llvm-6502/test/Transforms/SROA/big-endian.ll
Chandler Carruth a2b88163af Teach SROA how to split whole-alloca integer loads and stores into
smaller integer loads and stores.

The high-level motivation is that the frontend sometimes generates
a single whole-alloca integer load or store during ABI lowering of
splittable allocas. We need to be able to break this apart in order to
see the underlying elements and properly promote them to SSA values. The
hope is that this fixes some performance regressions on x86-32 with the
new SROA pass.

Unfortunately, this causes quite a bit of churn in the test cases, and
bloats some IR that comes out. When we see an alloca that consists soley
of bits and bytes being extracted and re-inserted, we now do some
splitting first, before building widened integer "bucket of bits"
representations. These are always well folded by instcombine however, so
this shouldn't actually result in missed opportunities.

If this splitting of all-integer allocas does cause problems (perhaps
due to smaller SSA values going into the RA), we could potentially go to
some extreme measures to only do this integer splitting trick when there
are non-integer component accesses of an alloca, but discovering this is
quite expensive: it adds yet another complete walk of the recursive use
tree of the alloca.

Either way, I will be watching build bots and LNT bots to see what
fallout there is here. If anyone gets x86-32 numbers before & after this
change, I would be very interested.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166662 91177308-0d34-0410-b5e6-96231b3b80d8
2012-10-25 04:37:07 +00:00

120 lines
4.0 KiB
LLVM

; RUN: opt < %s -sroa -S | FileCheck %s
; RUN: opt < %s -sroa -force-ssa-updater -S | FileCheck %s
target datalayout = "E-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:32:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-n8:16:32:64"
define i8 @test1() {
; We fully promote these to the i24 load or store size, resulting in just masks
; and other operations that instcombine will fold, but no alloca. Note this is
; the same as test12 in basictest.ll, but here we assert big-endian byte
; ordering.
;
; CHECK: @test1
entry:
%a = alloca [3 x i8]
%b = alloca [3 x i8]
; CHECK-NOT: alloca
%a0ptr = getelementptr [3 x i8]* %a, i64 0, i32 0
store i8 0, i8* %a0ptr
%a1ptr = getelementptr [3 x i8]* %a, i64 0, i32 1
store i8 0, i8* %a1ptr
%a2ptr = getelementptr [3 x i8]* %a, i64 0, i32 2
store i8 0, i8* %a2ptr
%aiptr = bitcast [3 x i8]* %a to i24*
%ai = load i24* %aiptr
; CHCEK-NOT: store
; CHCEK-NOT: load
; CHECK: %[[ext2:.*]] = zext i8 0 to i24
; CHECK-NEXT: %[[mask2:.*]] = and i24 undef, -256
; CHECK-NEXT: %[[insert2:.*]] = or i24 %[[mask2]], %[[ext2]]
; CHECK-NEXT: %[[ext1:.*]] = zext i8 0 to i24
; CHECK-NEXT: %[[shift1:.*]] = shl i24 %[[ext1]], 8
; CHECK-NEXT: %[[mask1:.*]] = and i24 %[[insert2]], -65281
; CHECK-NEXT: %[[insert1:.*]] = or i24 %[[mask1]], %[[shift1]]
; CHECK-NEXT: %[[ext0:.*]] = zext i8 0 to i24
; CHECK-NEXT: %[[shift0:.*]] = shl i24 %[[ext0]], 16
; CHECK-NEXT: %[[mask0:.*]] = and i24 %[[insert1]], 65535
; CHECK-NEXT: %[[insert0:.*]] = or i24 %[[mask0]], %[[shift0]]
%biptr = bitcast [3 x i8]* %b to i24*
store i24 %ai, i24* %biptr
%b0ptr = getelementptr [3 x i8]* %b, i64 0, i32 0
%b0 = load i8* %b0ptr
%b1ptr = getelementptr [3 x i8]* %b, i64 0, i32 1
%b1 = load i8* %b1ptr
%b2ptr = getelementptr [3 x i8]* %b, i64 0, i32 2
%b2 = load i8* %b2ptr
; CHCEK-NOT: store
; CHCEK-NOT: load
; CHECK: %[[shift0:.*]] = lshr i24 %[[insert0]], 16
; CHECK-NEXT: %[[trunc0:.*]] = trunc i24 %[[shift0]] to i8
; CHECK-NEXT: %[[shift1:.*]] = lshr i24 %[[insert0]], 8
; CHECK-NEXT: %[[trunc1:.*]] = trunc i24 %[[shift1]] to i8
; CHECK-NEXT: %[[trunc2:.*]] = trunc i24 %[[insert0]] to i8
%bsum0 = add i8 %b0, %b1
%bsum1 = add i8 %bsum0, %b2
ret i8 %bsum1
; CHECK: %[[sum0:.*]] = add i8 %[[trunc0]], %[[trunc1]]
; CHECK-NEXT: %[[sum1:.*]] = add i8 %[[sum0]], %[[trunc2]]
; CHECK-NEXT: ret i8 %[[sum1]]
}
define i64 @test2() {
; Test for various mixed sizes of integer loads and stores all getting
; promoted.
;
; CHECK: @test2
entry:
%a = alloca [7 x i8]
; CHECK-NOT: alloca
%a0ptr = getelementptr [7 x i8]* %a, i64 0, i32 0
%a1ptr = getelementptr [7 x i8]* %a, i64 0, i32 1
%a2ptr = getelementptr [7 x i8]* %a, i64 0, i32 2
%a3ptr = getelementptr [7 x i8]* %a, i64 0, i32 3
; CHCEK-NOT: store
; CHCEK-NOT: load
%a0i16ptr = bitcast i8* %a0ptr to i16*
store i16 1, i16* %a0i16ptr
; CHECK: %[[mask0:.*]] = and i16 1, -16
%a1i4ptr = bitcast i8* %a1ptr to i4*
store i4 1, i4* %a1i4ptr
; CHECK-NEXT: %[[insert0:.*]] = or i16 %[[mask0]], 1
store i8 1, i8* %a2ptr
; CHECK-NEXT: %[[mask1:.*]] = and i40 undef, 4294967295
; CHECK-NEXT: %[[insert1:.*]] = or i40 %[[mask1]], 4294967296
%a3i24ptr = bitcast i8* %a3ptr to i24*
store i24 1, i24* %a3i24ptr
; CHECK-NEXT: %[[mask2:.*]] = and i40 %[[insert1]], -4294967041
; CHECK-NEXT: %[[insert2:.*]] = or i40 %[[mask2]], 256
%a2i40ptr = bitcast i8* %a2ptr to i40*
store i40 1, i40* %a2i40ptr
; CHECK-NEXT: %[[ext3:.*]] = zext i40 1 to i56
; CHECK-NEXT: %[[mask3:.*]] = and i56 undef, -1099511627776
; CHECK-NEXT: %[[insert3:.*]] = or i56 %[[mask3]], %[[ext3]]
; CHCEK-NOT: store
; CHCEK-NOT: load
%aiptr = bitcast [7 x i8]* %a to i56*
%ai = load i56* %aiptr
%ret = zext i56 %ai to i64
ret i64 %ret
; CHECK-NEXT: %[[ext4:.*]] = zext i16 %[[insert0]] to i56
; CHECK-NEXT: %[[shift4:.*]] = shl i56 %[[ext4]], 40
; CHECK-NEXT: %[[mask4:.*]] = and i56 %[[insert3]], 1099511627775
; CHECK-NEXT: %[[insert4:.*]] = or i56 %[[mask4]], %[[shift4]]
; CHECK-NEXT: %[[ret:.*]] = zext i56 %[[insert4]] to i64
; CHECK-NEXT: ret i64 %[[ret]]
}