llvm-6502/lib/Target/ARM/AsmPrinter/ARMAsmPrinter.cpp
Chris Lattner 0752cda4de fix a couple problems I introduced handling symbols
with spaces in them.  Sym->getName()  !=   OS << *Sym




git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@100434 91177308-0d34-0410-b5e6-96231b3b80d8
2010-04-05 16:32:14 +00:00

1414 lines
52 KiB
C++

//===-- ARMAsmPrinter.cpp - Print machine code to an ARM .s file ----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains a printer that converts from our internal representation
// of machine-dependent LLVM code to GAS-format ARM assembly language.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "asm-printer"
#include "ARM.h"
#include "ARMBuildAttrs.h"
#include "ARMAddressingModes.h"
#include "ARMConstantPoolValue.h"
#include "ARMInstPrinter.h"
#include "ARMMachineFunctionInfo.h"
#include "ARMMCInstLower.h"
#include "ARMTargetMachine.h"
#include "llvm/Constants.h"
#include "llvm/Module.h"
#include "llvm/Type.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/CodeGen/AsmPrinter.h"
#include "llvm/CodeGen/MachineModuleInfoImpls.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCSectionMachO.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Target/Mangler.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Target/TargetRegistry.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <cctype>
using namespace llvm;
static cl::opt<bool>
EnableMCInst("enable-arm-mcinst-printer", cl::Hidden,
cl::desc("enable experimental asmprinter gunk in the arm backend"));
namespace {
class ARMAsmPrinter : public AsmPrinter {
/// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
/// make the right decision when printing asm code for different targets.
const ARMSubtarget *Subtarget;
/// AFI - Keep a pointer to ARMFunctionInfo for the current
/// MachineFunction.
ARMFunctionInfo *AFI;
/// MCP - Keep a pointer to constantpool entries of the current
/// MachineFunction.
const MachineConstantPool *MCP;
public:
explicit ARMAsmPrinter(TargetMachine &TM, MCStreamer &Streamer)
: AsmPrinter(TM, Streamer), AFI(NULL), MCP(NULL) {
Subtarget = &TM.getSubtarget<ARMSubtarget>();
}
virtual const char *getPassName() const {
return "ARM Assembly Printer";
}
void printInstructionThroughMCStreamer(const MachineInstr *MI);
void printOperand(const MachineInstr *MI, int OpNum, raw_ostream &O,
const char *Modifier = 0);
void printSOImmOperand(const MachineInstr *MI, int OpNum, raw_ostream &O);
void printSOImm2PartOperand(const MachineInstr *MI, int OpNum,
raw_ostream &O);
void printSORegOperand(const MachineInstr *MI, int OpNum,
raw_ostream &O);
void printAddrMode2Operand(const MachineInstr *MI, int OpNum,
raw_ostream &O);
void printAddrMode2OffsetOperand(const MachineInstr *MI, int OpNum,
raw_ostream &O);
void printAddrMode3Operand(const MachineInstr *MI, int OpNum,
raw_ostream &O);
void printAddrMode3OffsetOperand(const MachineInstr *MI, int OpNum,
raw_ostream &O);
void printAddrMode4Operand(const MachineInstr *MI, int OpNum,raw_ostream &O,
const char *Modifier = 0);
void printAddrMode5Operand(const MachineInstr *MI, int OpNum,raw_ostream &O,
const char *Modifier = 0);
void printAddrMode6Operand(const MachineInstr *MI, int OpNum,
raw_ostream &O);
void printAddrMode6OffsetOperand(const MachineInstr *MI, int OpNum,
raw_ostream &O);
void printAddrModePCOperand(const MachineInstr *MI, int OpNum,
raw_ostream &O,
const char *Modifier = 0);
void printBitfieldInvMaskImmOperand (const MachineInstr *MI, int OpNum,
raw_ostream &O);
void printThumbS4ImmOperand(const MachineInstr *MI, int OpNum,
raw_ostream &O);
void printThumbITMask(const MachineInstr *MI, int OpNum, raw_ostream &O);
void printThumbAddrModeRROperand(const MachineInstr *MI, int OpNum,
raw_ostream &O);
void printThumbAddrModeRI5Operand(const MachineInstr *MI, int OpNum,
raw_ostream &O,
unsigned Scale);
void printThumbAddrModeS1Operand(const MachineInstr *MI, int OpNum,
raw_ostream &O);
void printThumbAddrModeS2Operand(const MachineInstr *MI, int OpNum,
raw_ostream &O);
void printThumbAddrModeS4Operand(const MachineInstr *MI, int OpNum,
raw_ostream &O);
void printThumbAddrModeSPOperand(const MachineInstr *MI, int OpNum,
raw_ostream &O);
void printT2SOOperand(const MachineInstr *MI, int OpNum, raw_ostream &O);
void printT2AddrModeImm12Operand(const MachineInstr *MI, int OpNum,
raw_ostream &O);
void printT2AddrModeImm8Operand(const MachineInstr *MI, int OpNum,
raw_ostream &O);
void printT2AddrModeImm8s4Operand(const MachineInstr *MI, int OpNum,
raw_ostream &O);
void printT2AddrModeImm8OffsetOperand(const MachineInstr *MI, int OpNum,
raw_ostream &O);
void printT2AddrModeImm8s4OffsetOperand(const MachineInstr *MI, int OpNum,
raw_ostream &O) {}
void printT2AddrModeSoRegOperand(const MachineInstr *MI, int OpNum,
raw_ostream &O);
void printCPSOptionOperand(const MachineInstr *MI, int OpNum,
raw_ostream &O) {}
void printMSRMaskOperand(const MachineInstr *MI, int OpNum,
raw_ostream &O) {}
void printNegZeroOperand(const MachineInstr *MI, int OpNum,
raw_ostream &O) {}
void printPredicateOperand(const MachineInstr *MI, int OpNum,
raw_ostream &O);
void printMandatoryPredicateOperand(const MachineInstr *MI, int OpNum,
raw_ostream &O);
void printSBitModifierOperand(const MachineInstr *MI, int OpNum,
raw_ostream &O);
void printPCLabel(const MachineInstr *MI, int OpNum,
raw_ostream &O);
void printRegisterList(const MachineInstr *MI, int OpNum,
raw_ostream &O);
void printCPInstOperand(const MachineInstr *MI, int OpNum,
raw_ostream &O,
const char *Modifier);
void printJTBlockOperand(const MachineInstr *MI, int OpNum,
raw_ostream &O);
void printJT2BlockOperand(const MachineInstr *MI, int OpNum,
raw_ostream &O);
void printTBAddrMode(const MachineInstr *MI, int OpNum,
raw_ostream &O);
void printNoHashImmediate(const MachineInstr *MI, int OpNum,
raw_ostream &O);
void printVFPf32ImmOperand(const MachineInstr *MI, int OpNum,
raw_ostream &O);
void printVFPf64ImmOperand(const MachineInstr *MI, int OpNum,
raw_ostream &O);
void printHex8ImmOperand(const MachineInstr *MI, int OpNum,
raw_ostream &O) {
O << "#0x" << utohexstr(MI->getOperand(OpNum).getImm() & 0xff);
}
void printHex16ImmOperand(const MachineInstr *MI, int OpNum,
raw_ostream &O) {
O << "#0x" << utohexstr(MI->getOperand(OpNum).getImm() & 0xffff);
}
void printHex32ImmOperand(const MachineInstr *MI, int OpNum,
raw_ostream &O) {
O << "#0x" << utohexstr(MI->getOperand(OpNum).getImm() & 0xffffffff);
}
void printHex64ImmOperand(const MachineInstr *MI, int OpNum,
raw_ostream &O) {
O << "#0x" << utohexstr(MI->getOperand(OpNum).getImm());
}
virtual bool PrintAsmOperand(const MachineInstr *MI, unsigned OpNum,
unsigned AsmVariant, const char *ExtraCode,
raw_ostream &O);
virtual bool PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNum,
unsigned AsmVariant,
const char *ExtraCode, raw_ostream &O);
void printInstruction(const MachineInstr *MI, raw_ostream &O); // autogen
static const char *getRegisterName(unsigned RegNo);
virtual void EmitInstruction(const MachineInstr *MI);
bool runOnMachineFunction(MachineFunction &F);
virtual void EmitConstantPool() {} // we emit constant pools customly!
virtual void EmitFunctionEntryLabel();
void EmitStartOfAsmFile(Module &M);
void EmitEndOfAsmFile(Module &M);
MCSymbol *GetARMSetPICJumpTableLabel2(unsigned uid, unsigned uid2,
const MachineBasicBlock *MBB) const;
MCSymbol *GetARMJTIPICJumpTableLabel2(unsigned uid, unsigned uid2) const;
/// EmitMachineConstantPoolValue - Print a machine constantpool value to
/// the .s file.
virtual void EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
SmallString<128> Str;
raw_svector_ostream OS(Str);
EmitMachineConstantPoolValue(MCPV, OS);
OutStreamer.EmitRawText(OS.str());
}
void EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV,
raw_ostream &O) {
switch (TM.getTargetData()->getTypeAllocSize(MCPV->getType())) {
case 1: O << MAI->getData8bitsDirective(0); break;
case 2: O << MAI->getData16bitsDirective(0); break;
case 4: O << MAI->getData32bitsDirective(0); break;
default: assert(0 && "Unknown CPV size");
}
ARMConstantPoolValue *ACPV = static_cast<ARMConstantPoolValue*>(MCPV);
if (ACPV->isLSDA()) {
O << MAI->getPrivateGlobalPrefix() << "_LSDA_" << getFunctionNumber();
} else if (ACPV->isBlockAddress()) {
O << *GetBlockAddressSymbol(ACPV->getBlockAddress());
} else if (ACPV->isGlobalValue()) {
GlobalValue *GV = ACPV->getGV();
bool isIndirect = Subtarget->isTargetDarwin() &&
Subtarget->GVIsIndirectSymbol(GV, TM.getRelocationModel());
if (!isIndirect)
O << *Mang->getSymbol(GV);
else {
// FIXME: Remove this when Darwin transition to @GOT like syntax.
MCSymbol *Sym = GetSymbolWithGlobalValueBase(GV, "$non_lazy_ptr");
O << *Sym;
MachineModuleInfoMachO &MMIMachO =
MMI->getObjFileInfo<MachineModuleInfoMachO>();
MachineModuleInfoImpl::StubValueTy &StubSym =
GV->hasHiddenVisibility() ? MMIMachO.getHiddenGVStubEntry(Sym) :
MMIMachO.getGVStubEntry(Sym);
if (StubSym.getPointer() == 0)
StubSym = MachineModuleInfoImpl::
StubValueTy(Mang->getSymbol(GV), !GV->hasInternalLinkage());
}
} else {
assert(ACPV->isExtSymbol() && "unrecognized constant pool value");
O << *GetExternalSymbolSymbol(ACPV->getSymbol());
}
if (ACPV->hasModifier()) O << "(" << ACPV->getModifier() << ")";
if (ACPV->getPCAdjustment() != 0) {
O << "-(" << MAI->getPrivateGlobalPrefix() << "PC"
<< getFunctionNumber() << "_" << ACPV->getLabelId()
<< "+" << (unsigned)ACPV->getPCAdjustment();
if (ACPV->mustAddCurrentAddress())
O << "-.";
O << ')';
}
}
};
} // end of anonymous namespace
#include "ARMGenAsmWriter.inc"
void ARMAsmPrinter::EmitFunctionEntryLabel() {
if (AFI->isThumbFunction()) {
OutStreamer.EmitRawText(StringRef("\t.code\t16"));
if (!Subtarget->isTargetDarwin())
OutStreamer.EmitRawText(StringRef("\t.thumb_func"));
else {
// This needs to emit to a temporary string to get properly quoted
// MCSymbols when they have spaces in them.
SmallString<128> Tmp;
raw_svector_ostream OS(Tmp);
OS << "\t.thumb_func\t" << *CurrentFnSym;
OutStreamer.EmitRawText(OS.str());
}
}
OutStreamer.EmitLabel(CurrentFnSym);
}
/// runOnMachineFunction - This uses the printInstruction()
/// method to print assembly for each instruction.
///
bool ARMAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
AFI = MF.getInfo<ARMFunctionInfo>();
MCP = MF.getConstantPool();
return AsmPrinter::runOnMachineFunction(MF);
}
void ARMAsmPrinter::printOperand(const MachineInstr *MI, int OpNum,
raw_ostream &O, const char *Modifier) {
const MachineOperand &MO = MI->getOperand(OpNum);
unsigned TF = MO.getTargetFlags();
switch (MO.getType()) {
default:
assert(0 && "<unknown operand type>");
case MachineOperand::MO_Register: {
unsigned Reg = MO.getReg();
assert(TargetRegisterInfo::isPhysicalRegister(Reg));
if (Modifier && strcmp(Modifier, "dregpair") == 0) {
unsigned DRegLo = TM.getRegisterInfo()->getSubReg(Reg, 5);// arm_dsubreg_0
unsigned DRegHi = TM.getRegisterInfo()->getSubReg(Reg, 6);// arm_dsubreg_1
O << '{'
<< getRegisterName(DRegLo) << ',' << getRegisterName(DRegHi)
<< '}';
} else if (Modifier && strcmp(Modifier, "lane") == 0) {
unsigned RegNum = ARMRegisterInfo::getRegisterNumbering(Reg);
unsigned DReg =
TM.getRegisterInfo()->getMatchingSuperReg(Reg, RegNum & 1 ? 2 : 1,
&ARM::DPR_VFP2RegClass);
O << getRegisterName(DReg) << '[' << (RegNum & 1) << ']';
} else {
assert(!MO.getSubReg() && "Subregs should be eliminated!");
O << getRegisterName(Reg);
}
break;
}
case MachineOperand::MO_Immediate: {
int64_t Imm = MO.getImm();
O << '#';
if ((Modifier && strcmp(Modifier, "lo16") == 0) ||
(TF & ARMII::MO_LO16))
O << ":lower16:";
else if ((Modifier && strcmp(Modifier, "hi16") == 0) ||
(TF & ARMII::MO_HI16))
O << ":upper16:";
O << Imm;
break;
}
case MachineOperand::MO_MachineBasicBlock:
O << *MO.getMBB()->getSymbol();
return;
case MachineOperand::MO_GlobalAddress: {
bool isCallOp = Modifier && !strcmp(Modifier, "call");
GlobalValue *GV = MO.getGlobal();
if ((Modifier && strcmp(Modifier, "lo16") == 0) ||
(TF & ARMII::MO_LO16))
O << ":lower16:";
else if ((Modifier && strcmp(Modifier, "hi16") == 0) ||
(TF & ARMII::MO_HI16))
O << ":upper16:";
O << *Mang->getSymbol(GV);
printOffset(MO.getOffset(), O);
if (isCallOp && Subtarget->isTargetELF() &&
TM.getRelocationModel() == Reloc::PIC_)
O << "(PLT)";
break;
}
case MachineOperand::MO_ExternalSymbol: {
bool isCallOp = Modifier && !strcmp(Modifier, "call");
O << *GetExternalSymbolSymbol(MO.getSymbolName());
if (isCallOp && Subtarget->isTargetELF() &&
TM.getRelocationModel() == Reloc::PIC_)
O << "(PLT)";
break;
}
case MachineOperand::MO_ConstantPoolIndex:
O << *GetCPISymbol(MO.getIndex());
break;
case MachineOperand::MO_JumpTableIndex:
O << *GetJTISymbol(MO.getIndex());
break;
}
}
static void printSOImm(raw_ostream &O, int64_t V, bool VerboseAsm,
const MCAsmInfo *MAI) {
// Break it up into two parts that make up a shifter immediate.
V = ARM_AM::getSOImmVal(V);
assert(V != -1 && "Not a valid so_imm value!");
unsigned Imm = ARM_AM::getSOImmValImm(V);
unsigned Rot = ARM_AM::getSOImmValRot(V);
// Print low-level immediate formation info, per
// A5.1.3: "Data-processing operands - Immediate".
if (Rot) {
O << "#" << Imm << ", " << Rot;
// Pretty printed version.
if (VerboseAsm) {
O << "\t" << MAI->getCommentString() << ' ';
O << (int)ARM_AM::rotr32(Imm, Rot);
}
} else {
O << "#" << Imm;
}
}
/// printSOImmOperand - SOImm is 4-bit rotate amount in bits 8-11 with 8-bit
/// immediate in bits 0-7.
void ARMAsmPrinter::printSOImmOperand(const MachineInstr *MI, int OpNum,
raw_ostream &O) {
const MachineOperand &MO = MI->getOperand(OpNum);
assert(MO.isImm() && "Not a valid so_imm value!");
printSOImm(O, MO.getImm(), isVerbose(), MAI);
}
/// printSOImm2PartOperand - SOImm is broken into two pieces using a 'mov'
/// followed by an 'orr' to materialize.
void ARMAsmPrinter::printSOImm2PartOperand(const MachineInstr *MI, int OpNum,
raw_ostream &O) {
const MachineOperand &MO = MI->getOperand(OpNum);
assert(MO.isImm() && "Not a valid so_imm value!");
unsigned V1 = ARM_AM::getSOImmTwoPartFirst(MO.getImm());
unsigned V2 = ARM_AM::getSOImmTwoPartSecond(MO.getImm());
printSOImm(O, V1, isVerbose(), MAI);
O << "\n\torr";
printPredicateOperand(MI, 2, O);
O << "\t";
printOperand(MI, 0, O);
O << ", ";
printOperand(MI, 0, O);
O << ", ";
printSOImm(O, V2, isVerbose(), MAI);
}
// so_reg is a 4-operand unit corresponding to register forms of the A5.1
// "Addressing Mode 1 - Data-processing operands" forms. This includes:
// REG 0 0 - e.g. R5
// REG REG 0,SH_OPC - e.g. R5, ROR R3
// REG 0 IMM,SH_OPC - e.g. R5, LSL #3
void ARMAsmPrinter::printSORegOperand(const MachineInstr *MI, int Op,
raw_ostream &O) {
const MachineOperand &MO1 = MI->getOperand(Op);
const MachineOperand &MO2 = MI->getOperand(Op+1);
const MachineOperand &MO3 = MI->getOperand(Op+2);
O << getRegisterName(MO1.getReg());
// Print the shift opc.
O << ", "
<< ARM_AM::getShiftOpcStr(ARM_AM::getSORegShOp(MO3.getImm()))
<< " ";
if (MO2.getReg()) {
O << getRegisterName(MO2.getReg());
assert(ARM_AM::getSORegOffset(MO3.getImm()) == 0);
} else {
O << "#" << ARM_AM::getSORegOffset(MO3.getImm());
}
}
void ARMAsmPrinter::printAddrMode2Operand(const MachineInstr *MI, int Op,
raw_ostream &O) {
const MachineOperand &MO1 = MI->getOperand(Op);
const MachineOperand &MO2 = MI->getOperand(Op+1);
const MachineOperand &MO3 = MI->getOperand(Op+2);
if (!MO1.isReg()) { // FIXME: This is for CP entries, but isn't right.
printOperand(MI, Op, O);
return;
}
O << "[" << getRegisterName(MO1.getReg());
if (!MO2.getReg()) {
if (ARM_AM::getAM2Offset(MO3.getImm())) // Don't print +0.
O << ", #"
<< ARM_AM::getAddrOpcStr(ARM_AM::getAM2Op(MO3.getImm()))
<< ARM_AM::getAM2Offset(MO3.getImm());
O << "]";
return;
}
O << ", "
<< ARM_AM::getAddrOpcStr(ARM_AM::getAM2Op(MO3.getImm()))
<< getRegisterName(MO2.getReg());
if (unsigned ShImm = ARM_AM::getAM2Offset(MO3.getImm()))
O << ", "
<< ARM_AM::getShiftOpcStr(ARM_AM::getAM2ShiftOpc(MO3.getImm()))
<< " #" << ShImm;
O << "]";
}
void ARMAsmPrinter::printAddrMode2OffsetOperand(const MachineInstr *MI, int Op,
raw_ostream &O) {
const MachineOperand &MO1 = MI->getOperand(Op);
const MachineOperand &MO2 = MI->getOperand(Op+1);
if (!MO1.getReg()) {
unsigned ImmOffs = ARM_AM::getAM2Offset(MO2.getImm());
assert(ImmOffs && "Malformed indexed load / store!");
O << "#"
<< ARM_AM::getAddrOpcStr(ARM_AM::getAM2Op(MO2.getImm()))
<< ImmOffs;
return;
}
O << ARM_AM::getAddrOpcStr(ARM_AM::getAM2Op(MO2.getImm()))
<< getRegisterName(MO1.getReg());
if (unsigned ShImm = ARM_AM::getAM2Offset(MO2.getImm()))
O << ", "
<< ARM_AM::getShiftOpcStr(ARM_AM::getAM2ShiftOpc(MO2.getImm()))
<< " #" << ShImm;
}
void ARMAsmPrinter::printAddrMode3Operand(const MachineInstr *MI, int Op,
raw_ostream &O) {
const MachineOperand &MO1 = MI->getOperand(Op);
const MachineOperand &MO2 = MI->getOperand(Op+1);
const MachineOperand &MO3 = MI->getOperand(Op+2);
assert(TargetRegisterInfo::isPhysicalRegister(MO1.getReg()));
O << "[" << getRegisterName(MO1.getReg());
if (MO2.getReg()) {
O << ", "
<< (char)ARM_AM::getAM3Op(MO3.getImm())
<< getRegisterName(MO2.getReg())
<< "]";
return;
}
if (unsigned ImmOffs = ARM_AM::getAM3Offset(MO3.getImm()))
O << ", #"
<< ARM_AM::getAddrOpcStr(ARM_AM::getAM3Op(MO3.getImm()))
<< ImmOffs;
O << "]";
}
void ARMAsmPrinter::printAddrMode3OffsetOperand(const MachineInstr *MI, int Op,
raw_ostream &O){
const MachineOperand &MO1 = MI->getOperand(Op);
const MachineOperand &MO2 = MI->getOperand(Op+1);
if (MO1.getReg()) {
O << (char)ARM_AM::getAM3Op(MO2.getImm())
<< getRegisterName(MO1.getReg());
return;
}
unsigned ImmOffs = ARM_AM::getAM3Offset(MO2.getImm());
assert(ImmOffs && "Malformed indexed load / store!");
O << "#"
<< ARM_AM::getAddrOpcStr(ARM_AM::getAM3Op(MO2.getImm()))
<< ImmOffs;
}
void ARMAsmPrinter::printAddrMode4Operand(const MachineInstr *MI, int Op,
raw_ostream &O,
const char *Modifier) {
const MachineOperand &MO2 = MI->getOperand(Op+1);
ARM_AM::AMSubMode Mode = ARM_AM::getAM4SubMode(MO2.getImm());
if (Modifier && strcmp(Modifier, "submode") == 0) {
O << ARM_AM::getAMSubModeStr(Mode);
} else if (Modifier && strcmp(Modifier, "wide") == 0) {
ARM_AM::AMSubMode Mode = ARM_AM::getAM4SubMode(MO2.getImm());
if (Mode == ARM_AM::ia)
O << ".w";
} else {
printOperand(MI, Op, O);
}
}
void ARMAsmPrinter::printAddrMode5Operand(const MachineInstr *MI, int Op,
raw_ostream &O,
const char *Modifier) {
const MachineOperand &MO1 = MI->getOperand(Op);
const MachineOperand &MO2 = MI->getOperand(Op+1);
if (!MO1.isReg()) { // FIXME: This is for CP entries, but isn't right.
printOperand(MI, Op, O);
return;
}
assert(TargetRegisterInfo::isPhysicalRegister(MO1.getReg()));
if (Modifier && strcmp(Modifier, "submode") == 0) {
ARM_AM::AMSubMode Mode = ARM_AM::getAM5SubMode(MO2.getImm());
O << ARM_AM::getAMSubModeStr(Mode);
return;
} else if (Modifier && strcmp(Modifier, "base") == 0) {
// Used for FSTM{D|S} and LSTM{D|S} operations.
O << getRegisterName(MO1.getReg());
return;
}
O << "[" << getRegisterName(MO1.getReg());
if (unsigned ImmOffs = ARM_AM::getAM5Offset(MO2.getImm())) {
O << ", #"
<< ARM_AM::getAddrOpcStr(ARM_AM::getAM5Op(MO2.getImm()))
<< ImmOffs*4;
}
O << "]";
}
void ARMAsmPrinter::printAddrMode6Operand(const MachineInstr *MI, int Op,
raw_ostream &O) {
const MachineOperand &MO1 = MI->getOperand(Op);
const MachineOperand &MO2 = MI->getOperand(Op+1);
O << "[" << getRegisterName(MO1.getReg());
if (MO2.getImm()) {
// FIXME: Both darwin as and GNU as violate ARM docs here.
O << ", :" << MO2.getImm();
}
O << "]";
}
void ARMAsmPrinter::printAddrMode6OffsetOperand(const MachineInstr *MI, int Op,
raw_ostream &O){
const MachineOperand &MO = MI->getOperand(Op);
if (MO.getReg() == 0)
O << "!";
else
O << ", " << getRegisterName(MO.getReg());
}
void ARMAsmPrinter::printAddrModePCOperand(const MachineInstr *MI, int Op,
raw_ostream &O,
const char *Modifier) {
if (Modifier && strcmp(Modifier, "label") == 0) {
printPCLabel(MI, Op+1, O);
return;
}
const MachineOperand &MO1 = MI->getOperand(Op);
assert(TargetRegisterInfo::isPhysicalRegister(MO1.getReg()));
O << "[pc, " << getRegisterName(MO1.getReg()) << "]";
}
void
ARMAsmPrinter::printBitfieldInvMaskImmOperand(const MachineInstr *MI, int Op,
raw_ostream &O) {
const MachineOperand &MO = MI->getOperand(Op);
uint32_t v = ~MO.getImm();
int32_t lsb = CountTrailingZeros_32(v);
int32_t width = (32 - CountLeadingZeros_32 (v)) - lsb;
assert(MO.isImm() && "Not a valid bf_inv_mask_imm value!");
O << "#" << lsb << ", #" << width;
}
//===--------------------------------------------------------------------===//
void ARMAsmPrinter::printThumbS4ImmOperand(const MachineInstr *MI, int Op,
raw_ostream &O) {
O << "#" << MI->getOperand(Op).getImm() * 4;
}
void
ARMAsmPrinter::printThumbITMask(const MachineInstr *MI, int Op,
raw_ostream &O) {
// (3 - the number of trailing zeros) is the number of then / else.
unsigned Mask = MI->getOperand(Op).getImm();
unsigned CondBit0 = Mask >> 4 & 1;
unsigned NumTZ = CountTrailingZeros_32(Mask);
assert(NumTZ <= 3 && "Invalid IT mask!");
for (unsigned Pos = 3, e = NumTZ; Pos > e; --Pos) {
bool T = ((Mask >> Pos) & 1) == CondBit0;
if (T)
O << 't';
else
O << 'e';
}
}
void
ARMAsmPrinter::printThumbAddrModeRROperand(const MachineInstr *MI, int Op,
raw_ostream &O) {
const MachineOperand &MO1 = MI->getOperand(Op);
const MachineOperand &MO2 = MI->getOperand(Op+1);
O << "[" << getRegisterName(MO1.getReg());
O << ", " << getRegisterName(MO2.getReg()) << "]";
}
void
ARMAsmPrinter::printThumbAddrModeRI5Operand(const MachineInstr *MI, int Op,
raw_ostream &O,
unsigned Scale) {
const MachineOperand &MO1 = MI->getOperand(Op);
const MachineOperand &MO2 = MI->getOperand(Op+1);
const MachineOperand &MO3 = MI->getOperand(Op+2);
if (!MO1.isReg()) { // FIXME: This is for CP entries, but isn't right.
printOperand(MI, Op, O);
return;
}
O << "[" << getRegisterName(MO1.getReg());
if (MO3.getReg())
O << ", " << getRegisterName(MO3.getReg());
else if (unsigned ImmOffs = MO2.getImm())
O << ", #" << ImmOffs * Scale;
O << "]";
}
void
ARMAsmPrinter::printThumbAddrModeS1Operand(const MachineInstr *MI, int Op,
raw_ostream &O) {
printThumbAddrModeRI5Operand(MI, Op, O, 1);
}
void
ARMAsmPrinter::printThumbAddrModeS2Operand(const MachineInstr *MI, int Op,
raw_ostream &O) {
printThumbAddrModeRI5Operand(MI, Op, O, 2);
}
void
ARMAsmPrinter::printThumbAddrModeS4Operand(const MachineInstr *MI, int Op,
raw_ostream &O) {
printThumbAddrModeRI5Operand(MI, Op, O, 4);
}
void ARMAsmPrinter::printThumbAddrModeSPOperand(const MachineInstr *MI,int Op,
raw_ostream &O) {
const MachineOperand &MO1 = MI->getOperand(Op);
const MachineOperand &MO2 = MI->getOperand(Op+1);
O << "[" << getRegisterName(MO1.getReg());
if (unsigned ImmOffs = MO2.getImm())
O << ", #" << ImmOffs*4;
O << "]";
}
//===--------------------------------------------------------------------===//
// Constant shifts t2_so_reg is a 2-operand unit corresponding to the Thumb2
// register with shift forms.
// REG 0 0 - e.g. R5
// REG IMM, SH_OPC - e.g. R5, LSL #3
void ARMAsmPrinter::printT2SOOperand(const MachineInstr *MI, int OpNum,
raw_ostream &O) {
const MachineOperand &MO1 = MI->getOperand(OpNum);
const MachineOperand &MO2 = MI->getOperand(OpNum+1);
unsigned Reg = MO1.getReg();
assert(TargetRegisterInfo::isPhysicalRegister(Reg));
O << getRegisterName(Reg);
// Print the shift opc.
O << ", "
<< ARM_AM::getShiftOpcStr(ARM_AM::getSORegShOp(MO2.getImm()))
<< " ";
assert(MO2.isImm() && "Not a valid t2_so_reg value!");
O << "#" << ARM_AM::getSORegOffset(MO2.getImm());
}
void ARMAsmPrinter::printT2AddrModeImm12Operand(const MachineInstr *MI,
int OpNum,
raw_ostream &O) {
const MachineOperand &MO1 = MI->getOperand(OpNum);
const MachineOperand &MO2 = MI->getOperand(OpNum+1);
O << "[" << getRegisterName(MO1.getReg());
unsigned OffImm = MO2.getImm();
if (OffImm) // Don't print +0.
O << ", #" << OffImm;
O << "]";
}
void ARMAsmPrinter::printT2AddrModeImm8Operand(const MachineInstr *MI,
int OpNum,
raw_ostream &O) {
const MachineOperand &MO1 = MI->getOperand(OpNum);
const MachineOperand &MO2 = MI->getOperand(OpNum+1);
O << "[" << getRegisterName(MO1.getReg());
int32_t OffImm = (int32_t)MO2.getImm();
// Don't print +0.
if (OffImm < 0)
O << ", #-" << -OffImm;
else if (OffImm > 0)
O << ", #" << OffImm;
O << "]";
}
void ARMAsmPrinter::printT2AddrModeImm8s4Operand(const MachineInstr *MI,
int OpNum,
raw_ostream &O) {
const MachineOperand &MO1 = MI->getOperand(OpNum);
const MachineOperand &MO2 = MI->getOperand(OpNum+1);
O << "[" << getRegisterName(MO1.getReg());
int32_t OffImm = (int32_t)MO2.getImm() / 4;
// Don't print +0.
if (OffImm < 0)
O << ", #-" << -OffImm * 4;
else if (OffImm > 0)
O << ", #" << OffImm * 4;
O << "]";
}
void ARMAsmPrinter::printT2AddrModeImm8OffsetOperand(const MachineInstr *MI,
int OpNum,
raw_ostream &O) {
const MachineOperand &MO1 = MI->getOperand(OpNum);
int32_t OffImm = (int32_t)MO1.getImm();
// Don't print +0.
if (OffImm < 0)
O << "#-" << -OffImm;
else if (OffImm > 0)
O << "#" << OffImm;
}
void ARMAsmPrinter::printT2AddrModeSoRegOperand(const MachineInstr *MI,
int OpNum,
raw_ostream &O) {
const MachineOperand &MO1 = MI->getOperand(OpNum);
const MachineOperand &MO2 = MI->getOperand(OpNum+1);
const MachineOperand &MO3 = MI->getOperand(OpNum+2);
O << "[" << getRegisterName(MO1.getReg());
assert(MO2.getReg() && "Invalid so_reg load / store address!");
O << ", " << getRegisterName(MO2.getReg());
unsigned ShAmt = MO3.getImm();
if (ShAmt) {
assert(ShAmt <= 3 && "Not a valid Thumb2 addressing mode!");
O << ", lsl #" << ShAmt;
}
O << "]";
}
//===--------------------------------------------------------------------===//
void ARMAsmPrinter::printPredicateOperand(const MachineInstr *MI, int OpNum,
raw_ostream &O) {
ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(OpNum).getImm();
if (CC != ARMCC::AL)
O << ARMCondCodeToString(CC);
}
void ARMAsmPrinter::printMandatoryPredicateOperand(const MachineInstr *MI,
int OpNum,
raw_ostream &O) {
ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(OpNum).getImm();
O << ARMCondCodeToString(CC);
}
void ARMAsmPrinter::printSBitModifierOperand(const MachineInstr *MI, int OpNum,
raw_ostream &O){
unsigned Reg = MI->getOperand(OpNum).getReg();
if (Reg) {
assert(Reg == ARM::CPSR && "Expect ARM CPSR register!");
O << 's';
}
}
void ARMAsmPrinter::printPCLabel(const MachineInstr *MI, int OpNum,
raw_ostream &O) {
int Id = (int)MI->getOperand(OpNum).getImm();
O << MAI->getPrivateGlobalPrefix()
<< "PC" << getFunctionNumber() << "_" << Id;
}
void ARMAsmPrinter::printRegisterList(const MachineInstr *MI, int OpNum,
raw_ostream &O) {
O << "{";
for (unsigned i = OpNum, e = MI->getNumOperands(); i != e; ++i) {
if (MI->getOperand(i).isImplicit())
continue;
if ((int)i != OpNum) O << ", ";
printOperand(MI, i, O);
}
O << "}";
}
void ARMAsmPrinter::printCPInstOperand(const MachineInstr *MI, int OpNum,
raw_ostream &O, const char *Modifier) {
assert(Modifier && "This operand only works with a modifier!");
// There are two aspects to a CONSTANTPOOL_ENTRY operand, the label and the
// data itself.
if (!strcmp(Modifier, "label")) {
unsigned ID = MI->getOperand(OpNum).getImm();
OutStreamer.EmitLabel(GetCPISymbol(ID));
} else {
assert(!strcmp(Modifier, "cpentry") && "Unknown modifier for CPE");
unsigned CPI = MI->getOperand(OpNum).getIndex();
const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI];
if (MCPE.isMachineConstantPoolEntry()) {
EmitMachineConstantPoolValue(MCPE.Val.MachineCPVal);
} else {
EmitGlobalConstant(MCPE.Val.ConstVal);
}
}
}
MCSymbol *ARMAsmPrinter::
GetARMSetPICJumpTableLabel2(unsigned uid, unsigned uid2,
const MachineBasicBlock *MBB) const {
SmallString<60> Name;
raw_svector_ostream(Name) << MAI->getPrivateGlobalPrefix()
<< getFunctionNumber() << '_' << uid << '_' << uid2
<< "_set_" << MBB->getNumber();
return OutContext.GetOrCreateSymbol(Name.str());
}
MCSymbol *ARMAsmPrinter::
GetARMJTIPICJumpTableLabel2(unsigned uid, unsigned uid2) const {
SmallString<60> Name;
raw_svector_ostream(Name) << MAI->getPrivateGlobalPrefix() << "JTI"
<< getFunctionNumber() << '_' << uid << '_' << uid2;
return OutContext.GetOrCreateSymbol(Name.str());
}
void ARMAsmPrinter::printJTBlockOperand(const MachineInstr *MI, int OpNum,
raw_ostream &O) {
assert(!Subtarget->isThumb2() && "Thumb2 should use double-jump jumptables!");
const MachineOperand &MO1 = MI->getOperand(OpNum);
const MachineOperand &MO2 = MI->getOperand(OpNum+1); // Unique Id
unsigned JTI = MO1.getIndex();
MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel2(JTI, MO2.getImm());
OutStreamer.EmitLabel(JTISymbol);
const char *JTEntryDirective = MAI->getData32bitsDirective();
const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
bool UseSet= MAI->hasSetDirective() && TM.getRelocationModel() == Reloc::PIC_;
SmallPtrSet<MachineBasicBlock*, 8> JTSets;
for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) {
MachineBasicBlock *MBB = JTBBs[i];
bool isNew = JTSets.insert(MBB);
if (UseSet && isNew) {
O << "\t.set\t"
<< *GetARMSetPICJumpTableLabel2(JTI, MO2.getImm(), MBB) << ','
<< *MBB->getSymbol() << '-' << *JTISymbol << '\n';
}
O << JTEntryDirective << ' ';
if (UseSet)
O << *GetARMSetPICJumpTableLabel2(JTI, MO2.getImm(), MBB);
else if (TM.getRelocationModel() == Reloc::PIC_)
O << *MBB->getSymbol() << '-' << *JTISymbol;
else
O << *MBB->getSymbol();
if (i != e-1)
O << '\n';
}
}
void ARMAsmPrinter::printJT2BlockOperand(const MachineInstr *MI, int OpNum,
raw_ostream &O) {
const MachineOperand &MO1 = MI->getOperand(OpNum);
const MachineOperand &MO2 = MI->getOperand(OpNum+1); // Unique Id
unsigned JTI = MO1.getIndex();
MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel2(JTI, MO2.getImm());
OutStreamer.EmitLabel(JTISymbol);
const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
bool ByteOffset = false, HalfWordOffset = false;
if (MI->getOpcode() == ARM::t2TBB)
ByteOffset = true;
else if (MI->getOpcode() == ARM::t2TBH)
HalfWordOffset = true;
for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) {
MachineBasicBlock *MBB = JTBBs[i];
if (ByteOffset)
O << MAI->getData8bitsDirective();
else if (HalfWordOffset)
O << MAI->getData16bitsDirective();
if (ByteOffset || HalfWordOffset)
O << '(' << *MBB->getSymbol() << "-" << *JTISymbol << ")/2";
else
O << "\tb.w " << *MBB->getSymbol();
if (i != e-1)
O << '\n';
}
}
void ARMAsmPrinter::printTBAddrMode(const MachineInstr *MI, int OpNum,
raw_ostream &O) {
O << "[pc, " << getRegisterName(MI->getOperand(OpNum).getReg());
if (MI->getOpcode() == ARM::t2TBH)
O << ", lsl #1";
O << ']';
}
void ARMAsmPrinter::printNoHashImmediate(const MachineInstr *MI, int OpNum,
raw_ostream &O) {
O << MI->getOperand(OpNum).getImm();
}
void ARMAsmPrinter::printVFPf32ImmOperand(const MachineInstr *MI, int OpNum,
raw_ostream &O) {
const ConstantFP *FP = MI->getOperand(OpNum).getFPImm();
O << '#' << FP->getValueAPF().convertToFloat();
if (isVerbose()) {
O << "\t\t" << MAI->getCommentString() << ' ';
WriteAsOperand(O, FP, /*PrintType=*/false);
}
}
void ARMAsmPrinter::printVFPf64ImmOperand(const MachineInstr *MI, int OpNum,
raw_ostream &O) {
const ConstantFP *FP = MI->getOperand(OpNum).getFPImm();
O << '#' << FP->getValueAPF().convertToDouble();
if (isVerbose()) {
O << "\t\t" << MAI->getCommentString() << ' ';
WriteAsOperand(O, FP, /*PrintType=*/false);
}
}
bool ARMAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum,
unsigned AsmVariant, const char *ExtraCode,
raw_ostream &O) {
// Does this asm operand have a single letter operand modifier?
if (ExtraCode && ExtraCode[0]) {
if (ExtraCode[1] != 0) return true; // Unknown modifier.
switch (ExtraCode[0]) {
default: return true; // Unknown modifier.
case 'a': // Print as a memory address.
if (MI->getOperand(OpNum).isReg()) {
O << "[" << getRegisterName(MI->getOperand(OpNum).getReg()) << "]";
return false;
}
// Fallthrough
case 'c': // Don't print "#" before an immediate operand.
if (!MI->getOperand(OpNum).isImm())
return true;
printNoHashImmediate(MI, OpNum, O);
return false;
case 'P': // Print a VFP double precision register.
case 'q': // Print a NEON quad precision register.
printOperand(MI, OpNum, O);
return false;
case 'Q':
if (TM.getTargetData()->isLittleEndian())
break;
// Fallthrough
case 'R':
if (TM.getTargetData()->isBigEndian())
break;
// Fallthrough
case 'H': // Write second word of DI / DF reference.
// Verify that this operand has two consecutive registers.
if (!MI->getOperand(OpNum).isReg() ||
OpNum+1 == MI->getNumOperands() ||
!MI->getOperand(OpNum+1).isReg())
return true;
++OpNum; // Return the high-part.
}
}
printOperand(MI, OpNum, O);
return false;
}
bool ARMAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
unsigned OpNum, unsigned AsmVariant,
const char *ExtraCode,
raw_ostream &O) {
if (ExtraCode && ExtraCode[0])
return true; // Unknown modifier.
const MachineOperand &MO = MI->getOperand(OpNum);
assert(MO.isReg() && "unexpected inline asm memory operand");
O << "[" << getRegisterName(MO.getReg()) << "]";
return false;
}
void ARMAsmPrinter::EmitInstruction(const MachineInstr *MI) {
if (EnableMCInst) {
printInstructionThroughMCStreamer(MI);
return;
}
if (MI->getOpcode() == ARM::CONSTPOOL_ENTRY)
EmitAlignment(2);
SmallString<128> Str;
raw_svector_ostream OS(Str);
printInstruction(MI, OS);
OutStreamer.EmitRawText(OS.str());
// Make sure the instruction that follows TBB is 2-byte aligned.
// FIXME: Constant island pass should insert an "ALIGN" instruction instead.
if (MI->getOpcode() == ARM::t2TBB)
EmitAlignment(1);
}
void ARMAsmPrinter::EmitStartOfAsmFile(Module &M) {
if (Subtarget->isTargetDarwin()) {
Reloc::Model RelocM = TM.getRelocationModel();
if (RelocM == Reloc::PIC_ || RelocM == Reloc::DynamicNoPIC) {
// Declare all the text sections up front (before the DWARF sections
// emitted by AsmPrinter::doInitialization) so the assembler will keep
// them together at the beginning of the object file. This helps
// avoid out-of-range branches that are due a fundamental limitation of
// the way symbol offsets are encoded with the current Darwin ARM
// relocations.
TargetLoweringObjectFileMachO &TLOFMacho =
static_cast<TargetLoweringObjectFileMachO &>(getObjFileLowering());
OutStreamer.SwitchSection(TLOFMacho.getTextSection());
OutStreamer.SwitchSection(TLOFMacho.getTextCoalSection());
OutStreamer.SwitchSection(TLOFMacho.getConstTextCoalSection());
if (RelocM == Reloc::DynamicNoPIC) {
const MCSection *sect =
TLOFMacho.getMachOSection("__TEXT", "__symbol_stub4",
MCSectionMachO::S_SYMBOL_STUBS,
12, SectionKind::getText());
OutStreamer.SwitchSection(sect);
} else {
const MCSection *sect =
TLOFMacho.getMachOSection("__TEXT", "__picsymbolstub4",
MCSectionMachO::S_SYMBOL_STUBS,
16, SectionKind::getText());
OutStreamer.SwitchSection(sect);
}
}
}
// Use unified assembler syntax.
OutStreamer.EmitRawText(StringRef("\t.syntax unified"));
// Emit ARM Build Attributes
if (Subtarget->isTargetELF()) {
// CPU Type
std::string CPUString = Subtarget->getCPUString();
if (CPUString != "generic")
OutStreamer.EmitRawText("\t.cpu " + Twine(CPUString));
// FIXME: Emit FPU type
if (Subtarget->hasVFP2())
OutStreamer.EmitRawText("\t.eabi_attribute " +
Twine(ARMBuildAttrs::VFP_arch) + ", 2");
// Signal various FP modes.
if (!UnsafeFPMath) {
OutStreamer.EmitRawText("\t.eabi_attribute " +
Twine(ARMBuildAttrs::ABI_FP_denormal) + ", 1");
OutStreamer.EmitRawText("\t.eabi_attribute " +
Twine(ARMBuildAttrs::ABI_FP_exceptions) + ", 1");
}
if (FiniteOnlyFPMath())
OutStreamer.EmitRawText("\t.eabi_attribute " +
Twine(ARMBuildAttrs::ABI_FP_number_model)+ ", 1");
else
OutStreamer.EmitRawText("\t.eabi_attribute " +
Twine(ARMBuildAttrs::ABI_FP_number_model)+ ", 3");
// 8-bytes alignment stuff.
OutStreamer.EmitRawText("\t.eabi_attribute " +
Twine(ARMBuildAttrs::ABI_align8_needed) + ", 1");
OutStreamer.EmitRawText("\t.eabi_attribute " +
Twine(ARMBuildAttrs::ABI_align8_preserved) + ", 1");
// Hard float. Use both S and D registers and conform to AAPCS-VFP.
if (Subtarget->isAAPCS_ABI() && FloatABIType == FloatABI::Hard) {
OutStreamer.EmitRawText("\t.eabi_attribute " +
Twine(ARMBuildAttrs::ABI_HardFP_use) + ", 3");
OutStreamer.EmitRawText("\t.eabi_attribute " +
Twine(ARMBuildAttrs::ABI_VFP_args) + ", 1");
}
// FIXME: Should we signal R9 usage?
}
}
void ARMAsmPrinter::EmitEndOfAsmFile(Module &M) {
if (Subtarget->isTargetDarwin()) {
// All darwin targets use mach-o.
TargetLoweringObjectFileMachO &TLOFMacho =
static_cast<TargetLoweringObjectFileMachO &>(getObjFileLowering());
MachineModuleInfoMachO &MMIMacho =
MMI->getObjFileInfo<MachineModuleInfoMachO>();
// Output non-lazy-pointers for external and common global variables.
MachineModuleInfoMachO::SymbolListTy Stubs = MMIMacho.GetGVStubList();
if (!Stubs.empty()) {
// Switch with ".non_lazy_symbol_pointer" directive.
OutStreamer.SwitchSection(TLOFMacho.getNonLazySymbolPointerSection());
EmitAlignment(2);
for (unsigned i = 0, e = Stubs.size(); i != e; ++i) {
// L_foo$stub:
OutStreamer.EmitLabel(Stubs[i].first);
// .indirect_symbol _foo
MachineModuleInfoImpl::StubValueTy &MCSym = Stubs[i].second;
OutStreamer.EmitSymbolAttribute(MCSym.getPointer(),MCSA_IndirectSymbol);
if (MCSym.getInt())
// External to current translation unit.
OutStreamer.EmitIntValue(0, 4/*size*/, 0/*addrspace*/);
else
// Internal to current translation unit.
//
// When we place the LSDA into the TEXT section, the type info pointers
// need to be indirect and pc-rel. We accomplish this by using NLPs.
// However, sometimes the types are local to the file. So we need to
// fill in the value for the NLP in those cases.
OutStreamer.EmitValue(MCSymbolRefExpr::Create(MCSym.getPointer(),
OutContext),
4/*size*/, 0/*addrspace*/);
}
Stubs.clear();
OutStreamer.AddBlankLine();
}
Stubs = MMIMacho.GetHiddenGVStubList();
if (!Stubs.empty()) {
OutStreamer.SwitchSection(getObjFileLowering().getDataSection());
EmitAlignment(2);
for (unsigned i = 0, e = Stubs.size(); i != e; ++i) {
// L_foo$stub:
OutStreamer.EmitLabel(Stubs[i].first);
// .long _foo
OutStreamer.EmitValue(MCSymbolRefExpr::
Create(Stubs[i].second.getPointer(),
OutContext),
4/*size*/, 0/*addrspace*/);
}
Stubs.clear();
OutStreamer.AddBlankLine();
}
// Funny Darwin hack: This flag tells the linker that no global symbols
// contain code that falls through to other global symbols (e.g. the obvious
// implementation of multiple entry points). If this doesn't occur, the
// linker can safely perform dead code stripping. Since LLVM never
// generates code that does this, it is always safe to set.
OutStreamer.EmitAssemblerFlag(MCAF_SubsectionsViaSymbols);
}
}
//===----------------------------------------------------------------------===//
void ARMAsmPrinter::printInstructionThroughMCStreamer(const MachineInstr *MI) {
ARMMCInstLower MCInstLowering(OutContext, *Mang, *this);
switch (MI->getOpcode()) {
case ARM::t2MOVi32imm:
assert(0 && "Should be lowered by thumb2it pass");
default: break;
case ARM::PICADD: { // FIXME: Remove asm string from td file.
// This is a pseudo op for a label + instruction sequence, which looks like:
// LPC0:
// add r0, pc, r0
// This adds the address of LPC0 to r0.
// Emit the label.
// FIXME: MOVE TO SHARED PLACE.
unsigned Id = (unsigned)MI->getOperand(2).getImm();
const char *Prefix = MAI->getPrivateGlobalPrefix();
MCSymbol *Label =OutContext.GetOrCreateSymbol(Twine(Prefix)
+ "PC" + Twine(getFunctionNumber()) + "_" + Twine(Id));
OutStreamer.EmitLabel(Label);
// Form and emit tha dd.
MCInst AddInst;
AddInst.setOpcode(ARM::ADDrr);
AddInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
AddInst.addOperand(MCOperand::CreateReg(ARM::PC));
AddInst.addOperand(MCOperand::CreateReg(MI->getOperand(1).getReg()));
OutStreamer.EmitInstruction(AddInst);
return;
}
case ARM::CONSTPOOL_ENTRY: { // FIXME: Remove asm string from td file.
/// CONSTPOOL_ENTRY - This instruction represents a floating constant pool
/// in the function. The first operand is the ID# for this instruction, the
/// second is the index into the MachineConstantPool that this is, the third
/// is the size in bytes of this constant pool entry.
unsigned LabelId = (unsigned)MI->getOperand(0).getImm();
unsigned CPIdx = (unsigned)MI->getOperand(1).getIndex();
EmitAlignment(2);
OutStreamer.EmitLabel(GetCPISymbol(LabelId));
const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx];
if (MCPE.isMachineConstantPoolEntry())
EmitMachineConstantPoolValue(MCPE.Val.MachineCPVal);
else
EmitGlobalConstant(MCPE.Val.ConstVal);
return;
}
case ARM::MOVi2pieces: { // FIXME: Remove asmstring from td file.
// This is a hack that lowers as a two instruction sequence.
unsigned DstReg = MI->getOperand(0).getReg();
unsigned ImmVal = (unsigned)MI->getOperand(1).getImm();
unsigned SOImmValV1 = ARM_AM::getSOImmTwoPartFirst(ImmVal);
unsigned SOImmValV2 = ARM_AM::getSOImmTwoPartSecond(ImmVal);
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::MOVi);
TmpInst.addOperand(MCOperand::CreateReg(DstReg));
TmpInst.addOperand(MCOperand::CreateImm(SOImmValV1));
// Predicate.
TmpInst.addOperand(MCOperand::CreateImm(MI->getOperand(2).getImm()));
TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(3).getReg()));
TmpInst.addOperand(MCOperand::CreateReg(0)); // cc_out
OutStreamer.EmitInstruction(TmpInst);
}
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::ORRri);
TmpInst.addOperand(MCOperand::CreateReg(DstReg)); // dstreg
TmpInst.addOperand(MCOperand::CreateReg(DstReg)); // inreg
TmpInst.addOperand(MCOperand::CreateImm(SOImmValV2)); // so_imm
// Predicate.
TmpInst.addOperand(MCOperand::CreateImm(MI->getOperand(2).getImm()));
TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(3).getReg()));
TmpInst.addOperand(MCOperand::CreateReg(0)); // cc_out
OutStreamer.EmitInstruction(TmpInst);
}
return;
}
case ARM::MOVi32imm: { // FIXME: Remove asmstring from td file.
// This is a hack that lowers as a two instruction sequence.
unsigned DstReg = MI->getOperand(0).getReg();
unsigned ImmVal = (unsigned)MI->getOperand(1).getImm();
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::MOVi16);
TmpInst.addOperand(MCOperand::CreateReg(DstReg)); // dstreg
TmpInst.addOperand(MCOperand::CreateImm(ImmVal & 65535)); // lower16(imm)
// Predicate.
TmpInst.addOperand(MCOperand::CreateImm(MI->getOperand(2).getImm()));
TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(3).getReg()));
OutStreamer.EmitInstruction(TmpInst);
}
{
MCInst TmpInst;
TmpInst.setOpcode(ARM::MOVTi16);
TmpInst.addOperand(MCOperand::CreateReg(DstReg)); // dstreg
TmpInst.addOperand(MCOperand::CreateReg(DstReg)); // srcreg
TmpInst.addOperand(MCOperand::CreateImm(ImmVal >> 16)); // upper16(imm)
// Predicate.
TmpInst.addOperand(MCOperand::CreateImm(MI->getOperand(2).getImm()));
TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(3).getReg()));
OutStreamer.EmitInstruction(TmpInst);
}
return;
}
}
MCInst TmpInst;
MCInstLowering.Lower(MI, TmpInst);
OutStreamer.EmitInstruction(TmpInst);
}
//===----------------------------------------------------------------------===//
// Target Registry Stuff
//===----------------------------------------------------------------------===//
static MCInstPrinter *createARMMCInstPrinter(const Target &T,
unsigned SyntaxVariant,
const MCAsmInfo &MAI) {
if (SyntaxVariant == 0)
return new ARMInstPrinter(MAI, false);
return 0;
}
// Force static initialization.
extern "C" void LLVMInitializeARMAsmPrinter() {
RegisterAsmPrinter<ARMAsmPrinter> X(TheARMTarget);
RegisterAsmPrinter<ARMAsmPrinter> Y(TheThumbTarget);
TargetRegistry::RegisterMCInstPrinter(TheARMTarget, createARMMCInstPrinter);
TargetRegistry::RegisterMCInstPrinter(TheThumbTarget, createARMMCInstPrinter);
}