSValID) { // Else this val# is dead.
|
|
NewVNInfo[VN] = RHSValNoInfo;
|
|
LHSValsDefinedFromRHS[VNI] = RHSValNoInfo0;
|
|
}
|
|
}
|
|
} else {
|
|
NewVNInfo[VN] = VNI;
|
|
LHSValNoAssignments[VN] = VN;
|
|
}
|
|
}
|
|
|
|
assert(RHSValID != -1 && "Didn't find value #?");
|
|
RHSValNoAssignments[0] = RHSValID;
|
|
if (RHSVal0DefinedFromLHS != -1) {
|
|
// This path doesn't go through ComputeUltimateVN so just set
|
|
// it to anything.
|
|
RHSValsDefinedFromLHS[RHSValNoInfo0] = (VNInfo*)1;
|
|
}
|
|
} else {
|
|
// Loop over the value numbers of the LHS, seeing if any are defined from
|
|
// the RHS.
|
|
for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
|
|
i != e; ++i) {
|
|
VNInfo *VNI = *i;
|
|
unsigned ValSrcReg = VNI->reg;
|
|
if (ValSrcReg == 0) // Src not defined by a copy?
|
|
continue;
|
|
|
|
// DstReg is known to be a register in the LHS interval. If the src is
|
|
// from the RHS interval, we can use its value #.
|
|
if (rep(ValSrcReg) != RHS.reg)
|
|
continue;
|
|
|
|
// Figure out the value # from the RHS.
|
|
LHSValsDefinedFromRHS[VNI] = RHS.getLiveRangeContaining(VNI->def-1)->valno;
|
|
}
|
|
|
|
// Loop over the value numbers of the RHS, seeing if any are defined from
|
|
// the LHS.
|
|
for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end();
|
|
i != e; ++i) {
|
|
VNInfo *VNI = *i;
|
|
unsigned ValSrcReg = VNI->reg;
|
|
if (ValSrcReg == 0) // Src not defined by a copy?
|
|
continue;
|
|
|
|
// DstReg is known to be a register in the RHS interval. If the src is
|
|
// from the LHS interval, we can use its value #.
|
|
if (rep(ValSrcReg) != LHS.reg)
|
|
continue;
|
|
|
|
// Figure out the value # from the LHS.
|
|
RHSValsDefinedFromLHS[VNI]= LHS.getLiveRangeContaining(VNI->def-1)->valno;
|
|
}
|
|
|
|
LHSValNoAssignments.resize(LHS.getNumValNums(), -1);
|
|
RHSValNoAssignments.resize(RHS.getNumValNums(), -1);
|
|
NewVNInfo.reserve(LHS.getNumValNums() + RHS.getNumValNums());
|
|
|
|
for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
|
|
i != e; ++i) {
|
|
VNInfo *VNI = *i;
|
|
unsigned VN = VNI->id;
|
|
if (LHSValNoAssignments[VN] >= 0 || VNI->def == ~1U)
|
|
continue;
|
|
ComputeUltimateVN(VNI, NewVNInfo,
|
|
LHSValsDefinedFromRHS, RHSValsDefinedFromLHS,
|
|
LHSValNoAssignments, RHSValNoAssignments);
|
|
}
|
|
for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end();
|
|
i != e; ++i) {
|
|
VNInfo *VNI = *i;
|
|
unsigned VN = VNI->id;
|
|
if (RHSValNoAssignments[VN] >= 0 || VNI->def == ~1U)
|
|
continue;
|
|
// If this value number isn't a copy from the LHS, it's a new number.
|
|
if (RHSValsDefinedFromLHS.find(VNI) == RHSValsDefinedFromLHS.end()) {
|
|
NewVNInfo.push_back(VNI);
|
|
RHSValNoAssignments[VN] = NewVNInfo.size()-1;
|
|
continue;
|
|
}
|
|
|
|
ComputeUltimateVN(VNI, NewVNInfo,
|
|
RHSValsDefinedFromLHS, LHSValsDefinedFromRHS,
|
|
RHSValNoAssignments, LHSValNoAssignments);
|
|
}
|
|
}
|
|
|
|
// Armed with the mappings of LHS/RHS values to ultimate values, walk the
|
|
// interval lists to see if these intervals are coalescable.
|
|
LiveInterval::const_iterator I = LHS.begin();
|
|
LiveInterval::const_iterator IE = LHS.end();
|
|
LiveInterval::const_iterator J = RHS.begin();
|
|
LiveInterval::const_iterator JE = RHS.end();
|
|
|
|
// Skip ahead until the first place of potential sharing.
|
|
if (I->start < J->start) {
|
|
I = std::upper_bound(I, IE, J->start);
|
|
if (I != LHS.begin()) --I;
|
|
} else if (J->start < I->start) {
|
|
J = std::upper_bound(J, JE, I->start);
|
|
if (J != RHS.begin()) --J;
|
|
}
|
|
|
|
while (1) {
|
|
// Determine if these two live ranges overlap.
|
|
bool Overlaps;
|
|
if (I->start < J->start) {
|
|
Overlaps = I->end > J->start;
|
|
} else {
|
|
Overlaps = J->end > I->start;
|
|
}
|
|
|
|
// If so, check value # info to determine if they are really different.
|
|
if (Overlaps) {
|
|
// If the live range overlap will map to the same value number in the
|
|
// result liverange, we can still coalesce them. If not, we can't.
|
|
if (LHSValNoAssignments[I->valno->id] !=
|
|
RHSValNoAssignments[J->valno->id])
|
|
return false;
|
|
}
|
|
|
|
if (I->end < J->end) {
|
|
++I;
|
|
if (I == IE) break;
|
|
} else {
|
|
++J;
|
|
if (J == JE) break;
|
|
}
|
|
}
|
|
|
|
// If we get here, we know that we can coalesce the live ranges. Ask the
|
|
// intervals to coalesce themselves now.
|
|
if ((RHS.ranges.size() > LHS.ranges.size() &&
|
|
MRegisterInfo::isVirtualRegister(LHS.reg)) ||
|
|
MRegisterInfo::isPhysicalRegister(RHS.reg)) {
|
|
// Update kill info. Some live ranges are extended due to copy coalescing.
|
|
for (DenseMap<VNInfo*, VNInfo*>::iterator I = LHSValsDefinedFromRHS.begin(),
|
|
E = LHSValsDefinedFromRHS.end(); I != E; ++I) {
|
|
VNInfo *VNI = I->first;
|
|
unsigned LHSValID = LHSValNoAssignments[VNI->id];
|
|
LiveInterval::removeKill(NewVNInfo[LHSValID], VNI->def);
|
|
RHS.addKills(NewVNInfo[LHSValID], VNI->kills);
|
|
}
|
|
|
|
RHS.join(LHS, &RHSValNoAssignments[0], &LHSValNoAssignments[0], NewVNInfo);
|
|
Swapped = true;
|
|
} else {
|
|
// Update kill info. Some live ranges are extended due to copy coalescing.
|
|
for (DenseMap<VNInfo*, VNInfo*>::iterator I = RHSValsDefinedFromLHS.begin(),
|
|
E = RHSValsDefinedFromLHS.end(); I != E; ++I) {
|
|
VNInfo *VNI = I->first;
|
|
unsigned RHSValID = RHSValNoAssignments[VNI->id];
|
|
LiveInterval::removeKill(NewVNInfo[RHSValID], VNI->def);
|
|
LHS.addKills(NewVNInfo[RHSValID], VNI->kills);
|
|
}
|
|
|
|
LHS.join(RHS, &LHSValNoAssignments[0], &RHSValNoAssignments[0], NewVNInfo);
|
|
Swapped = false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
namespace {
|
|
// DepthMBBCompare - Comparison predicate that sort first based on the loop
|
|
// depth of the basic block (the unsigned), and then on the MBB number.
|
|
struct DepthMBBCompare {
|
|
typedef std::pair<unsigned, MachineBasicBlock*> DepthMBBPair;
|
|
bool operator()(const DepthMBBPair &LHS, const DepthMBBPair &RHS) const {
|
|
if (LHS.first > RHS.first) return true; // Deeper loops first
|
|
return LHS.first == RHS.first &&
|
|
LHS.second->getNumber() < RHS.second->getNumber();
|
|
}
|
|
};
|
|
}
|
|
|
|
void SimpleRegisterCoalescing::CopyCoalesceInMBB(MachineBasicBlock *MBB,
|
|
std::vector<CopyRec> *TryAgain, bool PhysOnly) {
|
|
DOUT << ((Value*)MBB->getBasicBlock())->getName() << ":\n";
|
|
|
|
for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
|
|
MII != E;) {
|
|
MachineInstr *Inst = MII++;
|
|
|
|
// If this isn't a copy, we can't join intervals.
|
|
unsigned SrcReg, DstReg;
|
|
if (!tii_->isMoveInstr(*Inst, SrcReg, DstReg)) continue;
|
|
|
|
if (TryAgain && !JoinCopy(Inst, SrcReg, DstReg, PhysOnly))
|
|
TryAgain->push_back(getCopyRec(Inst, SrcReg, DstReg));
|
|
}
|
|
}
|
|
|
|
void SimpleRegisterCoalescing::joinIntervals() {
|
|
DOUT << "********** JOINING INTERVALS ***********\n";
|
|
|
|
JoinedLIs.resize(li_->getNumIntervals());
|
|
JoinedLIs.reset();
|
|
|
|
std::vector<CopyRec> TryAgainList;
|
|
const LoopInfo &LI = getAnalysis<LoopInfo>();
|
|
if (LI.begin() == LI.end()) {
|
|
// If there are no loops in the function, join intervals in function order.
|
|
for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
|
|
I != E; ++I)
|
|
CopyCoalesceInMBB(I, &TryAgainList);
|
|
} else {
|
|
// Otherwise, join intervals in inner loops before other intervals.
|
|
// Unfortunately we can't just iterate over loop hierarchy here because
|
|
// there may be more MBB's than BB's. Collect MBB's for sorting.
|
|
|
|
// Join intervals in the function prolog first. We want to join physical
|
|
// registers with virtual registers before the intervals got too long.
|
|
std::vector<std::pair<unsigned, MachineBasicBlock*> > MBBs;
|
|
for (MachineFunction::iterator I = mf_->begin(), E = mf_->end(); I != E;++I)
|
|
MBBs.push_back(std::make_pair(LI.getLoopDepth(I->getBasicBlock()), I));
|
|
|
|
// Sort by loop depth.
|
|
std::sort(MBBs.begin(), MBBs.end(), DepthMBBCompare());
|
|
|
|
// Finally, join intervals in loop nest order.
|
|
for (unsigned i = 0, e = MBBs.size(); i != e; ++i)
|
|
CopyCoalesceInMBB(MBBs[i].second, NULL, true);
|
|
for (unsigned i = 0, e = MBBs.size(); i != e; ++i)
|
|
CopyCoalesceInMBB(MBBs[i].second, &TryAgainList, false);
|
|
}
|
|
|
|
// Joining intervals can allow other intervals to be joined. Iteratively join
|
|
// until we make no progress.
|
|
bool ProgressMade = true;
|
|
while (ProgressMade) {
|
|
ProgressMade = false;
|
|
|
|
for (unsigned i = 0, e = TryAgainList.size(); i != e; ++i) {
|
|
CopyRec &TheCopy = TryAgainList[i];
|
|
if (TheCopy.MI &&
|
|
JoinCopy(TheCopy.MI, TheCopy.SrcReg, TheCopy.DstReg)) {
|
|
TheCopy.MI = 0; // Mark this one as done.
|
|
ProgressMade = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Some live range has been lengthened due to colaescing, eliminate the
|
|
// unnecessary kills.
|
|
int RegNum = JoinedLIs.find_first();
|
|
while (RegNum != -1) {
|
|
unsigned Reg = RegNum + MRegisterInfo::FirstVirtualRegister;
|
|
unsigned repReg = rep(Reg);
|
|
LiveInterval &LI = li_->getInterval(repReg);
|
|
LiveVariables::VarInfo& svi = lv_->getVarInfo(Reg);
|
|
for (unsigned i = 0, e = svi.Kills.size(); i != e; ++i) {
|
|
MachineInstr *Kill = svi.Kills[i];
|
|
// Suppose vr1 = op vr2, x
|
|
// and vr1 and vr2 are coalesced. vr2 should still be marked kill
|
|
// unless it is a two-address operand.
|
|
if (li_->isRemoved(Kill) || hasRegisterDef(Kill, repReg))
|
|
continue;
|
|
if (LI.liveAt(li_->getInstructionIndex(Kill) + InstrSlots::NUM))
|
|
unsetRegisterKill(Kill, repReg);
|
|
}
|
|
RegNum = JoinedLIs.find_next(RegNum);
|
|
}
|
|
|
|
DOUT << "*** Register mapping ***\n";
|
|
for (int i = 0, e = r2rMap_.size(); i != e; ++i)
|
|
if (r2rMap_[i]) {
|
|
DOUT << " reg " << i << " -> ";
|
|
DEBUG(printRegName(r2rMap_[i]));
|
|
DOUT << "\n";
|
|
}
|
|
}
|
|
|
|
/// Return true if the two specified registers belong to different register
|
|
/// classes. The registers may be either phys or virt regs.
|
|
bool SimpleRegisterCoalescing::differingRegisterClasses(unsigned RegA,
|
|
unsigned RegB) const {
|
|
|
|
// Get the register classes for the first reg.
|
|
if (MRegisterInfo::isPhysicalRegister(RegA)) {
|
|
assert(MRegisterInfo::isVirtualRegister(RegB) &&
|
|
"Shouldn't consider two physregs!");
|
|
return !mf_->getSSARegMap()->getRegClass(RegB)->contains(RegA);
|
|
}
|
|
|
|
// Compare against the regclass for the second reg.
|
|
const TargetRegisterClass *RegClass = mf_->getSSARegMap()->getRegClass(RegA);
|
|
if (MRegisterInfo::isVirtualRegister(RegB))
|
|
return RegClass != mf_->getSSARegMap()->getRegClass(RegB);
|
|
else
|
|
return !RegClass->contains(RegB);
|
|
}
|
|
|
|
/// lastRegisterUse - Returns the last use of the specific register between
|
|
/// cycles Start and End. It also returns the use operand by reference. It
|
|
/// returns NULL if there are no uses.
|
|
MachineInstr *
|
|
SimpleRegisterCoalescing::lastRegisterUse(unsigned Start, unsigned End, unsigned Reg,
|
|
MachineOperand *&MOU) {
|
|
int e = (End-1) / InstrSlots::NUM * InstrSlots::NUM;
|
|
int s = Start;
|
|
while (e >= s) {
|
|
// Skip deleted instructions
|
|
MachineInstr *MI = li_->getInstructionFromIndex(e);
|
|
while ((e - InstrSlots::NUM) >= s && !MI) {
|
|
e -= InstrSlots::NUM;
|
|
MI = li_->getInstructionFromIndex(e);
|
|
}
|
|
if (e < s || MI == NULL)
|
|
return NULL;
|
|
|
|
for (unsigned i = 0, NumOps = MI->getNumOperands(); i != NumOps; ++i) {
|
|
MachineOperand &MO = MI->getOperand(i);
|
|
if (MO.isRegister() && MO.isUse() && MO.getReg() &&
|
|
mri_->regsOverlap(rep(MO.getReg()), Reg)) {
|
|
MOU = &MO;
|
|
return MI;
|
|
}
|
|
}
|
|
|
|
e -= InstrSlots::NUM;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
|
|
/// findDefOperand - Returns the MachineOperand that is a def of the specific
|
|
/// register. It returns NULL if the def is not found.
|
|
MachineOperand *SimpleRegisterCoalescing::findDefOperand(MachineInstr *MI, unsigned Reg) {
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = MI->getOperand(i);
|
|
if (MO.isRegister() && MO.isDef() &&
|
|
mri_->regsOverlap(rep(MO.getReg()), Reg))
|
|
return &MO;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/// unsetRegisterKill - Unset IsKill property of all uses of specific register
|
|
/// of the specific instruction.
|
|
void SimpleRegisterCoalescing::unsetRegisterKill(MachineInstr *MI, unsigned Reg) {
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = MI->getOperand(i);
|
|
if (MO.isRegister() && MO.isKill() && MO.getReg() &&
|
|
mri_->regsOverlap(rep(MO.getReg()), Reg))
|
|
MO.unsetIsKill();
|
|
}
|
|
}
|
|
|
|
/// unsetRegisterKills - Unset IsKill property of all uses of specific register
|
|
/// between cycles Start and End.
|
|
void SimpleRegisterCoalescing::unsetRegisterKills(unsigned Start, unsigned End,
|
|
unsigned Reg) {
|
|
int e = (End-1) / InstrSlots::NUM * InstrSlots::NUM;
|
|
int s = Start;
|
|
while (e >= s) {
|
|
// Skip deleted instructions
|
|
MachineInstr *MI = li_->getInstructionFromIndex(e);
|
|
while ((e - InstrSlots::NUM) >= s && !MI) {
|
|
e -= InstrSlots::NUM;
|
|
MI = li_->getInstructionFromIndex(e);
|
|
}
|
|
if (e < s || MI == NULL)
|
|
return;
|
|
|
|
for (unsigned i = 0, NumOps = MI->getNumOperands(); i != NumOps; ++i) {
|
|
MachineOperand &MO = MI->getOperand(i);
|
|
if (MO.isRegister() && MO.isKill() && MO.getReg() &&
|
|
mri_->regsOverlap(rep(MO.getReg()), Reg)) {
|
|
MO.unsetIsKill();
|
|
}
|
|
}
|
|
|
|
e -= InstrSlots::NUM;
|
|
}
|
|
}
|
|
|
|
/// hasRegisterDef - True if the instruction defines the specific register.
|
|
///
|
|
bool SimpleRegisterCoalescing::hasRegisterDef(MachineInstr *MI, unsigned Reg) {
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = MI->getOperand(i);
|
|
if (MO.isRegister() && MO.isDef() &&
|
|
mri_->regsOverlap(rep(MO.getReg()), Reg))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void SimpleRegisterCoalescing::printRegName(unsigned reg) const {
|
|
if (MRegisterInfo::isPhysicalRegister(reg))
|
|
cerr << mri_->getName(reg);
|
|
else
|
|
cerr << "%reg" << reg;
|
|
}
|
|
|
|
void SimpleRegisterCoalescing::releaseMemory() {
|
|
r2rMap_.clear();
|
|
JoinedLIs.clear();
|
|
}
|
|
|
|
static bool isZeroLengthInterval(LiveInterval *li) {
|
|
for (LiveInterval::Ranges::const_iterator
|
|
i = li->ranges.begin(), e = li->ranges.end(); i != e; ++i)
|
|
if (i->end - i->start > LiveIntervals::InstrSlots::NUM)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
bool SimpleRegisterCoalescing::runOnMachineFunction(MachineFunction &fn) {
|
|
mf_ = &fn;
|
|
tm_ = &fn.getTarget();
|
|
mri_ = tm_->getRegisterInfo();
|
|
tii_ = tm_->getInstrInfo();
|
|
li_ = &getAnalysis<LiveIntervals>();
|
|
lv_ = &getAnalysis<LiveVariables>();
|
|
|
|
DOUT << "********** SIMPLE REGISTER COALESCING **********\n"
|
|
<< "********** Function: "
|
|
<< ((Value*)mf_->getFunction())->getName() << '\n';
|
|
|
|
allocatableRegs_ = mri_->getAllocatableSet(fn);
|
|
for (MRegisterInfo::regclass_iterator I = mri_->regclass_begin(),
|
|
E = mri_->regclass_end(); I != E; ++I)
|
|
allocatableRCRegs_.insert(std::make_pair(*I,mri_->getAllocatableSet(fn, *I)));
|
|
|
|
r2rMap_.grow(mf_->getSSARegMap()->getLastVirtReg());
|
|
|
|
// Join (coalesce) intervals if requested.
|
|
if (EnableJoining) {
|
|
joinIntervals();
|
|
DOUT << "********** INTERVALS POST JOINING **********\n";
|
|
for (LiveIntervals::iterator I = li_->begin(), E = li_->end(); I != E; ++I) {
|
|
I->second.print(DOUT, mri_);
|
|
DOUT << "\n";
|
|
}
|
|
}
|
|
|
|
// perform a final pass over the instructions and compute spill
|
|
// weights, coalesce virtual registers and remove identity moves.
|
|
const LoopInfo &loopInfo = getAnalysis<LoopInfo>();
|
|
|
|
for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
|
|
mbbi != mbbe; ++mbbi) {
|
|
MachineBasicBlock* mbb = mbbi;
|
|
unsigned loopDepth = loopInfo.getLoopDepth(mbb->getBasicBlock());
|
|
|
|
for (MachineBasicBlock::iterator mii = mbb->begin(), mie = mbb->end();
|
|
mii != mie; ) {
|
|
// if the move will be an identity move delete it
|
|
unsigned srcReg, dstReg, RegRep;
|
|
if (tii_->isMoveInstr(*mii, srcReg, dstReg) &&
|
|
(RegRep = rep(srcReg)) == rep(dstReg)) {
|
|
// remove from def list
|
|
LiveInterval &RegInt = li_->getOrCreateInterval(RegRep);
|
|
MachineOperand *MO = mii->findRegisterDefOperand(dstReg);
|
|
// If def of this move instruction is dead, remove its live range from
|
|
// the dstination register's live interval.
|
|
if (MO->isDead()) {
|
|
unsigned MoveIdx = li_->getDefIndex(li_->getInstructionIndex(mii));
|
|
LiveInterval::iterator MLR = RegInt.FindLiveRangeContaining(MoveIdx);
|
|
RegInt.removeRange(MLR->start, MoveIdx+1);
|
|
if (RegInt.empty())
|
|
li_->removeInterval(RegRep);
|
|
}
|
|
li_->RemoveMachineInstrFromMaps(mii);
|
|
mii = mbbi->erase(mii);
|
|
++numPeep;
|
|
} else {
|
|
SmallSet<unsigned, 4> UniqueUses;
|
|
for (unsigned i = 0, e = mii->getNumOperands(); i != e; ++i) {
|
|
const MachineOperand &mop = mii->getOperand(i);
|
|
if (mop.isRegister() && mop.getReg() &&
|
|
MRegisterInfo::isVirtualRegister(mop.getReg())) {
|
|
// replace register with representative register
|
|
unsigned reg = rep(mop.getReg());
|
|
mii->getOperand(i).setReg(reg);
|
|
|
|
// Multiple uses of reg by the same instruction. It should not
|
|
// contribute to spill weight again.
|
|
if (UniqueUses.count(reg) != 0)
|
|
continue;
|
|
LiveInterval &RegInt = li_->getInterval(reg);
|
|
float w = (mop.isUse()+mop.isDef()) * powf(10.0F, (float)loopDepth);
|
|
RegInt.weight += w;
|
|
UniqueUses.insert(reg);
|
|
}
|
|
}
|
|
++mii;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (LiveIntervals::iterator I = li_->begin(), E = li_->end(); I != E; ++I) {
|
|
LiveInterval &LI = I->second;
|
|
if (MRegisterInfo::isVirtualRegister(LI.reg)) {
|
|
// If the live interval length is essentially zero, i.e. in every live
|
|
// range the use follows def immediately, it doesn't make sense to spill
|
|
// it and hope it will be easier to allocate for this li.
|
|
if (isZeroLengthInterval(&LI))
|
|
LI.weight = HUGE_VALF;
|
|
|
|
// Slightly prefer live interval that has been assigned a preferred reg.
|
|
if (LI.preference)
|
|
LI.weight *= 1.01F;
|
|
|
|
// Divide the weight of the interval by its size. This encourages
|
|
// spilling of intervals that are large and have few uses, and
|
|
// discourages spilling of small intervals with many uses.
|
|
LI.weight /= LI.getSize();
|
|
}
|
|
}
|
|
|
|
DEBUG(dump());
|
|
return true;
|
|
}
|
|
|
|
/// print - Implement the dump method.
|
|
void SimpleRegisterCoalescing::print(std::ostream &O, const Module* m) const {
|
|
li_->print(O, m);
|
|
}
|
|
|
|
RegisterCoalescer* llvm::createSimpleRegisterCoalescer() {
|
|
return new SimpleRegisterCoalescing();
|
|
}
|
|
|
|
// Make sure that anything that uses RegisterCoalescer pulls in this file...
|
|
DEFINING_FILE_FOR(SimpleRegisterCoalescing)
|