llvm-6502/lib/Target/X86/X86FloatingPointRegKill.cpp
2010-04-02 20:16:16 +00:00

141 lines
5.2 KiB
C++

//===-- X86FloatingPoint.cpp - FP_REG_KILL inserter -----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the pass which inserts FP_REG_KILL instructions.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "x86-codegen"
#include "X86.h"
#include "X86InstrInfo.h"
#include "X86Subtarget.h"
#include "llvm/Instructions.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/CFG.h"
#include "llvm/ADT/Statistic.h"
using namespace llvm;
STATISTIC(NumFPKill, "Number of FP_REG_KILL instructions added");
namespace {
struct FPRegKiller : public MachineFunctionPass {
static char ID;
FPRegKiller() : MachineFunctionPass(&ID) {}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
AU.addPreservedID(MachineLoopInfoID);
AU.addPreservedID(MachineDominatorsID);
MachineFunctionPass::getAnalysisUsage(AU);
}
virtual bool runOnMachineFunction(MachineFunction &MF);
virtual const char *getPassName() const { return "X86 FP_REG_KILL inserter"; }
};
char FPRegKiller::ID = 0;
}
FunctionPass *llvm::createX87FPRegKillInserterPass() { return new FPRegKiller(); }
bool FPRegKiller::runOnMachineFunction(MachineFunction &MF) {
// If we are emitting FP stack code, scan the basic block to determine if this
// block defines any FP values. If so, put an FP_REG_KILL instruction before
// the terminator of the block.
// Note that FP stack instructions are used in all modes for long double,
// so we always need to do this check.
// Also note that it's possible for an FP stack register to be live across
// an instruction that produces multiple basic blocks (SSE CMOV) so we
// must check all the generated basic blocks.
// Scan all of the machine instructions in these MBBs, checking for FP
// stores. (RFP32 and RFP64 will not exist in SSE mode, but RFP80 might.)
// Fast-path: If nothing is using the x87 registers, we don't need to do
// any scanning.
MachineRegisterInfo &MRI = MF.getRegInfo();
if (MRI.getRegClassVirtRegs(X86::RFP80RegisterClass).empty() &&
MRI.getRegClassVirtRegs(X86::RFP64RegisterClass).empty() &&
MRI.getRegClassVirtRegs(X86::RFP32RegisterClass).empty())
return false;
bool Changed = false;
const X86Subtarget &Subtarget = MF.getTarget().getSubtarget<X86Subtarget>();
MachineFunction::iterator MBBI = MF.begin();
MachineFunction::iterator EndMBB = MF.end();
for (; MBBI != EndMBB; ++MBBI) {
MachineBasicBlock *MBB = MBBI;
// If this block returns, ignore it. We don't want to insert an FP_REG_KILL
// before the return.
if (!MBB->empty()) {
MachineBasicBlock::iterator EndI = MBB->end();
--EndI;
if (EndI->getDesc().isReturn())
continue;
}
bool ContainsFPCode = false;
for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
!ContainsFPCode && I != E; ++I) {
if (I->getNumOperands() != 0 && I->getOperand(0).isReg()) {
const TargetRegisterClass *clas;
for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op) {
if (I->getOperand(op).isReg() && I->getOperand(op).isDef() &&
TargetRegisterInfo::isVirtualRegister(I->getOperand(op).getReg()) &&
((clas = MRI.getRegClass(I->getOperand(op).getReg())) ==
X86::RFP32RegisterClass ||
clas == X86::RFP64RegisterClass ||
clas == X86::RFP80RegisterClass)) {
ContainsFPCode = true;
break;
}
}
}
}
// Check PHI nodes in successor blocks. These PHI's will be lowered to have
// a copy of the input value in this block. In SSE mode, we only care about
// 80-bit values.
if (!ContainsFPCode) {
// Final check, check LLVM BB's that are successors to the LLVM BB
// corresponding to BB for FP PHI nodes.
const BasicBlock *LLVMBB = MBB->getBasicBlock();
const PHINode *PN;
for (succ_const_iterator SI = succ_begin(LLVMBB), E = succ_end(LLVMBB);
!ContainsFPCode && SI != E; ++SI) {
for (BasicBlock::const_iterator II = SI->begin();
(PN = dyn_cast<PHINode>(II)); ++II) {
if (PN->getType()==Type::getX86_FP80Ty(LLVMBB->getContext()) ||
(!Subtarget.hasSSE1() && PN->getType()->isFloatingPointTy()) ||
(!Subtarget.hasSSE2() &&
PN->getType()==Type::getDoubleTy(LLVMBB->getContext()))) {
ContainsFPCode = true;
break;
}
}
}
}
// Finally, if we found any FP code, emit the FP_REG_KILL instruction.
if (ContainsFPCode) {
BuildMI(*MBB, MBBI->getFirstTerminator(), DebugLoc(),
MF.getTarget().getInstrInfo()->get(X86::FP_REG_KILL));
++NumFPKill;
Changed = true;
}
}
return Changed;
}