llvm-6502/lib/VMCore/AsmWriter.cpp
Chris Lattner df98617b23 Reimplement the old and horrible bison parser for .ll files with a nice
and clean recursive descent parser.

This change has a couple of ramifications:
1. The parser code is about 400 lines shorter (in what we maintain, not
   including what is autogenerated).
2. The code should be significantly faster than the old code because we 
   don't have to work around bison's poor handling of datatypes with 
   ctors/dtors.  This also makes the code much more resistant to memory 
   leaks.
3. We now get caret diagnostics from the .ll parser, woo.
4. The actual diagnostics emited from the parser are completely different
   so a bunch of testcases had to be updated.
5. I now disallow "%ty = type opaque %ty = type i32".  There was no good
   reason to support this, it was just an accident of the old 
   implementation.  I have no reason to think that anyone is actually using
   this.
6. The syntax for sticking a global variable has changed to make it 
   unambiguous.  I don't think anyone is depending on this since only clang
   supports this and it is not solid yet, so I'm not worried about anything
   breaking.
7. This gets rid of the last use of bison, and along with it the .cvs files.
   I'll prune this from the makefiles as a subsequent commit.

There are a few minor cleanups that can be done after this commit (suggestions
welcome!) but this passes dejagnu testing and is ready for its time in the
limelight.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@61558 91177308-0d34-0410-b5e6-96231b3b80d8
2009-01-02 07:01:27 +00:00

1788 lines
57 KiB
C++

//===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This library implements the functionality defined in llvm/Assembly/Writer.h
//
// Note that these routines must be extremely tolerant of various errors in the
// LLVM code, because it can be used for debugging transformations.
//
//===----------------------------------------------------------------------===//
#include "llvm/Assembly/Writer.h"
#include "llvm/Assembly/PrintModulePass.h"
#include "llvm/Assembly/AsmAnnotationWriter.h"
#include "llvm/CallingConv.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/InlineAsm.h"
#include "llvm/Instruction.h"
#include "llvm/Instructions.h"
#include "llvm/Module.h"
#include "llvm/ValueSymbolTable.h"
#include "llvm/TypeSymbolTable.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cctype>
using namespace llvm;
// Make virtual table appear in this compilation unit.
AssemblyAnnotationWriter::~AssemblyAnnotationWriter() {}
//===----------------------------------------------------------------------===//
// Helper Functions
//===----------------------------------------------------------------------===//
static const Module *getModuleFromVal(const Value *V) {
if (const Argument *MA = dyn_cast<Argument>(V))
return MA->getParent() ? MA->getParent()->getParent() : 0;
if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
return BB->getParent() ? BB->getParent()->getParent() : 0;
if (const Instruction *I = dyn_cast<Instruction>(V)) {
const Function *M = I->getParent() ? I->getParent()->getParent() : 0;
return M ? M->getParent() : 0;
}
if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
return GV->getParent();
return 0;
}
// PrintEscapedString - Print each character of the specified string, escaping
// it if it is not printable or if it is an escape char.
static void PrintEscapedString(const char *Str, unsigned Length,
raw_ostream &Out) {
for (unsigned i = 0; i != Length; ++i) {
unsigned char C = Str[i];
if (isprint(C) && C != '\\' && C != '"' && isprint(C))
Out << C;
else
Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
}
}
// PrintEscapedString - Print each character of the specified string, escaping
// it if it is not printable or if it is an escape char.
static void PrintEscapedString(const std::string &Str, raw_ostream &Out) {
PrintEscapedString(Str.c_str(), Str.size(), Out);
}
enum PrefixType {
GlobalPrefix,
LabelPrefix,
LocalPrefix,
NoPrefix
};
/// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
/// prefixed with % (if the string only contains simple characters) or is
/// surrounded with ""'s (if it has special chars in it). Print it out.
static void PrintLLVMName(raw_ostream &OS, const char *NameStr,
unsigned NameLen, PrefixType Prefix) {
assert(NameStr && "Cannot get empty name!");
switch (Prefix) {
default: assert(0 && "Bad prefix!");
case NoPrefix: break;
case GlobalPrefix: OS << '@'; break;
case LabelPrefix: break;
case LocalPrefix: OS << '%'; break;
}
// Scan the name to see if it needs quotes first.
bool NeedsQuotes = isdigit(NameStr[0]);
if (!NeedsQuotes) {
for (unsigned i = 0; i != NameLen; ++i) {
char C = NameStr[i];
if (!isalnum(C) && C != '-' && C != '.' && C != '_') {
NeedsQuotes = true;
break;
}
}
}
// If we didn't need any quotes, just write out the name in one blast.
if (!NeedsQuotes) {
OS.write(NameStr, NameLen);
return;
}
// Okay, we need quotes. Output the quotes and escape any scary characters as
// needed.
OS << '"';
PrintEscapedString(NameStr, NameLen, OS);
OS << '"';
}
/// getLLVMName - Turn the specified string into an 'LLVM name', which is
/// surrounded with ""'s and escaped if it has special chars in it.
static std::string getLLVMName(const std::string &Name) {
assert(!Name.empty() && "Cannot get empty name!");
std::string result;
raw_string_ostream OS(result);
PrintLLVMName(OS, Name.c_str(), Name.length(), NoPrefix);
return OS.str();
}
/// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
/// prefixed with % (if the string only contains simple characters) or is
/// surrounded with ""'s (if it has special chars in it). Print it out.
static void PrintLLVMName(raw_ostream &OS, const Value *V) {
PrintLLVMName(OS, V->getNameStart(), V->getNameLen(),
isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
}
//===----------------------------------------------------------------------===//
// SlotTracker Class: Enumerate slot numbers for unnamed values
//===----------------------------------------------------------------------===//
namespace {
/// This class provides computation of slot numbers for LLVM Assembly writing.
///
class SlotTracker {
public:
/// ValueMap - A mapping of Values to slot numbers
typedef DenseMap<const Value*, unsigned> ValueMap;
private:
/// TheModule - The module for which we are holding slot numbers
const Module* TheModule;
/// TheFunction - The function for which we are holding slot numbers
const Function* TheFunction;
bool FunctionProcessed;
/// mMap - The TypePlanes map for the module level data
ValueMap mMap;
unsigned mNext;
/// fMap - The TypePlanes map for the function level data
ValueMap fMap;
unsigned fNext;
public:
/// Construct from a module
explicit SlotTracker(const Module *M);
/// Construct from a function, starting out in incorp state.
explicit SlotTracker(const Function *F);
/// Return the slot number of the specified value in it's type
/// plane. If something is not in the SlotTracker, return -1.
int getLocalSlot(const Value *V);
int getGlobalSlot(const GlobalValue *V);
/// If you'd like to deal with a function instead of just a module, use
/// this method to get its data into the SlotTracker.
void incorporateFunction(const Function *F) {
TheFunction = F;
FunctionProcessed = false;
}
/// After calling incorporateFunction, use this method to remove the
/// most recently incorporated function from the SlotTracker. This
/// will reset the state of the machine back to just the module contents.
void purgeFunction();
// Implementation Details
private:
/// This function does the actual initialization.
inline void initialize();
/// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
void CreateModuleSlot(const GlobalValue *V);
/// CreateFunctionSlot - Insert the specified Value* into the slot table.
void CreateFunctionSlot(const Value *V);
/// Add all of the module level global variables (and their initializers)
/// and function declarations, but not the contents of those functions.
void processModule();
/// Add all of the functions arguments, basic blocks, and instructions
void processFunction();
SlotTracker(const SlotTracker &); // DO NOT IMPLEMENT
void operator=(const SlotTracker &); // DO NOT IMPLEMENT
};
} // end anonymous namespace
static SlotTracker *createSlotTracker(const Value *V) {
if (const Argument *FA = dyn_cast<Argument>(V))
return new SlotTracker(FA->getParent());
if (const Instruction *I = dyn_cast<Instruction>(V))
return new SlotTracker(I->getParent()->getParent());
if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
return new SlotTracker(BB->getParent());
if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
return new SlotTracker(GV->getParent());
if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
return new SlotTracker(GA->getParent());
if (const Function *Func = dyn_cast<Function>(V))
return new SlotTracker(Func);
return 0;
}
#if 0
#define ST_DEBUG(X) cerr << X
#else
#define ST_DEBUG(X)
#endif
// Module level constructor. Causes the contents of the Module (sans functions)
// to be added to the slot table.
SlotTracker::SlotTracker(const Module *M)
: TheModule(M), TheFunction(0), FunctionProcessed(false), mNext(0), fNext(0) {
}
// Function level constructor. Causes the contents of the Module and the one
// function provided to be added to the slot table.
SlotTracker::SlotTracker(const Function *F)
: TheModule(F ? F->getParent() : 0), TheFunction(F), FunctionProcessed(false),
mNext(0), fNext(0) {
}
inline void SlotTracker::initialize() {
if (TheModule) {
processModule();
TheModule = 0; ///< Prevent re-processing next time we're called.
}
if (TheFunction && !FunctionProcessed)
processFunction();
}
// Iterate through all the global variables, functions, and global
// variable initializers and create slots for them.
void SlotTracker::processModule() {
ST_DEBUG("begin processModule!\n");
// Add all of the unnamed global variables to the value table.
for (Module::const_global_iterator I = TheModule->global_begin(),
E = TheModule->global_end(); I != E; ++I)
if (!I->hasName())
CreateModuleSlot(I);
// Add all the unnamed functions to the table.
for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
I != E; ++I)
if (!I->hasName())
CreateModuleSlot(I);
ST_DEBUG("end processModule!\n");
}
// Process the arguments, basic blocks, and instructions of a function.
void SlotTracker::processFunction() {
ST_DEBUG("begin processFunction!\n");
fNext = 0;
// Add all the function arguments with no names.
for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
AE = TheFunction->arg_end(); AI != AE; ++AI)
if (!AI->hasName())
CreateFunctionSlot(AI);
ST_DEBUG("Inserting Instructions:\n");
// Add all of the basic blocks and instructions with no names.
for (Function::const_iterator BB = TheFunction->begin(),
E = TheFunction->end(); BB != E; ++BB) {
if (!BB->hasName())
CreateFunctionSlot(BB);
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I)
if (I->getType() != Type::VoidTy && !I->hasName())
CreateFunctionSlot(I);
}
FunctionProcessed = true;
ST_DEBUG("end processFunction!\n");
}
/// Clean up after incorporating a function. This is the only way to get out of
/// the function incorporation state that affects get*Slot/Create*Slot. Function
/// incorporation state is indicated by TheFunction != 0.
void SlotTracker::purgeFunction() {
ST_DEBUG("begin purgeFunction!\n");
fMap.clear(); // Simply discard the function level map
TheFunction = 0;
FunctionProcessed = false;
ST_DEBUG("end purgeFunction!\n");
}
/// getGlobalSlot - Get the slot number of a global value.
int SlotTracker::getGlobalSlot(const GlobalValue *V) {
// Check for uninitialized state and do lazy initialization.
initialize();
// Find the type plane in the module map
ValueMap::iterator MI = mMap.find(V);
return MI == mMap.end() ? -1 : (int)MI->second;
}
/// getLocalSlot - Get the slot number for a value that is local to a function.
int SlotTracker::getLocalSlot(const Value *V) {
assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
// Check for uninitialized state and do lazy initialization.
initialize();
ValueMap::iterator FI = fMap.find(V);
return FI == fMap.end() ? -1 : (int)FI->second;
}
/// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
assert(V && "Can't insert a null Value into SlotTracker!");
assert(V->getType() != Type::VoidTy && "Doesn't need a slot!");
assert(!V->hasName() && "Doesn't need a slot!");
unsigned DestSlot = mNext++;
mMap[V] = DestSlot;
ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" <<
DestSlot << " [");
// G = Global, F = Function, A = Alias, o = other
ST_DEBUG((isa<GlobalVariable>(V) ? 'G' :
(isa<Function>(V) ? 'F' :
(isa<GlobalAlias>(V) ? 'A' : 'o'))) << "]\n");
}
/// CreateSlot - Create a new slot for the specified value if it has no name.
void SlotTracker::CreateFunctionSlot(const Value *V) {
assert(V->getType() != Type::VoidTy && !V->hasName() &&
"Doesn't need a slot!");
unsigned DestSlot = fNext++;
fMap[V] = DestSlot;
// G = Global, F = Function, o = other
ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" <<
DestSlot << " [o]\n");
}
//===----------------------------------------------------------------------===//
// AsmWriter Implementation
//===----------------------------------------------------------------------===//
static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
std::map<const Type *, std::string> &TypeTable,
SlotTracker *Machine);
/// fillTypeNameTable - If the module has a symbol table, take all global types
/// and stuff their names into the TypeNames map.
///
static void fillTypeNameTable(const Module *M,
std::map<const Type *, std::string> &TypeNames) {
if (!M) return;
const TypeSymbolTable &ST = M->getTypeSymbolTable();
TypeSymbolTable::const_iterator TI = ST.begin();
for (; TI != ST.end(); ++TI) {
// As a heuristic, don't insert pointer to primitive types, because
// they are used too often to have a single useful name.
//
const Type *Ty = cast<Type>(TI->second);
if (!isa<PointerType>(Ty) ||
!cast<PointerType>(Ty)->getElementType()->isPrimitiveType() ||
!cast<PointerType>(Ty)->getElementType()->isInteger() ||
isa<OpaqueType>(cast<PointerType>(Ty)->getElementType()))
TypeNames.insert(std::make_pair(Ty, '%' + getLLVMName(TI->first)));
}
}
static void calcTypeName(const Type *Ty,
std::vector<const Type *> &TypeStack,
std::map<const Type *, std::string> &TypeNames,
std::string &Result) {
if (Ty->isInteger() || (Ty->isPrimitiveType() && !isa<OpaqueType>(Ty))) {
Result += Ty->getDescription(); // Base case
return;
}
// Check to see if the type is named.
std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
if (I != TypeNames.end()) {
Result += I->second;
return;
}
if (isa<OpaqueType>(Ty)) {
Result += "opaque";
return;
}
// Check to see if the Type is already on the stack...
unsigned Slot = 0, CurSize = TypeStack.size();
while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type
// This is another base case for the recursion. In this case, we know
// that we have looped back to a type that we have previously visited.
// Generate the appropriate upreference to handle this.
if (Slot < CurSize) {
Result += "\\" + utostr(CurSize-Slot); // Here's the upreference
return;
}
TypeStack.push_back(Ty); // Recursive case: Add us to the stack..
switch (Ty->getTypeID()) {
case Type::IntegerTyID: {
unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth();
Result += "i" + utostr(BitWidth);
break;
}
case Type::FunctionTyID: {
const FunctionType *FTy = cast<FunctionType>(Ty);
calcTypeName(FTy->getReturnType(), TypeStack, TypeNames, Result);
Result += " (";
for (FunctionType::param_iterator I = FTy->param_begin(),
E = FTy->param_end(); I != E; ++I) {
if (I != FTy->param_begin())
Result += ", ";
calcTypeName(*I, TypeStack, TypeNames, Result);
}
if (FTy->isVarArg()) {
if (FTy->getNumParams()) Result += ", ";
Result += "...";
}
Result += ")";
break;
}
case Type::StructTyID: {
const StructType *STy = cast<StructType>(Ty);
if (STy->isPacked())
Result += '<';
Result += "{ ";
for (StructType::element_iterator I = STy->element_begin(),
E = STy->element_end(); I != E; ++I) {
calcTypeName(*I, TypeStack, TypeNames, Result);
if (next(I) != STy->element_end())
Result += ',';
Result += ' ';
}
Result += '}';
if (STy->isPacked())
Result += '>';
break;
}
case Type::PointerTyID: {
const PointerType *PTy = cast<PointerType>(Ty);
calcTypeName(PTy->getElementType(), TypeStack, TypeNames, Result);
if (unsigned AddressSpace = PTy->getAddressSpace())
Result += " addrspace(" + utostr(AddressSpace) + ")";
Result += "*";
break;
}
case Type::ArrayTyID: {
const ArrayType *ATy = cast<ArrayType>(Ty);
Result += "[" + utostr(ATy->getNumElements()) + " x ";
calcTypeName(ATy->getElementType(), TypeStack, TypeNames, Result);
Result += "]";
break;
}
case Type::VectorTyID: {
const VectorType *PTy = cast<VectorType>(Ty);
Result += "<" + utostr(PTy->getNumElements()) + " x ";
calcTypeName(PTy->getElementType(), TypeStack, TypeNames, Result);
Result += ">";
break;
}
case Type::OpaqueTyID:
Result += "opaque";
break;
default:
Result += "<unrecognized-type>";
break;
}
TypeStack.pop_back(); // Remove self from stack...
}
/// printTypeInt - The internal guts of printing out a type that has a
/// potentially named portion.
///
static void printTypeInt(raw_ostream &Out, const Type *Ty,
std::map<const Type *, std::string> &TypeNames) {
// Primitive types always print out their description, regardless of whether
// they have been named or not.
//
if (Ty->isInteger() || (Ty->isPrimitiveType() && !isa<OpaqueType>(Ty))) {
Out << Ty->getDescription();
return;
}
// Check to see if the type is named.
std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
if (I != TypeNames.end()) {
Out << I->second;
return;
}
// Otherwise we have a type that has not been named but is a derived type.
// Carefully recurse the type hierarchy to print out any contained symbolic
// names.
//
std::vector<const Type *> TypeStack;
std::string TypeName;
calcTypeName(Ty, TypeStack, TypeNames, TypeName);
TypeNames.insert(std::make_pair(Ty, TypeName));//Cache type name for later use
Out << TypeName;
}
/// WriteTypeSymbolic - This attempts to write the specified type as a symbolic
/// type, iff there is an entry in the modules symbol table for the specified
/// type or one of it's component types. This is slower than a simple x << Type
///
void llvm::WriteTypeSymbolic(std::ostream &Out, const Type *Ty,
const Module *M) {
raw_os_ostream RO(Out);
WriteTypeSymbolic(RO, Ty, M);
}
void llvm::WriteTypeSymbolic(raw_ostream &Out, const Type *Ty, const Module *M){
Out << ' ';
// If they want us to print out a type, but there is no context, we can't
// print it symbolically.
if (!M) {
Out << Ty->getDescription();
} else {
std::map<const Type *, std::string> TypeNames;
fillTypeNameTable(M, TypeNames);
printTypeInt(Out, Ty, TypeNames);
}
}
static const char *getPredicateText(unsigned predicate) {
const char * pred = "unknown";
switch (predicate) {
case FCmpInst::FCMP_FALSE: pred = "false"; break;
case FCmpInst::FCMP_OEQ: pred = "oeq"; break;
case FCmpInst::FCMP_OGT: pred = "ogt"; break;
case FCmpInst::FCMP_OGE: pred = "oge"; break;
case FCmpInst::FCMP_OLT: pred = "olt"; break;
case FCmpInst::FCMP_OLE: pred = "ole"; break;
case FCmpInst::FCMP_ONE: pred = "one"; break;
case FCmpInst::FCMP_ORD: pred = "ord"; break;
case FCmpInst::FCMP_UNO: pred = "uno"; break;
case FCmpInst::FCMP_UEQ: pred = "ueq"; break;
case FCmpInst::FCMP_UGT: pred = "ugt"; break;
case FCmpInst::FCMP_UGE: pred = "uge"; break;
case FCmpInst::FCMP_ULT: pred = "ult"; break;
case FCmpInst::FCMP_ULE: pred = "ule"; break;
case FCmpInst::FCMP_UNE: pred = "une"; break;
case FCmpInst::FCMP_TRUE: pred = "true"; break;
case ICmpInst::ICMP_EQ: pred = "eq"; break;
case ICmpInst::ICMP_NE: pred = "ne"; break;
case ICmpInst::ICMP_SGT: pred = "sgt"; break;
case ICmpInst::ICMP_SGE: pred = "sge"; break;
case ICmpInst::ICMP_SLT: pred = "slt"; break;
case ICmpInst::ICMP_SLE: pred = "sle"; break;
case ICmpInst::ICMP_UGT: pred = "ugt"; break;
case ICmpInst::ICMP_UGE: pred = "uge"; break;
case ICmpInst::ICMP_ULT: pred = "ult"; break;
case ICmpInst::ICMP_ULE: pred = "ule"; break;
}
return pred;
}
static void WriteConstantInt(raw_ostream &Out, const Constant *CV,
std::map<const Type *, std::string> &TypeTable,
SlotTracker *Machine) {
if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
if (CI->getType() == Type::Int1Ty) {
Out << (CI->getZExtValue() ? "true" : "false");
return;
}
Out << CI->getValue();
return;
}
if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEdouble ||
&CFP->getValueAPF().getSemantics() == &APFloat::IEEEsingle) {
// We would like to output the FP constant value in exponential notation,
// but we cannot do this if doing so will lose precision. Check here to
// make sure that we only output it in exponential format if we can parse
// the value back and get the same value.
//
bool isDouble = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEdouble;
double Val = isDouble ? CFP->getValueAPF().convertToDouble() :
CFP->getValueAPF().convertToFloat();
std::string StrVal = ftostr(CFP->getValueAPF());
// Check to make sure that the stringized number is not some string like
// "Inf" or NaN, that atof will accept, but the lexer will not. Check
// that the string matches the "[-+]?[0-9]" regex.
//
if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
((StrVal[0] == '-' || StrVal[0] == '+') &&
(StrVal[1] >= '0' && StrVal[1] <= '9'))) {
// Reparse stringized version!
if (atof(StrVal.c_str()) == Val) {
Out << StrVal;
return;
}
}
// Otherwise we could not reparse it to exactly the same value, so we must
// output the string in hexadecimal format!
assert(sizeof(double) == sizeof(uint64_t) &&
"assuming that double is 64 bits!");
char Buffer[40];
Out << "0x" << utohex_buffer(uint64_t(DoubleToBits(Val)), Buffer+40);
return;
}
// Some form of long double. These appear as a magic letter identifying
// the type, then a fixed number of hex digits.
Out << "0x";
if (&CFP->getValueAPF().getSemantics() == &APFloat::x87DoubleExtended)
Out << 'K';
else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEquad)
Out << 'L';
else if (&CFP->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble)
Out << 'M';
else
assert(0 && "Unsupported floating point type");
// api needed to prevent premature destruction
APInt api = CFP->getValueAPF().bitcastToAPInt();
const uint64_t* p = api.getRawData();
uint64_t word = *p;
int shiftcount=60;
int width = api.getBitWidth();
for (int j=0; j<width; j+=4, shiftcount-=4) {
unsigned int nibble = (word>>shiftcount) & 15;
if (nibble < 10)
Out << (unsigned char)(nibble + '0');
else
Out << (unsigned char)(nibble - 10 + 'A');
if (shiftcount == 0 && j+4 < width) {
word = *(++p);
shiftcount = 64;
if (width-j-4 < 64)
shiftcount = width-j-4;
}
}
return;
}
if (isa<ConstantAggregateZero>(CV)) {
Out << "zeroinitializer";
return;
}
if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
// As a special case, print the array as a string if it is an array of
// i8 with ConstantInt values.
//
const Type *ETy = CA->getType()->getElementType();
if (CA->isString()) {
Out << "c\"";
PrintEscapedString(CA->getAsString(), Out);
Out << '"';
} else { // Cannot output in string format...
Out << '[';
if (CA->getNumOperands()) {
Out << ' ';
printTypeInt(Out, ETy, TypeTable);
Out << ' ';
WriteAsOperandInternal(Out, CA->getOperand(0),
TypeTable, Machine);
for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
Out << ", ";
printTypeInt(Out, ETy, TypeTable);
Out << ' ';
WriteAsOperandInternal(Out, CA->getOperand(i), TypeTable, Machine);
}
Out << ' ';
}
Out << ']';
}
return;
}
if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
if (CS->getType()->isPacked())
Out << '<';
Out << '{';
unsigned N = CS->getNumOperands();
if (N) {
Out << ' ';
printTypeInt(Out, CS->getOperand(0)->getType(), TypeTable);
Out << ' ';
WriteAsOperandInternal(Out, CS->getOperand(0), TypeTable, Machine);
for (unsigned i = 1; i < N; i++) {
Out << ", ";
printTypeInt(Out, CS->getOperand(i)->getType(), TypeTable);
Out << ' ';
WriteAsOperandInternal(Out, CS->getOperand(i), TypeTable, Machine);
}
Out << ' ';
}
Out << '}';
if (CS->getType()->isPacked())
Out << '>';
return;
}
if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
const Type *ETy = CP->getType()->getElementType();
assert(CP->getNumOperands() > 0 &&
"Number of operands for a PackedConst must be > 0");
Out << "< ";
printTypeInt(Out, ETy, TypeTable);
Out << ' ';
WriteAsOperandInternal(Out, CP->getOperand(0), TypeTable, Machine);
for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
Out << ", ";
printTypeInt(Out, ETy, TypeTable);
Out << ' ';
WriteAsOperandInternal(Out, CP->getOperand(i), TypeTable, Machine);
}
Out << " >";
return;
}
if (isa<ConstantPointerNull>(CV)) {
Out << "null";
return;
}
if (isa<UndefValue>(CV)) {
Out << "undef";
return;
}
if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
Out << CE->getOpcodeName();
if (CE->isCompare())
Out << ' ' << getPredicateText(CE->getPredicate());
Out << " (";
for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
printTypeInt(Out, (*OI)->getType(), TypeTable);
Out << ' ';
WriteAsOperandInternal(Out, *OI, TypeTable, Machine);
if (OI+1 != CE->op_end())
Out << ", ";
}
if (CE->hasIndices()) {
const SmallVector<unsigned, 4> &Indices = CE->getIndices();
for (unsigned i = 0, e = Indices.size(); i != e; ++i)
Out << ", " << Indices[i];
}
if (CE->isCast()) {
Out << " to ";
printTypeInt(Out, CE->getType(), TypeTable);
}
Out << ')';
return;
}
Out << "<placeholder or erroneous Constant>";
}
/// WriteAsOperand - Write the name of the specified value out to the specified
/// ostream. This can be useful when you just want to print int %reg126, not
/// the whole instruction that generated it.
///
static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
std::map<const Type*, std::string> &TypeTable,
SlotTracker *Machine) {
if (V->hasName()) {
PrintLLVMName(Out, V);
return;
}
const Constant *CV = dyn_cast<Constant>(V);
if (CV && !isa<GlobalValue>(CV)) {
WriteConstantInt(Out, CV, TypeTable, Machine);
return;
}
if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
Out << "asm ";
if (IA->hasSideEffects())
Out << "sideeffect ";
Out << '"';
PrintEscapedString(IA->getAsmString(), Out);
Out << "\", \"";
PrintEscapedString(IA->getConstraintString(), Out);
Out << '"';
return;
}
char Prefix = '%';
int Slot;
if (Machine) {
if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
Slot = Machine->getGlobalSlot(GV);
Prefix = '@';
} else {
Slot = Machine->getLocalSlot(V);
}
} else {
Machine = createSlotTracker(V);
if (Machine) {
if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
Slot = Machine->getGlobalSlot(GV);
Prefix = '@';
} else {
Slot = Machine->getLocalSlot(V);
}
} else {
Slot = -1;
}
delete Machine;
}
if (Slot != -1)
Out << Prefix << Slot;
else
Out << "<badref>";
}
/// WriteAsOperand - Write the name of the specified value out to the specified
/// ostream. This can be useful when you just want to print int %reg126, not
/// the whole instruction that generated it.
///
void llvm::WriteAsOperand(std::ostream &Out, const Value *V, bool PrintType,
const Module *Context) {
raw_os_ostream OS(Out);
WriteAsOperand(OS, V, PrintType, Context);
}
void llvm::WriteAsOperand(raw_ostream &Out, const Value *V, bool PrintType,
const Module *Context) {
std::map<const Type *, std::string> TypeNames;
if (Context == 0) Context = getModuleFromVal(V);
if (Context)
fillTypeNameTable(Context, TypeNames);
if (PrintType) {
printTypeInt(Out, V->getType(), TypeNames);
Out << ' ';
}
WriteAsOperandInternal(Out, V, TypeNames, 0);
}
namespace {
class AssemblyWriter {
raw_ostream &Out;
SlotTracker &Machine;
const Module *TheModule;
std::map<const Type *, std::string> TypeNames;
AssemblyAnnotationWriter *AnnotationWriter;
public:
inline AssemblyWriter(raw_ostream &o, SlotTracker &Mac, const Module *M,
AssemblyAnnotationWriter *AAW)
: Out(o), Machine(Mac), TheModule(M), AnnotationWriter(AAW) {
// If the module has a symbol table, take all global types and stuff their
// names into the TypeNames map.
//
fillTypeNameTable(M, TypeNames);
}
void write(const Module *M) { printModule(M); }
void write(const GlobalValue *G) {
if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(G))
printGlobal(GV);
else if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(G))
printAlias(GA);
else if (const Function *F = dyn_cast<Function>(G))
printFunction(F);
else
assert(0 && "Unknown global");
}
void write(const BasicBlock *BB) { printBasicBlock(BB); }
void write(const Instruction *I) { printInstruction(*I); }
void write(const Type *Ty) { printType(Ty); }
void writeOperand(const Value *Op, bool PrintType);
void writeParamOperand(const Value *Operand, Attributes Attrs);
const Module* getModule() { return TheModule; }
private:
void printModule(const Module *M);
void printTypeSymbolTable(const TypeSymbolTable &ST);
void printGlobal(const GlobalVariable *GV);
void printAlias(const GlobalAlias *GV);
void printFunction(const Function *F);
void printArgument(const Argument *FA, Attributes Attrs);
void printBasicBlock(const BasicBlock *BB);
void printInstruction(const Instruction &I);
// printType - Go to extreme measures to attempt to print out a short,
// symbolic version of a type name.
//
void printType(const Type *Ty) {
printTypeInt(Out, Ty, TypeNames);
}
// printTypeAtLeastOneLevel - Print out one level of the possibly complex type
// without considering any symbolic types that we may have equal to it.
//
void printTypeAtLeastOneLevel(const Type *Ty);
// printInfoComment - Print a little comment after the instruction indicating
// which slot it occupies.
void printInfoComment(const Value &V);
};
} // end of llvm namespace
/// printTypeAtLeastOneLevel - Print out one level of the possibly complex type
/// without considering any symbolic types that we may have equal to it.
///
void AssemblyWriter::printTypeAtLeastOneLevel(const Type *Ty) {
if (const IntegerType *ITy = dyn_cast<IntegerType>(Ty)) {
Out << "i" << utostr(ITy->getBitWidth());
return;
}
if (const FunctionType *FTy = dyn_cast<FunctionType>(Ty)) {
printType(FTy->getReturnType());
Out << " (";
for (FunctionType::param_iterator I = FTy->param_begin(),
E = FTy->param_end(); I != E; ++I) {
if (I != FTy->param_begin())
Out << ", ";
printType(*I);
}
if (FTy->isVarArg()) {
if (FTy->getNumParams()) Out << ", ";
Out << "...";
}
Out << ')';
return;
}
if (const StructType *STy = dyn_cast<StructType>(Ty)) {
if (STy->isPacked())
Out << '<';
Out << "{ ";
for (StructType::element_iterator I = STy->element_begin(),
E = STy->element_end(); I != E; ++I) {
if (I != STy->element_begin())
Out << ", ";
printType(*I);
}
Out << " }";
if (STy->isPacked())
Out << '>';
return;
}
if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
printType(PTy->getElementType());
if (unsigned AddressSpace = PTy->getAddressSpace())
Out << " addrspace(" << AddressSpace << ")";
Out << '*';
return;
}
if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
Out << '[' << ATy->getNumElements() << " x ";
printType(ATy->getElementType());
Out << ']';
return;
}
if (const VectorType *PTy = dyn_cast<VectorType>(Ty)) {
Out << '<' << PTy->getNumElements() << " x ";
printType(PTy->getElementType());
Out << '>';
return;
}
if (isa<OpaqueType>(Ty)) {
Out << "opaque";
return;
}
if (!Ty->isPrimitiveType())
Out << "<unknown derived type>";
printType(Ty);
}
void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
if (Operand == 0) {
Out << "<null operand!>";
} else {
if (PrintType) {
printType(Operand->getType());
Out << ' ';
}
WriteAsOperandInternal(Out, Operand, TypeNames, &Machine);
}
}
void AssemblyWriter::writeParamOperand(const Value *Operand,
Attributes Attrs) {
if (Operand == 0) {
Out << "<null operand!>";
} else {
// Print the type
printType(Operand->getType());
// Print parameter attributes list
if (Attrs != Attribute::None)
Out << ' ' << Attribute::getAsString(Attrs);
Out << ' ';
// Print the operand
WriteAsOperandInternal(Out, Operand, TypeNames, &Machine);
}
}
void AssemblyWriter::printModule(const Module *M) {
if (!M->getModuleIdentifier().empty() &&
// Don't print the ID if it will start a new line (which would
// require a comment char before it).
M->getModuleIdentifier().find('\n') == std::string::npos)
Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
if (!M->getDataLayout().empty())
Out << "target datalayout = \"" << M->getDataLayout() << "\"\n";
if (!M->getTargetTriple().empty())
Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
if (!M->getModuleInlineAsm().empty()) {
// Split the string into lines, to make it easier to read the .ll file.
std::string Asm = M->getModuleInlineAsm();
size_t CurPos = 0;
size_t NewLine = Asm.find_first_of('\n', CurPos);
while (NewLine != std::string::npos) {
// We found a newline, print the portion of the asm string from the
// last newline up to this newline.
Out << "module asm \"";
PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.begin()+NewLine),
Out);
Out << "\"\n";
CurPos = NewLine+1;
NewLine = Asm.find_first_of('\n', CurPos);
}
Out << "module asm \"";
PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.end()), Out);
Out << "\"\n";
}
// Loop over the dependent libraries and emit them.
Module::lib_iterator LI = M->lib_begin();
Module::lib_iterator LE = M->lib_end();
if (LI != LE) {
Out << "deplibs = [ ";
while (LI != LE) {
Out << '"' << *LI << '"';
++LI;
if (LI != LE)
Out << ", ";
}
Out << " ]\n";
}
// Loop over the symbol table, emitting all named constants.
printTypeSymbolTable(M->getTypeSymbolTable());
for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
I != E; ++I)
printGlobal(I);
// Output all aliases.
if (!M->alias_empty()) Out << "\n";
for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
I != E; ++I)
printAlias(I);
// Output all of the functions.
for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
printFunction(I);
}
static void PrintLinkage(GlobalValue::LinkageTypes LT, raw_ostream &Out) {
switch (LT) {
case GlobalValue::InternalLinkage: Out << "internal "; break;
case GlobalValue::LinkOnceLinkage: Out << "linkonce "; break;
case GlobalValue::WeakLinkage: Out << "weak "; break;
case GlobalValue::CommonLinkage: Out << "common "; break;
case GlobalValue::AppendingLinkage: Out << "appending "; break;
case GlobalValue::DLLImportLinkage: Out << "dllimport "; break;
case GlobalValue::DLLExportLinkage: Out << "dllexport "; break;
case GlobalValue::ExternalWeakLinkage: Out << "extern_weak "; break;
case GlobalValue::ExternalLinkage: break;
case GlobalValue::GhostLinkage:
Out << "GhostLinkage not allowed in AsmWriter!\n";
abort();
}
}
static void PrintVisibility(GlobalValue::VisibilityTypes Vis,
raw_ostream &Out) {
switch (Vis) {
default: assert(0 && "Invalid visibility style!");
case GlobalValue::DefaultVisibility: break;
case GlobalValue::HiddenVisibility: Out << "hidden "; break;
case GlobalValue::ProtectedVisibility: Out << "protected "; break;
}
}
void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
if (GV->hasName()) {
PrintLLVMName(Out, GV);
Out << " = ";
}
if (!GV->hasInitializer() && GV->hasExternalLinkage())
Out << "external ";
PrintLinkage(GV->getLinkage(), Out);
PrintVisibility(GV->getVisibility(), Out);
if (GV->isThreadLocal()) Out << "thread_local ";
if (unsigned AddressSpace = GV->getType()->getAddressSpace())
Out << "addrspace(" << AddressSpace << ") ";
Out << (GV->isConstant() ? "constant " : "global ");
printType(GV->getType()->getElementType());
if (GV->hasInitializer()) {
Out << ' ';
writeOperand(GV->getInitializer(), false);
}
if (GV->hasSection())
Out << ", section \"" << GV->getSection() << '"';
if (GV->getAlignment())
Out << ", align " << GV->getAlignment();
printInfoComment(*GV);
Out << '\n';
}
void AssemblyWriter::printAlias(const GlobalAlias *GA) {
// Don't crash when dumping partially built GA
if (!GA->hasName())
Out << "<<nameless>> = ";
else {
PrintLLVMName(Out, GA);
Out << " = ";
}
PrintVisibility(GA->getVisibility(), Out);
Out << "alias ";
PrintLinkage(GA->getLinkage(), Out);
const Constant *Aliasee = GA->getAliasee();
if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Aliasee)) {
printType(GV->getType());
Out << ' ';
PrintLLVMName(Out, GV);
} else if (const Function *F = dyn_cast<Function>(Aliasee)) {
printType(F->getFunctionType());
Out << "* ";
if (F->hasName())
PrintLLVMName(Out, F);
else
Out << "@\"\"";
} else if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(Aliasee)) {
printType(GA->getType());
Out << " ";
PrintLLVMName(Out, GA);
} else {
const ConstantExpr *CE = 0;
if ((CE = dyn_cast<ConstantExpr>(Aliasee)) &&
(CE->getOpcode() == Instruction::BitCast)) {
writeOperand(CE, false);
} else
assert(0 && "Unsupported aliasee");
}
printInfoComment(*GA);
Out << '\n';
}
void AssemblyWriter::printTypeSymbolTable(const TypeSymbolTable &ST) {
// Print the types.
for (TypeSymbolTable::const_iterator TI = ST.begin(), TE = ST.end();
TI != TE; ++TI) {
Out << '\t';
PrintLLVMName(Out, &TI->first[0], TI->first.size(), LocalPrefix);
Out << " = type ";
// Make sure we print out at least one level of the type structure, so
// that we do not get %FILE = type %FILE
//
printTypeAtLeastOneLevel(TI->second);
Out << '\n';
}
}
/// printFunction - Print all aspects of a function.
///
void AssemblyWriter::printFunction(const Function *F) {
// Print out the return type and name.
Out << '\n';
if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
if (F->isDeclaration())
Out << "declare ";
else
Out << "define ";
PrintLinkage(F->getLinkage(), Out);
PrintVisibility(F->getVisibility(), Out);
// Print the calling convention.
switch (F->getCallingConv()) {
case CallingConv::C: break; // default
case CallingConv::Fast: Out << "fastcc "; break;
case CallingConv::Cold: Out << "coldcc "; break;
case CallingConv::X86_StdCall: Out << "x86_stdcallcc "; break;
case CallingConv::X86_FastCall: Out << "x86_fastcallcc "; break;
default: Out << "cc" << F->getCallingConv() << " "; break;
}
const FunctionType *FT = F->getFunctionType();
const AttrListPtr &Attrs = F->getAttributes();
Attributes RetAttrs = Attrs.getRetAttributes();
if (RetAttrs != Attribute::None)
Out << Attribute::getAsString(Attrs.getRetAttributes()) << ' ';
printType(F->getReturnType());
Out << ' ';
if (F->hasName())
PrintLLVMName(Out, F);
else
Out << "@\"\"";
Out << '(';
Machine.incorporateFunction(F);
// Loop over the arguments, printing them...
unsigned Idx = 1;
if (!F->isDeclaration()) {
// If this isn't a declaration, print the argument names as well.
for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
I != E; ++I) {
// Insert commas as we go... the first arg doesn't get a comma
if (I != F->arg_begin()) Out << ", ";
printArgument(I, Attrs.getParamAttributes(Idx));
Idx++;
}
} else {
// Otherwise, print the types from the function type.
for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
// Insert commas as we go... the first arg doesn't get a comma
if (i) Out << ", ";
// Output type...
printType(FT->getParamType(i));
Attributes ArgAttrs = Attrs.getParamAttributes(i+1);
if (ArgAttrs != Attribute::None)
Out << ' ' << Attribute::getAsString(ArgAttrs);
}
}
// Finish printing arguments...
if (FT->isVarArg()) {
if (FT->getNumParams()) Out << ", ";
Out << "..."; // Output varargs portion of signature!
}
Out << ')';
Attributes FnAttrs = Attrs.getFnAttributes();
if (FnAttrs != Attribute::None)
Out << ' ' << Attribute::getAsString(Attrs.getFnAttributes());
if (F->hasSection())
Out << " section \"" << F->getSection() << '"';
if (F->getAlignment())
Out << " align " << F->getAlignment();
if (F->hasGC())
Out << " gc \"" << F->getGC() << '"';
if (F->isDeclaration()) {
Out << "\n";
} else {
Out << " {";
// Output all of its basic blocks... for the function
for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I)
printBasicBlock(I);
Out << "}\n";
}
Machine.purgeFunction();
}
/// printArgument - This member is called for every argument that is passed into
/// the function. Simply print it out
///
void AssemblyWriter::printArgument(const Argument *Arg,
Attributes Attrs) {
// Output type...
printType(Arg->getType());
// Output parameter attributes list
if (Attrs != Attribute::None)
Out << ' ' << Attribute::getAsString(Attrs);
// Output name, if available...
if (Arg->hasName()) {
Out << ' ';
PrintLLVMName(Out, Arg);
}
}
/// printBasicBlock - This member is called for each basic block in a method.
///
void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
if (BB->hasName()) { // Print out the label if it exists...
Out << "\n";
PrintLLVMName(Out, BB->getNameStart(), BB->getNameLen(), LabelPrefix);
Out << ':';
} else if (!BB->use_empty()) { // Don't print block # of no uses...
Out << "\n; <label>:";
int Slot = Machine.getLocalSlot(BB);
if (Slot != -1)
Out << Slot;
else
Out << "<badref>";
}
if (BB->getParent() == 0)
Out << "\t\t; Error: Block without parent!";
else if (BB != &BB->getParent()->getEntryBlock()) { // Not the entry block?
// Output predecessors for the block...
Out << "\t\t;";
pred_const_iterator PI = pred_begin(BB), PE = pred_end(BB);
if (PI == PE) {
Out << " No predecessors!";
} else {
Out << " preds = ";
writeOperand(*PI, false);
for (++PI; PI != PE; ++PI) {
Out << ", ";
writeOperand(*PI, false);
}
}
}
Out << "\n";
if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
// Output all of the instructions in the basic block...
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I)
printInstruction(*I);
if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
}
/// printInfoComment - Print a little comment after the instruction indicating
/// which slot it occupies.
///
void AssemblyWriter::printInfoComment(const Value &V) {
if (V.getType() != Type::VoidTy) {
Out << "\t\t; <";
printType(V.getType());
Out << '>';
if (!V.hasName() && !isa<Instruction>(V)) {
int SlotNum;
if (const GlobalValue *GV = dyn_cast<GlobalValue>(&V))
SlotNum = Machine.getGlobalSlot(GV);
else
SlotNum = Machine.getLocalSlot(&V);
if (SlotNum == -1)
Out << ":<badref>";
else
Out << ':' << SlotNum; // Print out the def slot taken.
}
Out << " [#uses=" << V.getNumUses() << ']'; // Output # uses
}
}
// This member is called for each Instruction in a function..
void AssemblyWriter::printInstruction(const Instruction &I) {
if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
Out << '\t';
// Print out name if it exists...
if (I.hasName()) {
PrintLLVMName(Out, &I);
Out << " = ";
} else if (I.getType() != Type::VoidTy) {
// Print out the def slot taken.
int SlotNum = Machine.getLocalSlot(&I);
if (SlotNum == -1)
Out << "<badref> = ";
else
Out << '%' << SlotNum << " = ";
}
// If this is a volatile load or store, print out the volatile marker.
if ((isa<LoadInst>(I) && cast<LoadInst>(I).isVolatile()) ||
(isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile())) {
Out << "volatile ";
} else if (isa<CallInst>(I) && cast<CallInst>(I).isTailCall()) {
// If this is a call, check if it's a tail call.
Out << "tail ";
}
// Print out the opcode...
Out << I.getOpcodeName();
// Print out the compare instruction predicates
if (const CmpInst *CI = dyn_cast<CmpInst>(&I))
Out << ' ' << getPredicateText(CI->getPredicate());
// Print out the type of the operands...
const Value *Operand = I.getNumOperands() ? I.getOperand(0) : 0;
// Special case conditional branches to swizzle the condition out to the front
if (isa<BranchInst>(I) && I.getNumOperands() > 1) {
Out << ' ';
writeOperand(I.getOperand(2), true);
Out << ", ";
writeOperand(Operand, true);
Out << ", ";
writeOperand(I.getOperand(1), true);
} else if (isa<SwitchInst>(I)) {
// Special case switch statement to get formatting nice and correct...
Out << ' ';
writeOperand(Operand , true);
Out << ", ";
writeOperand(I.getOperand(1), true);
Out << " [";
for (unsigned op = 2, Eop = I.getNumOperands(); op < Eop; op += 2) {
Out << "\n\t\t";
writeOperand(I.getOperand(op ), true);
Out << ", ";
writeOperand(I.getOperand(op+1), true);
}
Out << "\n\t]";
} else if (isa<PHINode>(I)) {
Out << ' ';
printType(I.getType());
Out << ' ';
for (unsigned op = 0, Eop = I.getNumOperands(); op < Eop; op += 2) {
if (op) Out << ", ";
Out << "[ ";
writeOperand(I.getOperand(op ), false); Out << ", ";
writeOperand(I.getOperand(op+1), false); Out << " ]";
}
} else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) {
Out << ' ';
writeOperand(I.getOperand(0), true);
for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
Out << ", " << *i;
} else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) {
Out << ' ';
writeOperand(I.getOperand(0), true); Out << ", ";
writeOperand(I.getOperand(1), true);
for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
Out << ", " << *i;
} else if (isa<ReturnInst>(I) && !Operand) {
Out << " void";
} else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
// Print the calling convention being used.
switch (CI->getCallingConv()) {
case CallingConv::C: break; // default
case CallingConv::Fast: Out << " fastcc"; break;
case CallingConv::Cold: Out << " coldcc"; break;
case CallingConv::X86_StdCall: Out << " x86_stdcallcc"; break;
case CallingConv::X86_FastCall: Out << " x86_fastcallcc"; break;
default: Out << " cc" << CI->getCallingConv(); break;
}
const PointerType *PTy = cast<PointerType>(Operand->getType());
const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
const Type *RetTy = FTy->getReturnType();
const AttrListPtr &PAL = CI->getAttributes();
if (PAL.getRetAttributes() != Attribute::None)
Out << ' ' << Attribute::getAsString(PAL.getRetAttributes());
// If possible, print out the short form of the call instruction. We can
// only do this if the first argument is a pointer to a nonvararg function,
// and if the return type is not a pointer to a function.
//
Out << ' ';
if (!FTy->isVarArg() &&
(!isa<PointerType>(RetTy) ||
!isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) {
printType(RetTy);
Out << ' ';
writeOperand(Operand, false);
} else {
writeOperand(Operand, true);
}
Out << '(';
for (unsigned op = 1, Eop = I.getNumOperands(); op < Eop; ++op) {
if (op > 1)
Out << ", ";
writeParamOperand(I.getOperand(op), PAL.getParamAttributes(op));
}
Out << ')';
if (PAL.getFnAttributes() != Attribute::None)
Out << ' ' << Attribute::getAsString(PAL.getFnAttributes());
} else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
const PointerType *PTy = cast<PointerType>(Operand->getType());
const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
const Type *RetTy = FTy->getReturnType();
const AttrListPtr &PAL = II->getAttributes();
// Print the calling convention being used.
switch (II->getCallingConv()) {
case CallingConv::C: break; // default
case CallingConv::Fast: Out << " fastcc"; break;
case CallingConv::Cold: Out << " coldcc"; break;
case CallingConv::X86_StdCall: Out << " x86_stdcallcc"; break;
case CallingConv::X86_FastCall: Out << " x86_fastcallcc"; break;
default: Out << " cc" << II->getCallingConv(); break;
}
if (PAL.getRetAttributes() != Attribute::None)
Out << ' ' << Attribute::getAsString(PAL.getRetAttributes());
// If possible, print out the short form of the invoke instruction. We can
// only do this if the first argument is a pointer to a nonvararg function,
// and if the return type is not a pointer to a function.
//
Out << ' ';
if (!FTy->isVarArg() &&
(!isa<PointerType>(RetTy) ||
!isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) {
printType(RetTy);
Out << ' ';
writeOperand(Operand, false);
} else {
writeOperand(Operand, true);
}
Out << '(';
for (unsigned op = 3, Eop = I.getNumOperands(); op < Eop; ++op) {
if (op > 3)
Out << ", ";
writeParamOperand(I.getOperand(op), PAL.getParamAttributes(op-2));
}
Out << ')';
if (PAL.getFnAttributes() != Attribute::None)
Out << ' ' << Attribute::getAsString(PAL.getFnAttributes());
Out << "\n\t\t\tto ";
writeOperand(II->getNormalDest(), true);
Out << " unwind ";
writeOperand(II->getUnwindDest(), true);
} else if (const AllocationInst *AI = dyn_cast<AllocationInst>(&I)) {
Out << ' ';
printType(AI->getType()->getElementType());
if (AI->isArrayAllocation()) {
Out << ", ";
writeOperand(AI->getArraySize(), true);
}
if (AI->getAlignment()) {
Out << ", align " << AI->getAlignment();
}
} else if (isa<CastInst>(I)) {
if (Operand) {
Out << ' ';
writeOperand(Operand, true); // Work with broken code
}
Out << " to ";
printType(I.getType());
} else if (isa<VAArgInst>(I)) {
if (Operand) {
Out << ' ';
writeOperand(Operand, true); // Work with broken code
}
Out << ", ";
printType(I.getType());
} else if (Operand) { // Print the normal way...
// PrintAllTypes - Instructions who have operands of all the same type
// omit the type from all but the first operand. If the instruction has
// different type operands (for example br), then they are all printed.
bool PrintAllTypes = false;
const Type *TheType = Operand->getType();
// Select, Store and ShuffleVector always print all types.
if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I)
|| isa<ReturnInst>(I)) {
PrintAllTypes = true;
} else {
for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
Operand = I.getOperand(i);
if (Operand->getType() != TheType) {
PrintAllTypes = true; // We have differing types! Print them all!
break;
}
}
}
if (!PrintAllTypes) {
Out << ' ';
printType(TheType);
}
Out << ' ';
for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
if (i) Out << ", ";
writeOperand(I.getOperand(i), PrintAllTypes);
}
}
// Print post operand alignment for load/store
if (isa<LoadInst>(I) && cast<LoadInst>(I).getAlignment()) {
Out << ", align " << cast<LoadInst>(I).getAlignment();
} else if (isa<StoreInst>(I) && cast<StoreInst>(I).getAlignment()) {
Out << ", align " << cast<StoreInst>(I).getAlignment();
}
printInfoComment(I);
Out << '\n';
}
//===----------------------------------------------------------------------===//
// External Interface declarations
//===----------------------------------------------------------------------===//
void Module::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
raw_os_ostream OS(o);
print(OS, AAW);
}
void Module::print(raw_ostream &OS, AssemblyAnnotationWriter *AAW) const {
SlotTracker SlotTable(this);
AssemblyWriter W(OS, SlotTable, this, AAW);
W.write(this);
}
void Type::print(std::ostream &o) const {
raw_os_ostream OS(o);
print(OS);
}
void Type::print(raw_ostream &o) const {
if (this == 0)
o << "<null Type>";
else
o << getDescription();
}
void Value::print(raw_ostream &OS, AssemblyAnnotationWriter *AAW) const {
if (this == 0) {
OS << "printing a <null> value\n";
return;
}
if (const Instruction *I = dyn_cast<Instruction>(this)) {
const Function *F = I->getParent() ? I->getParent()->getParent() : 0;
SlotTracker SlotTable(F);
AssemblyWriter W(OS, SlotTable, F ? F->getParent() : 0, AAW);
W.write(I);
} else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) {
SlotTracker SlotTable(BB->getParent());
AssemblyWriter W(OS, SlotTable,
BB->getParent() ? BB->getParent()->getParent() : 0, AAW);
W.write(BB);
} else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
SlotTracker SlotTable(GV->getParent());
AssemblyWriter W(OS, SlotTable, GV->getParent(), 0);
W.write(GV);
} else if (const Constant *C = dyn_cast<Constant>(this)) {
OS << C->getType()->getDescription() << ' ';
std::map<const Type *, std::string> TypeTable;
WriteConstantInt(OS, C, TypeTable, 0);
} else if (const Argument *A = dyn_cast<Argument>(this)) {
WriteAsOperand(OS, this, true,
A->getParent() ? A->getParent()->getParent() : 0);
} else if (isa<InlineAsm>(this)) {
WriteAsOperand(OS, this, true, 0);
} else {
assert(0 && "Unknown value to print out!");
}
}
void Value::print(std::ostream &O, AssemblyAnnotationWriter *AAW) const {
raw_os_ostream OS(O);
print(OS, AAW);
}
// Value::dump - allow easy printing of Values from the debugger.
void Value::dump() const { print(errs()); errs() << '\n'; errs().flush(); }
// Type::dump - allow easy printing of Types from the debugger.
void Type::dump() const { print(errs()); errs() << '\n'; errs().flush(); }
// Type::dump - allow easy printing of Types from the debugger.
// This one uses type names from the given context module
void Type::dump(const Module *Context) const {
WriteTypeSymbolic(errs(), this, Context);
errs() << '\n';
errs().flush();
}
// Module::dump() - Allow printing of Modules from the debugger.
void Module::dump() const { print(errs(), 0); errs().flush(); }