llvm-6502/lib/CodeGen/SelectionDAG/LegalizeTypes.cpp
Duncan Sands 78cd649ad3 Share some code that is common between integer and
float expansion (and sometimes vector splitting too).


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@52548 91177308-0d34-0410-b5e6-96231b3b80d8
2008-06-20 18:40:50 +00:00

679 lines
24 KiB
C++

//===-- LegalizeTypes.cpp - Common code for DAG type legalizer ------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the SelectionDAG::LegalizeTypes method. It transforms
// an arbitrary well-formed SelectionDAG to only consist of legal types. This
// is common code shared among the LegalizeTypes*.cpp files.
//
//===----------------------------------------------------------------------===//
#include "LegalizeTypes.h"
#include "llvm/CallingConv.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/MathExtras.h"
using namespace llvm;
#ifndef NDEBUG
static cl::opt<bool>
ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
cl::desc("Pop up a window to show dags before legalize types"));
#else
static const bool ViewLegalizeTypesDAGs = 0;
#endif
/// run - This is the main entry point for the type legalizer. This does a
/// top-down traversal of the dag, legalizing types as it goes.
void DAGTypeLegalizer::run() {
// Create a dummy node (which is not added to allnodes), that adds a reference
// to the root node, preventing it from being deleted, and tracking any
// changes of the root.
HandleSDNode Dummy(DAG.getRoot());
// The root of the dag may dangle to deleted nodes until the type legalizer is
// done. Set it to null to avoid confusion.
DAG.setRoot(SDOperand());
// Walk all nodes in the graph, assigning them a NodeID of 'ReadyToProcess'
// (and remembering them) if they are leaves and assigning 'NewNode' if
// non-leaves.
for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
E = DAG.allnodes_end(); I != E; ++I) {
if (I->getNumOperands() == 0) {
I->setNodeId(ReadyToProcess);
Worklist.push_back(I);
} else {
I->setNodeId(NewNode);
}
}
// Now that we have a set of nodes to process, handle them all.
while (!Worklist.empty()) {
SDNode *N = Worklist.back();
Worklist.pop_back();
assert(N->getNodeId() == ReadyToProcess &&
"Node should be ready if on worklist!");
// Scan the values produced by the node, checking to see if any result
// types are illegal.
unsigned i = 0;
unsigned NumResults = N->getNumValues();
do {
MVT ResultVT = N->getValueType(i);
switch (getTypeAction(ResultVT)) {
default:
assert(false && "Unknown action!");
case Legal:
break;
case PromoteInteger:
PromoteIntegerResult(N, i);
goto NodeDone;
case ExpandInteger:
ExpandIntegerResult(N, i);
goto NodeDone;
case SoftenFloat:
SoftenFloatResult(N, i);
goto NodeDone;
case ExpandFloat:
ExpandFloatResult(N, i);
goto NodeDone;
case Scalarize:
ScalarizeResult(N, i);
goto NodeDone;
case Split:
SplitResult(N, i);
goto NodeDone;
}
} while (++i < NumResults);
// Scan the operand list for the node, handling any nodes with operands that
// are illegal.
{
unsigned NumOperands = N->getNumOperands();
bool NeedsRevisit = false;
for (i = 0; i != NumOperands; ++i) {
MVT OpVT = N->getOperand(i).getValueType();
switch (getTypeAction(OpVT)) {
default:
assert(false && "Unknown action!");
case Legal:
continue;
case PromoteInteger:
NeedsRevisit = PromoteIntegerOperand(N, i);
break;
case ExpandInteger:
NeedsRevisit = ExpandIntegerOperand(N, i);
break;
case SoftenFloat:
NeedsRevisit = SoftenFloatOperand(N, i);
break;
case ExpandFloat:
NeedsRevisit = ExpandFloatOperand(N, i);
break;
case Scalarize:
NeedsRevisit = ScalarizeOperand(N, i);
break;
case Split:
NeedsRevisit = SplitOperand(N, i);
break;
}
break;
}
// If the node needs revisiting, don't add all users to the worklist etc.
if (NeedsRevisit)
continue;
if (i == NumOperands)
DEBUG(cerr << "Legally typed node: "; N->dump(&DAG); cerr << "\n");
}
NodeDone:
// If we reach here, the node was processed, potentially creating new nodes.
// Mark it as processed and add its users to the worklist as appropriate.
N->setNodeId(Processed);
for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
UI != E; ++UI) {
SDNode *User = UI->getUser();
int NodeID = User->getNodeId();
assert(NodeID != ReadyToProcess && NodeID != Processed &&
"Invalid node id for user of unprocessed node!");
// This node has two options: it can either be a new node or its Node ID
// may be a count of the number of operands it has that are not ready.
if (NodeID > 0) {
User->setNodeId(NodeID-1);
// If this was the last use it was waiting on, add it to the ready list.
if (NodeID-1 == ReadyToProcess)
Worklist.push_back(User);
continue;
}
// Otherwise, this node is new: this is the first operand of it that
// became ready. Its new NodeID is the number of operands it has minus 1
// (as this node is now processed).
assert(NodeID == NewNode && "Unknown node ID!");
User->setNodeId(User->getNumOperands()-1);
// If the node only has a single operand, it is now ready.
if (User->getNumOperands() == 1)
Worklist.push_back(User);
}
}
// If the root changed (e.g. it was a dead load, update the root).
DAG.setRoot(Dummy.getValue());
//DAG.viewGraph();
// Remove dead nodes. This is important to do for cleanliness but also before
// the checking loop below. Implicit folding by the DAG.getNode operators can
// cause unreachable nodes to be around with their flags set to new.
DAG.RemoveDeadNodes();
// In a debug build, scan all the nodes to make sure we found them all. This
// ensures that there are no cycles and that everything got processed.
#ifndef NDEBUG
for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
E = DAG.allnodes_end(); I != E; ++I) {
bool Failed = false;
// Check that all result types are legal.
for (unsigned i = 0, NumVals = I->getNumValues(); i < NumVals; ++i)
if (!isTypeLegal(I->getValueType(i))) {
cerr << "Result type " << i << " illegal!\n";
Failed = true;
}
// Check that all operand types are legal.
for (unsigned i = 0, NumOps = I->getNumOperands(); i < NumOps; ++i)
if (!isTypeLegal(I->getOperand(i).getValueType())) {
cerr << "Operand type " << i << " illegal!\n";
Failed = true;
}
if (I->getNodeId() != Processed) {
if (I->getNodeId() == NewNode)
cerr << "New node not 'noticed'?\n";
else if (I->getNodeId() > 0)
cerr << "Operand not processed?\n";
else if (I->getNodeId() == ReadyToProcess)
cerr << "Not added to worklist?\n";
Failed = true;
}
if (Failed) {
I->dump(&DAG); cerr << "\n";
abort();
}
}
#endif
}
/// AnalyzeNewNode - The specified node is the root of a subtree of potentially
/// new nodes. Correct any processed operands (this may change the node) and
/// calculate the NodeId.
void DAGTypeLegalizer::AnalyzeNewNode(SDNode *&N) {
// If this was an existing node that is already done, we're done.
if (N->getNodeId() != NewNode)
return;
// Okay, we know that this node is new. Recursively walk all of its operands
// to see if they are new also. The depth of this walk is bounded by the size
// of the new tree that was constructed (usually 2-3 nodes), so we don't worry
// about revisiting of nodes.
//
// As we walk the operands, keep track of the number of nodes that are
// processed. If non-zero, this will become the new nodeid of this node.
// Already processed operands may need to be remapped to the node that
// replaced them, which can result in our node changing. Since remapping
// is rare, the code tries to minimize overhead in the non-remapping case.
SmallVector<SDOperand, 8> NewOps;
unsigned NumProcessed = 0;
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
SDOperand OrigOp = N->getOperand(i);
SDOperand Op = OrigOp;
if (Op.Val->getNodeId() == Processed)
RemapNode(Op);
if (Op.Val->getNodeId() == NewNode)
AnalyzeNewNode(Op.Val);
else if (Op.Val->getNodeId() == Processed)
++NumProcessed;
if (!NewOps.empty()) {
// Some previous operand changed. Add this one to the list.
NewOps.push_back(Op);
} else if (Op != OrigOp) {
// This is the first operand to change - add all operands so far.
for (unsigned j = 0; j < i; ++j)
NewOps.push_back(N->getOperand(j));
NewOps.push_back(Op);
}
}
// Some operands changed - update the node.
if (!NewOps.empty())
N = DAG.UpdateNodeOperands(SDOperand(N, 0), &NewOps[0], NewOps.size()).Val;
N->setNodeId(N->getNumOperands()-NumProcessed);
if (N->getNodeId() == ReadyToProcess)
Worklist.push_back(N);
}
namespace {
/// NodeUpdateListener - This class is a DAGUpdateListener that listens for
/// updates to nodes and recomputes their ready state.
class VISIBILITY_HIDDEN NodeUpdateListener :
public SelectionDAG::DAGUpdateListener {
DAGTypeLegalizer &DTL;
public:
NodeUpdateListener(DAGTypeLegalizer &dtl) : DTL(dtl) {}
virtual void NodeDeleted(SDNode *N, SDNode *E) {
assert(N->getNodeId() != DAGTypeLegalizer::Processed &&
N->getNodeId() != DAGTypeLegalizer::ReadyToProcess &&
"RAUW deleted processed node!");
// It is possible, though rare, for the deleted node N to occur as a
// target in a map, so note the replacement N -> E in ReplacedNodes.
assert(E && "Node not replaced?");
for (unsigned i = 0, e = E->getNumValues(); i != e; ++i)
DTL.NoteReplacement(SDOperand(N, i), SDOperand(E, i));
}
virtual void NodeUpdated(SDNode *N) {
// Node updates can mean pretty much anything. It is possible that an
// operand was set to something already processed (f.e.) in which case
// this node could become ready. Recompute its flags.
assert(N->getNodeId() != DAGTypeLegalizer::Processed &&
N->getNodeId() != DAGTypeLegalizer::ReadyToProcess &&
"RAUW updated processed node!");
DTL.ReanalyzeNode(N);
}
};
}
/// ReplaceValueWith - The specified value was legalized to the specified other
/// value. If they are different, update the DAG and NodeIDs replacing any uses
/// of From to use To instead.
void DAGTypeLegalizer::ReplaceValueWith(SDOperand From, SDOperand To) {
if (From == To) return;
// If expansion produced new nodes, make sure they are properly marked.
AnalyzeNewNode(To.Val);
// Anything that used the old node should now use the new one. Note that this
// can potentially cause recursive merging.
NodeUpdateListener NUL(*this);
DAG.ReplaceAllUsesOfValueWith(From, To, &NUL);
// The old node may still be present in a map like ExpandedIntegers or
// PromotedIntegers. Inform maps about the replacement.
NoteReplacement(From, To);
}
/// ReplaceNodeWith - Replace uses of the 'from' node's results with the 'to'
/// node's results. The from and to node must define identical result types.
void DAGTypeLegalizer::ReplaceNodeWith(SDNode *From, SDNode *To) {
if (From == To) return;
// If expansion produced new nodes, make sure they are properly marked.
AnalyzeNewNode(To);
assert(From->getNumValues() == To->getNumValues() &&
"Node results don't match");
// Anything that used the old node should now use the new one. Note that this
// can potentially cause recursive merging.
NodeUpdateListener NUL(*this);
DAG.ReplaceAllUsesWith(From, To, &NUL);
// The old node may still be present in a map like ExpandedIntegers or
// PromotedIntegers. Inform maps about the replacement.
for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) {
assert(From->getValueType(i) == To->getValueType(i) &&
"Node results don't match");
NoteReplacement(SDOperand(From, i), SDOperand(To, i));
}
}
/// RemapNode - If the specified value was already legalized to another value,
/// replace it by that value.
void DAGTypeLegalizer::RemapNode(SDOperand &N) {
DenseMap<SDOperand, SDOperand>::iterator I = ReplacedNodes.find(N);
if (I != ReplacedNodes.end()) {
// Use path compression to speed up future lookups if values get multiply
// replaced with other values.
RemapNode(I->second);
N = I->second;
}
}
/// ExpungeNode - If this is a deleted value that was kept around to speed up
/// remapping, remove it globally now. The only map that can have a deleted
/// node as a source is ReplacedNodes. Other maps can have deleted nodes as
/// targets, but since their looked-up values are always immediately remapped
/// using RemapNode, resulting in a not-deleted node, this is harmless as long
/// as ReplacedNodes/RemapNode always performs correct mappings. The mapping
/// will always be correct as long as ExpungeNode is called on the source when
/// adding a new node to ReplacedNodes, and called on the target when adding
/// a new node to any map.
void DAGTypeLegalizer::ExpungeNode(SDOperand N) {
SDOperand Replacement = N;
RemapNode(Replacement);
if (Replacement != N) {
// Remove N from all maps - this is expensive but extremely rare.
ReplacedNodes.erase(N);
for (DenseMap<SDOperand, SDOperand>::iterator I = ReplacedNodes.begin(),
E = ReplacedNodes.end(); I != E; ++I) {
if (I->second == N)
I->second = Replacement;
}
for (DenseMap<SDOperand, SDOperand>::iterator I = PromotedIntegers.begin(),
E = PromotedIntegers.end(); I != E; ++I) {
assert(I->first != N);
if (I->second == N)
I->second = Replacement;
}
for (DenseMap<SDOperand, SDOperand>::iterator I = SoftenedFloats.begin(),
E = SoftenedFloats.end(); I != E; ++I) {
assert(I->first != N);
if (I->second == N)
I->second = Replacement;
}
for (DenseMap<SDOperand, SDOperand>::iterator I = ScalarizedVectors.begin(),
E = ScalarizedVectors.end(); I != E; ++I) {
assert(I->first != N);
if (I->second == N)
I->second = Replacement;
}
for (DenseMap<SDOperand, std::pair<SDOperand, SDOperand> >::iterator
I = ExpandedIntegers.begin(), E = ExpandedIntegers.end(); I != E; ++I){
assert(I->first != N);
if (I->second.first == N)
I->second.first = Replacement;
if (I->second.second == N)
I->second.second = Replacement;
}
for (DenseMap<SDOperand, std::pair<SDOperand, SDOperand> >::iterator
I = ExpandedFloats.begin(), E = ExpandedFloats.end(); I != E; ++I) {
assert(I->first != N);
if (I->second.first == N)
I->second.first = Replacement;
if (I->second.second == N)
I->second.second = Replacement;
}
for (DenseMap<SDOperand, std::pair<SDOperand, SDOperand> >::iterator
I = SplitVectors.begin(), E = SplitVectors.end(); I != E; ++I) {
assert(I->first != N);
if (I->second.first == N)
I->second.first = Replacement;
if (I->second.second == N)
I->second.second = Replacement;
}
}
}
void DAGTypeLegalizer::SetPromotedInteger(SDOperand Op, SDOperand Result) {
ExpungeNode(Result);
AnalyzeNewNode(Result.Val);
SDOperand &OpEntry = PromotedIntegers[Op];
assert(OpEntry.Val == 0 && "Node is already promoted!");
OpEntry = Result;
}
void DAGTypeLegalizer::SetSoftenedFloat(SDOperand Op, SDOperand Result) {
ExpungeNode(Result);
AnalyzeNewNode(Result.Val);
SDOperand &OpEntry = SoftenedFloats[Op];
assert(OpEntry.Val == 0 && "Node is already converted to integer!");
OpEntry = Result;
}
void DAGTypeLegalizer::SetScalarizedVector(SDOperand Op, SDOperand Result) {
ExpungeNode(Result);
AnalyzeNewNode(Result.Val);
SDOperand &OpEntry = ScalarizedVectors[Op];
assert(OpEntry.Val == 0 && "Node is already scalarized!");
OpEntry = Result;
}
void DAGTypeLegalizer::GetExpandedInteger(SDOperand Op, SDOperand &Lo,
SDOperand &Hi) {
std::pair<SDOperand, SDOperand> &Entry = ExpandedIntegers[Op];
RemapNode(Entry.first);
RemapNode(Entry.second);
assert(Entry.first.Val && "Operand isn't expanded");
Lo = Entry.first;
Hi = Entry.second;
}
void DAGTypeLegalizer::SetExpandedInteger(SDOperand Op, SDOperand Lo,
SDOperand Hi) {
ExpungeNode(Lo);
ExpungeNode(Hi);
// Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
AnalyzeNewNode(Lo.Val);
AnalyzeNewNode(Hi.Val);
// Remember that this is the result of the node.
std::pair<SDOperand, SDOperand> &Entry = ExpandedIntegers[Op];
assert(Entry.first.Val == 0 && "Node already expanded");
Entry.first = Lo;
Entry.second = Hi;
}
void DAGTypeLegalizer::GetExpandedFloat(SDOperand Op, SDOperand &Lo,
SDOperand &Hi) {
std::pair<SDOperand, SDOperand> &Entry = ExpandedFloats[Op];
RemapNode(Entry.first);
RemapNode(Entry.second);
assert(Entry.first.Val && "Operand isn't expanded");
Lo = Entry.first;
Hi = Entry.second;
}
void DAGTypeLegalizer::SetExpandedFloat(SDOperand Op, SDOperand Lo,
SDOperand Hi) {
ExpungeNode(Lo);
ExpungeNode(Hi);
// Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
AnalyzeNewNode(Lo.Val);
AnalyzeNewNode(Hi.Val);
// Remember that this is the result of the node.
std::pair<SDOperand, SDOperand> &Entry = ExpandedFloats[Op];
assert(Entry.first.Val == 0 && "Node already expanded");
Entry.first = Lo;
Entry.second = Hi;
}
void DAGTypeLegalizer::GetSplitVector(SDOperand Op, SDOperand &Lo,
SDOperand &Hi) {
std::pair<SDOperand, SDOperand> &Entry = SplitVectors[Op];
RemapNode(Entry.first);
RemapNode(Entry.second);
assert(Entry.first.Val && "Operand isn't split");
Lo = Entry.first;
Hi = Entry.second;
}
void DAGTypeLegalizer::SetSplitVector(SDOperand Op, SDOperand Lo,
SDOperand Hi) {
ExpungeNode(Lo);
ExpungeNode(Hi);
// Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
AnalyzeNewNode(Lo.Val);
AnalyzeNewNode(Hi.Val);
// Remember that this is the result of the node.
std::pair<SDOperand, SDOperand> &Entry = SplitVectors[Op];
assert(Entry.first.Val == 0 && "Node already split");
Entry.first = Lo;
Entry.second = Hi;
}
//===----------------------------------------------------------------------===//
// Utilities.
//===----------------------------------------------------------------------===//
/// BitConvertToInteger - Convert to an integer of the same size.
SDOperand DAGTypeLegalizer::BitConvertToInteger(SDOperand Op) {
unsigned BitWidth = Op.getValueType().getSizeInBits();
return DAG.getNode(ISD::BIT_CONVERT, MVT::getIntegerVT(BitWidth), Op);
}
SDOperand DAGTypeLegalizer::CreateStackStoreLoad(SDOperand Op,
MVT DestVT) {
// Create the stack frame object.
SDOperand FIPtr = DAG.CreateStackTemporary(DestVT);
// Emit a store to the stack slot.
SDOperand Store = DAG.getStore(DAG.getEntryNode(), Op, FIPtr, NULL, 0);
// Result is a load from the stack slot.
return DAG.getLoad(DestVT, Store, FIPtr, NULL, 0);
}
/// JoinIntegers - Build an integer with low bits Lo and high bits Hi.
SDOperand DAGTypeLegalizer::JoinIntegers(SDOperand Lo, SDOperand Hi) {
MVT LVT = Lo.getValueType();
MVT HVT = Hi.getValueType();
MVT NVT = MVT::getIntegerVT(LVT.getSizeInBits() + HVT.getSizeInBits());
Lo = DAG.getNode(ISD::ZERO_EXTEND, NVT, Lo);
Hi = DAG.getNode(ISD::ANY_EXTEND, NVT, Hi);
Hi = DAG.getNode(ISD::SHL, NVT, Hi, DAG.getConstant(LVT.getSizeInBits(),
TLI.getShiftAmountTy()));
return DAG.getNode(ISD::OR, NVT, Lo, Hi);
}
/// SplitInteger - Return the lower LoVT bits of Op in Lo and the upper HiVT
/// bits in Hi.
void DAGTypeLegalizer::SplitInteger(SDOperand Op,
MVT LoVT, MVT HiVT,
SDOperand &Lo, SDOperand &Hi) {
assert(LoVT.getSizeInBits() + HiVT.getSizeInBits() ==
Op.getValueType().getSizeInBits() && "Invalid integer splitting!");
Lo = DAG.getNode(ISD::TRUNCATE, LoVT, Op);
Hi = DAG.getNode(ISD::SRL, Op.getValueType(), Op,
DAG.getConstant(LoVT.getSizeInBits(),
TLI.getShiftAmountTy()));
Hi = DAG.getNode(ISD::TRUNCATE, HiVT, Hi);
}
/// SplitInteger - Return the lower and upper halves of Op's bits in a value type
/// half the size of Op's.
void DAGTypeLegalizer::SplitInteger(SDOperand Op,
SDOperand &Lo, SDOperand &Hi) {
MVT HalfVT = MVT::getIntegerVT(Op.getValueType().getSizeInBits()/2);
SplitInteger(Op, HalfVT, HalfVT, Lo, Hi);
}
/// MakeLibCall - Generate a libcall taking the given operands as arguments and
/// returning a result of type RetVT.
SDOperand DAGTypeLegalizer::MakeLibCall(RTLIB::Libcall LC, MVT RetVT,
const SDOperand *Ops, unsigned NumOps,
bool isSigned) {
TargetLowering::ArgListTy Args;
Args.reserve(NumOps);
TargetLowering::ArgListEntry Entry;
for (unsigned i = 0; i != NumOps; ++i) {
Entry.Node = Ops[i];
Entry.Ty = Entry.Node.getValueType().getTypeForMVT();
Entry.isSExt = isSigned;
Entry.isZExt = !isSigned;
Args.push_back(Entry);
}
SDOperand Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
TLI.getPointerTy());
const Type *RetTy = RetVT.getTypeForMVT();
std::pair<SDOperand,SDOperand> CallInfo =
TLI.LowerCallTo(DAG.getEntryNode(), RetTy, isSigned, !isSigned, false,
CallingConv::C, false, Callee, Args, DAG);
return CallInfo.first;
}
SDOperand DAGTypeLegalizer::GetVectorElementPointer(SDOperand VecPtr, MVT EltVT,
SDOperand Index) {
// Make sure the index type is big enough to compute in.
if (Index.getValueType().bitsGT(TLI.getPointerTy()))
Index = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), Index);
else
Index = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), Index);
// Calculate the element offset and add it to the pointer.
unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size.
Index = DAG.getNode(ISD::MUL, Index.getValueType(), Index,
DAG.getConstant(EltSize, Index.getValueType()));
return DAG.getNode(ISD::ADD, Index.getValueType(), Index, VecPtr);
}
/// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
/// which is split into two not necessarily identical pieces.
void DAGTypeLegalizer::GetSplitDestVTs(MVT InVT, MVT &LoVT, MVT &HiVT) {
if (!InVT.isVector()) {
LoVT = HiVT = TLI.getTypeToTransformTo(InVT);
} else {
MVT NewEltVT = InVT.getVectorElementType();
unsigned NumElements = InVT.getVectorNumElements();
if ((NumElements & (NumElements-1)) == 0) { // Simple power of two vector.
NumElements >>= 1;
LoVT = HiVT = MVT::getVectorVT(NewEltVT, NumElements);
} else { // Non-power-of-two vectors.
unsigned NewNumElts_Lo = 1 << Log2_32(NumElements);
unsigned NewNumElts_Hi = NumElements - NewNumElts_Lo;
LoVT = MVT::getVectorVT(NewEltVT, NewNumElts_Lo);
HiVT = MVT::getVectorVT(NewEltVT, NewNumElts_Hi);
}
}
}
//===----------------------------------------------------------------------===//
// Entry Point
//===----------------------------------------------------------------------===//
/// LegalizeTypes - This transforms the SelectionDAG into a SelectionDAG that
/// only uses types natively supported by the target.
///
/// Note that this is an involved process that may invalidate pointers into
/// the graph.
void SelectionDAG::LegalizeTypes() {
if (ViewLegalizeTypesDAGs) viewGraph();
DAGTypeLegalizer(*this).run();
}