Tim Northover 9d5d711f65 Split ELF relocation defintions into per-architecture .def files
This should allow the list of relocations for a particular
architecture to be kept in a single header rather than duplicated
whenever we need to enumerate all the relocations.

Patch by Will Newton.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222565 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-21 20:16:02 +00:00

1177 lines
50 KiB
C++

//===-- llvm/Support/ELF.h - ELF constants and data structures --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This header contains common, non-processor-specific data structures and
// constants for the ELF file format.
//
// The details of the ELF32 bits in this file are largely based on the Tool
// Interface Standard (TIS) Executable and Linking Format (ELF) Specification
// Version 1.2, May 1995. The ELF64 stuff is based on ELF-64 Object File Format
// Version 1.5, Draft 2, May 1998 as well as OpenBSD header files.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_ELF_H
#define LLVM_SUPPORT_ELF_H
#include "llvm/Support/Compiler.h"
#include "llvm/Support/DataTypes.h"
#include <cstring>
namespace llvm {
namespace ELF {
typedef uint32_t Elf32_Addr; // Program address
typedef uint32_t Elf32_Off; // File offset
typedef uint16_t Elf32_Half;
typedef uint32_t Elf32_Word;
typedef int32_t Elf32_Sword;
typedef uint64_t Elf64_Addr;
typedef uint64_t Elf64_Off;
typedef uint16_t Elf64_Half;
typedef uint32_t Elf64_Word;
typedef int32_t Elf64_Sword;
typedef uint64_t Elf64_Xword;
typedef int64_t Elf64_Sxword;
// Object file magic string.
static const char ElfMagic[] = { 0x7f, 'E', 'L', 'F', '\0' };
// e_ident size and indices.
enum {
EI_MAG0 = 0, // File identification index.
EI_MAG1 = 1, // File identification index.
EI_MAG2 = 2, // File identification index.
EI_MAG3 = 3, // File identification index.
EI_CLASS = 4, // File class.
EI_DATA = 5, // Data encoding.
EI_VERSION = 6, // File version.
EI_OSABI = 7, // OS/ABI identification.
EI_ABIVERSION = 8, // ABI version.
EI_PAD = 9, // Start of padding bytes.
EI_NIDENT = 16 // Number of bytes in e_ident.
};
struct Elf32_Ehdr {
unsigned char e_ident[EI_NIDENT]; // ELF Identification bytes
Elf32_Half e_type; // Type of file (see ET_* below)
Elf32_Half e_machine; // Required architecture for this file (see EM_*)
Elf32_Word e_version; // Must be equal to 1
Elf32_Addr e_entry; // Address to jump to in order to start program
Elf32_Off e_phoff; // Program header table's file offset, in bytes
Elf32_Off e_shoff; // Section header table's file offset, in bytes
Elf32_Word e_flags; // Processor-specific flags
Elf32_Half e_ehsize; // Size of ELF header, in bytes
Elf32_Half e_phentsize; // Size of an entry in the program header table
Elf32_Half e_phnum; // Number of entries in the program header table
Elf32_Half e_shentsize; // Size of an entry in the section header table
Elf32_Half e_shnum; // Number of entries in the section header table
Elf32_Half e_shstrndx; // Sect hdr table index of sect name string table
bool checkMagic() const {
return (memcmp(e_ident, ElfMagic, strlen(ElfMagic))) == 0;
}
unsigned char getFileClass() const { return e_ident[EI_CLASS]; }
unsigned char getDataEncoding() const { return e_ident[EI_DATA]; }
};
// 64-bit ELF header. Fields are the same as for ELF32, but with different
// types (see above).
struct Elf64_Ehdr {
unsigned char e_ident[EI_NIDENT];
Elf64_Half e_type;
Elf64_Half e_machine;
Elf64_Word e_version;
Elf64_Addr e_entry;
Elf64_Off e_phoff;
Elf64_Off e_shoff;
Elf64_Word e_flags;
Elf64_Half e_ehsize;
Elf64_Half e_phentsize;
Elf64_Half e_phnum;
Elf64_Half e_shentsize;
Elf64_Half e_shnum;
Elf64_Half e_shstrndx;
bool checkMagic() const {
return (memcmp(e_ident, ElfMagic, strlen(ElfMagic))) == 0;
}
unsigned char getFileClass() const { return e_ident[EI_CLASS]; }
unsigned char getDataEncoding() const { return e_ident[EI_DATA]; }
};
// File types
enum {
ET_NONE = 0, // No file type
ET_REL = 1, // Relocatable file
ET_EXEC = 2, // Executable file
ET_DYN = 3, // Shared object file
ET_CORE = 4, // Core file
ET_LOPROC = 0xff00, // Beginning of processor-specific codes
ET_HIPROC = 0xffff // Processor-specific
};
// Versioning
enum {
EV_NONE = 0,
EV_CURRENT = 1
};
// Machine architectures
// See current registered ELF machine architectures at:
// http://www.uxsglobal.com/developers/gabi/latest/ch4.eheader.html
enum {
EM_NONE = 0, // No machine
EM_M32 = 1, // AT&T WE 32100
EM_SPARC = 2, // SPARC
EM_386 = 3, // Intel 386
EM_68K = 4, // Motorola 68000
EM_88K = 5, // Motorola 88000
EM_486 = 6, // Intel 486 (deprecated)
EM_860 = 7, // Intel 80860
EM_MIPS = 8, // MIPS R3000
EM_S370 = 9, // IBM System/370
EM_MIPS_RS3_LE = 10, // MIPS RS3000 Little-endian
EM_PARISC = 15, // Hewlett-Packard PA-RISC
EM_VPP500 = 17, // Fujitsu VPP500
EM_SPARC32PLUS = 18, // Enhanced instruction set SPARC
EM_960 = 19, // Intel 80960
EM_PPC = 20, // PowerPC
EM_PPC64 = 21, // PowerPC64
EM_S390 = 22, // IBM System/390
EM_SPU = 23, // IBM SPU/SPC
EM_V800 = 36, // NEC V800
EM_FR20 = 37, // Fujitsu FR20
EM_RH32 = 38, // TRW RH-32
EM_RCE = 39, // Motorola RCE
EM_ARM = 40, // ARM
EM_ALPHA = 41, // DEC Alpha
EM_SH = 42, // Hitachi SH
EM_SPARCV9 = 43, // SPARC V9
EM_TRICORE = 44, // Siemens TriCore
EM_ARC = 45, // Argonaut RISC Core
EM_H8_300 = 46, // Hitachi H8/300
EM_H8_300H = 47, // Hitachi H8/300H
EM_H8S = 48, // Hitachi H8S
EM_H8_500 = 49, // Hitachi H8/500
EM_IA_64 = 50, // Intel IA-64 processor architecture
EM_MIPS_X = 51, // Stanford MIPS-X
EM_COLDFIRE = 52, // Motorola ColdFire
EM_68HC12 = 53, // Motorola M68HC12
EM_MMA = 54, // Fujitsu MMA Multimedia Accelerator
EM_PCP = 55, // Siemens PCP
EM_NCPU = 56, // Sony nCPU embedded RISC processor
EM_NDR1 = 57, // Denso NDR1 microprocessor
EM_STARCORE = 58, // Motorola Star*Core processor
EM_ME16 = 59, // Toyota ME16 processor
EM_ST100 = 60, // STMicroelectronics ST100 processor
EM_TINYJ = 61, // Advanced Logic Corp. TinyJ embedded processor family
EM_X86_64 = 62, // AMD x86-64 architecture
EM_PDSP = 63, // Sony DSP Processor
EM_PDP10 = 64, // Digital Equipment Corp. PDP-10
EM_PDP11 = 65, // Digital Equipment Corp. PDP-11
EM_FX66 = 66, // Siemens FX66 microcontroller
EM_ST9PLUS = 67, // STMicroelectronics ST9+ 8/16 bit microcontroller
EM_ST7 = 68, // STMicroelectronics ST7 8-bit microcontroller
EM_68HC16 = 69, // Motorola MC68HC16 Microcontroller
EM_68HC11 = 70, // Motorola MC68HC11 Microcontroller
EM_68HC08 = 71, // Motorola MC68HC08 Microcontroller
EM_68HC05 = 72, // Motorola MC68HC05 Microcontroller
EM_SVX = 73, // Silicon Graphics SVx
EM_ST19 = 74, // STMicroelectronics ST19 8-bit microcontroller
EM_VAX = 75, // Digital VAX
EM_CRIS = 76, // Axis Communications 32-bit embedded processor
EM_JAVELIN = 77, // Infineon Technologies 32-bit embedded processor
EM_FIREPATH = 78, // Element 14 64-bit DSP Processor
EM_ZSP = 79, // LSI Logic 16-bit DSP Processor
EM_MMIX = 80, // Donald Knuth's educational 64-bit processor
EM_HUANY = 81, // Harvard University machine-independent object files
EM_PRISM = 82, // SiTera Prism
EM_AVR = 83, // Atmel AVR 8-bit microcontroller
EM_FR30 = 84, // Fujitsu FR30
EM_D10V = 85, // Mitsubishi D10V
EM_D30V = 86, // Mitsubishi D30V
EM_V850 = 87, // NEC v850
EM_M32R = 88, // Mitsubishi M32R
EM_MN10300 = 89, // Matsushita MN10300
EM_MN10200 = 90, // Matsushita MN10200
EM_PJ = 91, // picoJava
EM_OPENRISC = 92, // OpenRISC 32-bit embedded processor
EM_ARC_COMPACT = 93, // ARC International ARCompact processor (old
// spelling/synonym: EM_ARC_A5)
EM_XTENSA = 94, // Tensilica Xtensa Architecture
EM_VIDEOCORE = 95, // Alphamosaic VideoCore processor
EM_TMM_GPP = 96, // Thompson Multimedia General Purpose Processor
EM_NS32K = 97, // National Semiconductor 32000 series
EM_TPC = 98, // Tenor Network TPC processor
EM_SNP1K = 99, // Trebia SNP 1000 processor
EM_ST200 = 100, // STMicroelectronics (www.st.com) ST200
EM_IP2K = 101, // Ubicom IP2xxx microcontroller family
EM_MAX = 102, // MAX Processor
EM_CR = 103, // National Semiconductor CompactRISC microprocessor
EM_F2MC16 = 104, // Fujitsu F2MC16
EM_MSP430 = 105, // Texas Instruments embedded microcontroller msp430
EM_BLACKFIN = 106, // Analog Devices Blackfin (DSP) processor
EM_SE_C33 = 107, // S1C33 Family of Seiko Epson processors
EM_SEP = 108, // Sharp embedded microprocessor
EM_ARCA = 109, // Arca RISC Microprocessor
EM_UNICORE = 110, // Microprocessor series from PKU-Unity Ltd. and MPRC
// of Peking University
EM_EXCESS = 111, // eXcess: 16/32/64-bit configurable embedded CPU
EM_DXP = 112, // Icera Semiconductor Inc. Deep Execution Processor
EM_ALTERA_NIOS2 = 113, // Altera Nios II soft-core processor
EM_CRX = 114, // National Semiconductor CompactRISC CRX
EM_XGATE = 115, // Motorola XGATE embedded processor
EM_C166 = 116, // Infineon C16x/XC16x processor
EM_M16C = 117, // Renesas M16C series microprocessors
EM_DSPIC30F = 118, // Microchip Technology dsPIC30F Digital Signal
// Controller
EM_CE = 119, // Freescale Communication Engine RISC core
EM_M32C = 120, // Renesas M32C series microprocessors
EM_TSK3000 = 131, // Altium TSK3000 core
EM_RS08 = 132, // Freescale RS08 embedded processor
EM_SHARC = 133, // Analog Devices SHARC family of 32-bit DSP
// processors
EM_ECOG2 = 134, // Cyan Technology eCOG2 microprocessor
EM_SCORE7 = 135, // Sunplus S+core7 RISC processor
EM_DSP24 = 136, // New Japan Radio (NJR) 24-bit DSP Processor
EM_VIDEOCORE3 = 137, // Broadcom VideoCore III processor
EM_LATTICEMICO32 = 138, // RISC processor for Lattice FPGA architecture
EM_SE_C17 = 139, // Seiko Epson C17 family
EM_TI_C6000 = 140, // The Texas Instruments TMS320C6000 DSP family
EM_TI_C2000 = 141, // The Texas Instruments TMS320C2000 DSP family
EM_TI_C5500 = 142, // The Texas Instruments TMS320C55x DSP family
EM_MMDSP_PLUS = 160, // STMicroelectronics 64bit VLIW Data Signal Processor
EM_CYPRESS_M8C = 161, // Cypress M8C microprocessor
EM_R32C = 162, // Renesas R32C series microprocessors
EM_TRIMEDIA = 163, // NXP Semiconductors TriMedia architecture family
EM_HEXAGON = 164, // Qualcomm Hexagon processor
EM_8051 = 165, // Intel 8051 and variants
EM_STXP7X = 166, // STMicroelectronics STxP7x family of configurable
// and extensible RISC processors
EM_NDS32 = 167, // Andes Technology compact code size embedded RISC
// processor family
EM_ECOG1 = 168, // Cyan Technology eCOG1X family
EM_ECOG1X = 168, // Cyan Technology eCOG1X family
EM_MAXQ30 = 169, // Dallas Semiconductor MAXQ30 Core Micro-controllers
EM_XIMO16 = 170, // New Japan Radio (NJR) 16-bit DSP Processor
EM_MANIK = 171, // M2000 Reconfigurable RISC Microprocessor
EM_CRAYNV2 = 172, // Cray Inc. NV2 vector architecture
EM_RX = 173, // Renesas RX family
EM_METAG = 174, // Imagination Technologies META processor
// architecture
EM_MCST_ELBRUS = 175, // MCST Elbrus general purpose hardware architecture
EM_ECOG16 = 176, // Cyan Technology eCOG16 family
EM_CR16 = 177, // National Semiconductor CompactRISC CR16 16-bit
// microprocessor
EM_ETPU = 178, // Freescale Extended Time Processing Unit
EM_SLE9X = 179, // Infineon Technologies SLE9X core
EM_L10M = 180, // Intel L10M
EM_K10M = 181, // Intel K10M
EM_AARCH64 = 183, // ARM AArch64
EM_AVR32 = 185, // Atmel Corporation 32-bit microprocessor family
EM_STM8 = 186, // STMicroeletronics STM8 8-bit microcontroller
EM_TILE64 = 187, // Tilera TILE64 multicore architecture family
EM_TILEPRO = 188, // Tilera TILEPro multicore architecture family
EM_CUDA = 190, // NVIDIA CUDA architecture
EM_TILEGX = 191, // Tilera TILE-Gx multicore architecture family
EM_CLOUDSHIELD = 192, // CloudShield architecture family
EM_COREA_1ST = 193, // KIPO-KAIST Core-A 1st generation processor family
EM_COREA_2ND = 194, // KIPO-KAIST Core-A 2nd generation processor family
EM_ARC_COMPACT2 = 195, // Synopsys ARCompact V2
EM_OPEN8 = 196, // Open8 8-bit RISC soft processor core
EM_RL78 = 197, // Renesas RL78 family
EM_VIDEOCORE5 = 198, // Broadcom VideoCore V processor
EM_78KOR = 199, // Renesas 78KOR family
EM_56800EX = 200, // Freescale 56800EX Digital Signal Controller (DSC)
EM_BA1 = 201, // Beyond BA1 CPU architecture
EM_BA2 = 202, // Beyond BA2 CPU architecture
EM_XCORE = 203, // XMOS xCORE processor family
EM_MCHP_PIC = 204, // Microchip 8-bit PIC(r) family
EM_INTEL205 = 205, // Reserved by Intel
EM_INTEL206 = 206, // Reserved by Intel
EM_INTEL207 = 207, // Reserved by Intel
EM_INTEL208 = 208, // Reserved by Intel
EM_INTEL209 = 209, // Reserved by Intel
EM_KM32 = 210, // KM211 KM32 32-bit processor
EM_KMX32 = 211, // KM211 KMX32 32-bit processor
EM_KMX16 = 212, // KM211 KMX16 16-bit processor
EM_KMX8 = 213, // KM211 KMX8 8-bit processor
EM_KVARC = 214, // KM211 KVARC processor
EM_CDP = 215, // Paneve CDP architecture family
EM_COGE = 216, // Cognitive Smart Memory Processor
EM_COOL = 217, // iCelero CoolEngine
EM_NORC = 218, // Nanoradio Optimized RISC
EM_CSR_KALIMBA = 219 // CSR Kalimba architecture family
};
// Object file classes.
enum {
ELFCLASSNONE = 0,
ELFCLASS32 = 1, // 32-bit object file
ELFCLASS64 = 2 // 64-bit object file
};
// Object file byte orderings.
enum {
ELFDATANONE = 0, // Invalid data encoding.
ELFDATA2LSB = 1, // Little-endian object file
ELFDATA2MSB = 2 // Big-endian object file
};
// OS ABI identification.
enum {
ELFOSABI_NONE = 0, // UNIX System V ABI
ELFOSABI_HPUX = 1, // HP-UX operating system
ELFOSABI_NETBSD = 2, // NetBSD
ELFOSABI_GNU = 3, // GNU/Linux
ELFOSABI_LINUX = 3, // Historical alias for ELFOSABI_GNU.
ELFOSABI_HURD = 4, // GNU/Hurd
ELFOSABI_SOLARIS = 6, // Solaris
ELFOSABI_AIX = 7, // AIX
ELFOSABI_IRIX = 8, // IRIX
ELFOSABI_FREEBSD = 9, // FreeBSD
ELFOSABI_TRU64 = 10, // TRU64 UNIX
ELFOSABI_MODESTO = 11, // Novell Modesto
ELFOSABI_OPENBSD = 12, // OpenBSD
ELFOSABI_OPENVMS = 13, // OpenVMS
ELFOSABI_NSK = 14, // Hewlett-Packard Non-Stop Kernel
ELFOSABI_AROS = 15, // AROS
ELFOSABI_FENIXOS = 16, // FenixOS
ELFOSABI_C6000_ELFABI = 64, // Bare-metal TMS320C6000
ELFOSABI_C6000_LINUX = 65, // Linux TMS320C6000
ELFOSABI_ARM = 97, // ARM
ELFOSABI_STANDALONE = 255 // Standalone (embedded) application
};
#define ELF_RELOC(name, value) name = value,
// X86_64 relocations.
enum {
#include "ELFRelocs/x86_64.def"
};
// i386 relocations.
enum {
#include "ELFRelocs/i386.def"
};
// ELF Relocation types for PPC32
enum {
#include "ELFRelocs/PowerPC.def"
};
// Specific e_flags for PPC64
enum {
// e_flags bits specifying ABI:
// 1 for original ABI using function descriptors,
// 2 for revised ABI without function descriptors,
// 0 for unspecified or not using any features affected by the differences.
EF_PPC64_ABI = 3
};
// Special values for the st_other field in the symbol table entry for PPC64.
enum {
STO_PPC64_LOCAL_BIT = 5,
STO_PPC64_LOCAL_MASK = (7 << STO_PPC64_LOCAL_BIT)
};
static inline int64_t
decodePPC64LocalEntryOffset(unsigned Other) {
unsigned Val = (Other & STO_PPC64_LOCAL_MASK) >> STO_PPC64_LOCAL_BIT;
return ((1 << Val) >> 2) << 2;
}
static inline unsigned
encodePPC64LocalEntryOffset(int64_t Offset) {
unsigned Val = (Offset >= 4 * 4
? (Offset >= 8 * 4
? (Offset >= 16 * 4 ? 6 : 5)
: 4)
: (Offset >= 2 * 4
? 3
: (Offset >= 1 * 4 ? 2 : 0)));
return Val << STO_PPC64_LOCAL_BIT;
}
// ELF Relocation types for PPC64
enum {
#include "ELFRelocs/PowerPC64.def"
};
// ELF Relocation types for AArch64
enum {
#include "ELFRelocs/AArch64.def"
};
// ARM Specific e_flags
enum : unsigned {
EF_ARM_SOFT_FLOAT = 0x00000200U,
EF_ARM_VFP_FLOAT = 0x00000400U,
EF_ARM_EABI_UNKNOWN = 0x00000000U,
EF_ARM_EABI_VER1 = 0x01000000U,
EF_ARM_EABI_VER2 = 0x02000000U,
EF_ARM_EABI_VER3 = 0x03000000U,
EF_ARM_EABI_VER4 = 0x04000000U,
EF_ARM_EABI_VER5 = 0x05000000U,
EF_ARM_EABIMASK = 0xFF000000U
};
// ELF Relocation types for ARM
enum {
#include "ELFRelocs/ARM.def"
};
// Mips Specific e_flags
enum : unsigned {
EF_MIPS_NOREORDER = 0x00000001, // Don't reorder instructions
EF_MIPS_PIC = 0x00000002, // Position independent code
EF_MIPS_CPIC = 0x00000004, // Call object with Position independent code
EF_MIPS_ABI2 = 0x00000020,
EF_MIPS_32BITMODE = 0x00000100,
EF_MIPS_NAN2008 = 0x00000400, // Uses IEE 754-2008 NaN encoding
// ABI flags
EF_MIPS_ABI_O32 = 0x00001000, // This file follows the first MIPS 32 bit ABI
EF_MIPS_ABI_O64 = 0x00002000, // O32 ABI extended for 64-bit architecture.
EF_MIPS_ABI_EABI32 = 0x00003000, // EABI in 32 bit mode.
EF_MIPS_ABI_EABI64 = 0x00004000, // EABI in 64 bit mode.
EF_MIPS_ABI = 0x0000f000, // Mask for selecting EF_MIPS_ABI_ variant.
//ARCH_ASE
EF_MIPS_MICROMIPS = 0x02000000, // microMIPS
EF_MIPS_ARCH_ASE_M16 =
0x04000000, // Has Mips-16 ISA extensions
//ARCH
EF_MIPS_ARCH_1 = 0x00000000, // MIPS1 instruction set
EF_MIPS_ARCH_2 = 0x10000000, // MIPS2 instruction set
EF_MIPS_ARCH_3 = 0x20000000, // MIPS3 instruction set
EF_MIPS_ARCH_4 = 0x30000000, // MIPS4 instruction set
EF_MIPS_ARCH_5 = 0x40000000, // MIPS5 instruction set
EF_MIPS_ARCH_32 = 0x50000000, // MIPS32 instruction set per linux not elf.h
EF_MIPS_ARCH_64 = 0x60000000, // MIPS64 instruction set per linux not elf.h
EF_MIPS_ARCH_32R2 = 0x70000000, // mips32r2
EF_MIPS_ARCH_64R2 = 0x80000000, // mips64r2
EF_MIPS_ARCH_32R6 = 0x90000000, // mips32r6
EF_MIPS_ARCH_64R6 = 0xa0000000, // mips64r6
EF_MIPS_ARCH = 0xf0000000 // Mask for applying EF_MIPS_ARCH_ variant
};
// ELF Relocation types for Mips
enum {
#include "ELFRelocs/Mips.def"
};
// Special values for the st_other field in the symbol table entry for MIPS.
enum {
STO_MIPS_OPTIONAL = 0x04, // Symbol whose definition is optional
STO_MIPS_PLT = 0x08, // PLT entry related dynamic table record
STO_MIPS_PIC = 0x20, // PIC func in an object mixes PIC/non-PIC
STO_MIPS_MICROMIPS = 0x80, // MIPS Specific ISA for MicroMips
STO_MIPS_MIPS16 = 0xf0 // MIPS Specific ISA for Mips16
};
// Hexagon Specific e_flags
// Release 5 ABI
enum {
// Object processor version flags, bits[3:0]
EF_HEXAGON_MACH_V2 = 0x00000001, // Hexagon V2
EF_HEXAGON_MACH_V3 = 0x00000002, // Hexagon V3
EF_HEXAGON_MACH_V4 = 0x00000003, // Hexagon V4
EF_HEXAGON_MACH_V5 = 0x00000004, // Hexagon V5
// Highest ISA version flags
EF_HEXAGON_ISA_MACH = 0x00000000, // Same as specified in bits[3:0]
// of e_flags
EF_HEXAGON_ISA_V2 = 0x00000010, // Hexagon V2 ISA
EF_HEXAGON_ISA_V3 = 0x00000020, // Hexagon V3 ISA
EF_HEXAGON_ISA_V4 = 0x00000030, // Hexagon V4 ISA
EF_HEXAGON_ISA_V5 = 0x00000040 // Hexagon V5 ISA
};
// Hexagon specific Section indexes for common small data
// Release 5 ABI
enum {
SHN_HEXAGON_SCOMMON = 0xff00, // Other access sizes
SHN_HEXAGON_SCOMMON_1 = 0xff01, // Byte-sized access
SHN_HEXAGON_SCOMMON_2 = 0xff02, // Half-word-sized access
SHN_HEXAGON_SCOMMON_4 = 0xff03, // Word-sized access
SHN_HEXAGON_SCOMMON_8 = 0xff04 // Double-word-size access
};
// ELF Relocation types for Hexagon
enum {
#include "ELFRelocs/Hexagon.def"
};
// ELF Relocation types for S390/zSeries
enum {
#include "ELFRelocs/SystemZ.def"
};
// ELF Relocation type for Sparc.
enum {
#include "ELFRelocs/Sparc.def"
};
#undef ELF_RELOC
// Section header.
struct Elf32_Shdr {
Elf32_Word sh_name; // Section name (index into string table)
Elf32_Word sh_type; // Section type (SHT_*)
Elf32_Word sh_flags; // Section flags (SHF_*)
Elf32_Addr sh_addr; // Address where section is to be loaded
Elf32_Off sh_offset; // File offset of section data, in bytes
Elf32_Word sh_size; // Size of section, in bytes
Elf32_Word sh_link; // Section type-specific header table index link
Elf32_Word sh_info; // Section type-specific extra information
Elf32_Word sh_addralign; // Section address alignment
Elf32_Word sh_entsize; // Size of records contained within the section
};
// Section header for ELF64 - same fields as ELF32, different types.
struct Elf64_Shdr {
Elf64_Word sh_name;
Elf64_Word sh_type;
Elf64_Xword sh_flags;
Elf64_Addr sh_addr;
Elf64_Off sh_offset;
Elf64_Xword sh_size;
Elf64_Word sh_link;
Elf64_Word sh_info;
Elf64_Xword sh_addralign;
Elf64_Xword sh_entsize;
};
// Special section indices.
enum {
SHN_UNDEF = 0, // Undefined, missing, irrelevant, or meaningless
SHN_LORESERVE = 0xff00, // Lowest reserved index
SHN_LOPROC = 0xff00, // Lowest processor-specific index
SHN_HIPROC = 0xff1f, // Highest processor-specific index
SHN_LOOS = 0xff20, // Lowest operating system-specific index
SHN_HIOS = 0xff3f, // Highest operating system-specific index
SHN_ABS = 0xfff1, // Symbol has absolute value; does not need relocation
SHN_COMMON = 0xfff2, // FORTRAN COMMON or C external global variables
SHN_XINDEX = 0xffff, // Mark that the index is >= SHN_LORESERVE
SHN_HIRESERVE = 0xffff // Highest reserved index
};
// Section types.
enum : unsigned {
SHT_NULL = 0, // No associated section (inactive entry).
SHT_PROGBITS = 1, // Program-defined contents.
SHT_SYMTAB = 2, // Symbol table.
SHT_STRTAB = 3, // String table.
SHT_RELA = 4, // Relocation entries; explicit addends.
SHT_HASH = 5, // Symbol hash table.
SHT_DYNAMIC = 6, // Information for dynamic linking.
SHT_NOTE = 7, // Information about the file.
SHT_NOBITS = 8, // Data occupies no space in the file.
SHT_REL = 9, // Relocation entries; no explicit addends.
SHT_SHLIB = 10, // Reserved.
SHT_DYNSYM = 11, // Symbol table.
SHT_INIT_ARRAY = 14, // Pointers to initialization functions.
SHT_FINI_ARRAY = 15, // Pointers to termination functions.
SHT_PREINIT_ARRAY = 16, // Pointers to pre-init functions.
SHT_GROUP = 17, // Section group.
SHT_SYMTAB_SHNDX = 18, // Indices for SHN_XINDEX entries.
SHT_LOOS = 0x60000000, // Lowest operating system-specific type.
SHT_GNU_ATTRIBUTES= 0x6ffffff5, // Object attributes.
SHT_GNU_HASH = 0x6ffffff6, // GNU-style hash table.
SHT_GNU_verdef = 0x6ffffffd, // GNU version definitions.
SHT_GNU_verneed = 0x6ffffffe, // GNU version references.
SHT_GNU_versym = 0x6fffffff, // GNU symbol versions table.
SHT_HIOS = 0x6fffffff, // Highest operating system-specific type.
SHT_LOPROC = 0x70000000, // Lowest processor arch-specific type.
// Fixme: All this is duplicated in MCSectionELF. Why??
// Exception Index table
SHT_ARM_EXIDX = 0x70000001U,
// BPABI DLL dynamic linking pre-emption map
SHT_ARM_PREEMPTMAP = 0x70000002U,
// Object file compatibility attributes
SHT_ARM_ATTRIBUTES = 0x70000003U,
SHT_ARM_DEBUGOVERLAY = 0x70000004U,
SHT_ARM_OVERLAYSECTION = 0x70000005U,
SHT_HEX_ORDERED = 0x70000000, // Link editor is to sort the entries in
// this section based on their sizes
SHT_X86_64_UNWIND = 0x70000001, // Unwind information
SHT_MIPS_REGINFO = 0x70000006, // Register usage information
SHT_MIPS_OPTIONS = 0x7000000d, // General options
SHT_MIPS_ABIFLAGS = 0x7000002a, // ABI information.
SHT_HIPROC = 0x7fffffff, // Highest processor arch-specific type.
SHT_LOUSER = 0x80000000, // Lowest type reserved for applications.
SHT_HIUSER = 0xffffffff // Highest type reserved for applications.
};
// Section flags.
enum : unsigned {
// Section data should be writable during execution.
SHF_WRITE = 0x1,
// Section occupies memory during program execution.
SHF_ALLOC = 0x2,
// Section contains executable machine instructions.
SHF_EXECINSTR = 0x4,
// The data in this section may be merged.
SHF_MERGE = 0x10,
// The data in this section is null-terminated strings.
SHF_STRINGS = 0x20,
// A field in this section holds a section header table index.
SHF_INFO_LINK = 0x40U,
// Adds special ordering requirements for link editors.
SHF_LINK_ORDER = 0x80U,
// This section requires special OS-specific processing to avoid incorrect
// behavior.
SHF_OS_NONCONFORMING = 0x100U,
// This section is a member of a section group.
SHF_GROUP = 0x200U,
// This section holds Thread-Local Storage.
SHF_TLS = 0x400U,
// This section is excluded from the final executable or shared library.
SHF_EXCLUDE = 0x80000000U,
// Start of target-specific flags.
/// XCORE_SHF_CP_SECTION - All sections with the "c" flag are grouped
/// together by the linker to form the constant pool and the cp register is
/// set to the start of the constant pool by the boot code.
XCORE_SHF_CP_SECTION = 0x800U,
/// XCORE_SHF_DP_SECTION - All sections with the "d" flag are grouped
/// together by the linker to form the data section and the dp register is
/// set to the start of the section by the boot code.
XCORE_SHF_DP_SECTION = 0x1000U,
SHF_MASKOS = 0x0ff00000,
// Bits indicating processor-specific flags.
SHF_MASKPROC = 0xf0000000,
// If an object file section does not have this flag set, then it may not hold
// more than 2GB and can be freely referred to in objects using smaller code
// models. Otherwise, only objects using larger code models can refer to them.
// For example, a medium code model object can refer to data in a section that
// sets this flag besides being able to refer to data in a section that does
// not set it; likewise, a small code model object can refer only to code in a
// section that does not set this flag.
SHF_X86_64_LARGE = 0x10000000,
// All sections with the GPREL flag are grouped into a global data area
// for faster accesses
SHF_HEX_GPREL = 0x10000000,
// Section contains text/data which may be replicated in other sections.
// Linker must retain only one copy.
SHF_MIPS_NODUPES = 0x01000000,
// Linker must generate implicit hidden weak names.
SHF_MIPS_NAMES = 0x02000000,
// Section data local to process.
SHF_MIPS_LOCAL = 0x04000000,
// Do not strip this section.
SHF_MIPS_NOSTRIP = 0x08000000,
// Section must be part of global data area.
SHF_MIPS_GPREL = 0x10000000,
// This section should be merged.
SHF_MIPS_MERGE = 0x20000000,
// Address size to be inferred from section entry size.
SHF_MIPS_ADDR = 0x40000000,
// Section data is string data by default.
SHF_MIPS_STRING = 0x80000000
};
// Section Group Flags
enum : unsigned {
GRP_COMDAT = 0x1,
GRP_MASKOS = 0x0ff00000,
GRP_MASKPROC = 0xf0000000
};
// Symbol table entries for ELF32.
struct Elf32_Sym {
Elf32_Word st_name; // Symbol name (index into string table)
Elf32_Addr st_value; // Value or address associated with the symbol
Elf32_Word st_size; // Size of the symbol
unsigned char st_info; // Symbol's type and binding attributes
unsigned char st_other; // Must be zero; reserved
Elf32_Half st_shndx; // Which section (header table index) it's defined in
// These accessors and mutators correspond to the ELF32_ST_BIND,
// ELF32_ST_TYPE, and ELF32_ST_INFO macros defined in the ELF specification:
unsigned char getBinding() const { return st_info >> 4; }
unsigned char getType() const { return st_info & 0x0f; }
void setBinding(unsigned char b) { setBindingAndType(b, getType()); }
void setType(unsigned char t) { setBindingAndType(getBinding(), t); }
void setBindingAndType(unsigned char b, unsigned char t) {
st_info = (b << 4) + (t & 0x0f);
}
};
// Symbol table entries for ELF64.
struct Elf64_Sym {
Elf64_Word st_name; // Symbol name (index into string table)
unsigned char st_info; // Symbol's type and binding attributes
unsigned char st_other; // Must be zero; reserved
Elf64_Half st_shndx; // Which section (header tbl index) it's defined in
Elf64_Addr st_value; // Value or address associated with the symbol
Elf64_Xword st_size; // Size of the symbol
// These accessors and mutators are identical to those defined for ELF32
// symbol table entries.
unsigned char getBinding() const { return st_info >> 4; }
unsigned char getType() const { return st_info & 0x0f; }
void setBinding(unsigned char b) { setBindingAndType(b, getType()); }
void setType(unsigned char t) { setBindingAndType(getBinding(), t); }
void setBindingAndType(unsigned char b, unsigned char t) {
st_info = (b << 4) + (t & 0x0f);
}
};
// The size (in bytes) of symbol table entries.
enum {
SYMENTRY_SIZE32 = 16, // 32-bit symbol entry size
SYMENTRY_SIZE64 = 24 // 64-bit symbol entry size.
};
// Symbol bindings.
enum {
STB_LOCAL = 0, // Local symbol, not visible outside obj file containing def
STB_GLOBAL = 1, // Global symbol, visible to all object files being combined
STB_WEAK = 2, // Weak symbol, like global but lower-precedence
STB_LOOS = 10, // Lowest operating system-specific binding type
STB_HIOS = 12, // Highest operating system-specific binding type
STB_LOPROC = 13, // Lowest processor-specific binding type
STB_HIPROC = 15 // Highest processor-specific binding type
};
// Symbol types.
enum {
STT_NOTYPE = 0, // Symbol's type is not specified
STT_OBJECT = 1, // Symbol is a data object (variable, array, etc.)
STT_FUNC = 2, // Symbol is executable code (function, etc.)
STT_SECTION = 3, // Symbol refers to a section
STT_FILE = 4, // Local, absolute symbol that refers to a file
STT_COMMON = 5, // An uninitialized common block
STT_TLS = 6, // Thread local data object
STT_LOOS = 7, // Lowest operating system-specific symbol type
STT_HIOS = 8, // Highest operating system-specific symbol type
STT_GNU_IFUNC = 10, // GNU indirect function
STT_LOPROC = 13, // Lowest processor-specific symbol type
STT_HIPROC = 15 // Highest processor-specific symbol type
};
enum {
STV_DEFAULT = 0, // Visibility is specified by binding type
STV_INTERNAL = 1, // Defined by processor supplements
STV_HIDDEN = 2, // Not visible to other components
STV_PROTECTED = 3 // Visible in other components but not preemptable
};
// Symbol number.
enum {
STN_UNDEF = 0
};
// Relocation entry, without explicit addend.
struct Elf32_Rel {
Elf32_Addr r_offset; // Location (file byte offset, or program virtual addr)
Elf32_Word r_info; // Symbol table index and type of relocation to apply
// These accessors and mutators correspond to the ELF32_R_SYM, ELF32_R_TYPE,
// and ELF32_R_INFO macros defined in the ELF specification:
Elf32_Word getSymbol() const { return (r_info >> 8); }
unsigned char getType() const { return (unsigned char) (r_info & 0x0ff); }
void setSymbol(Elf32_Word s) { setSymbolAndType(s, getType()); }
void setType(unsigned char t) { setSymbolAndType(getSymbol(), t); }
void setSymbolAndType(Elf32_Word s, unsigned char t) {
r_info = (s << 8) + t;
}
};
// Relocation entry with explicit addend.
struct Elf32_Rela {
Elf32_Addr r_offset; // Location (file byte offset, or program virtual addr)
Elf32_Word r_info; // Symbol table index and type of relocation to apply
Elf32_Sword r_addend; // Compute value for relocatable field by adding this
// These accessors and mutators correspond to the ELF32_R_SYM, ELF32_R_TYPE,
// and ELF32_R_INFO macros defined in the ELF specification:
Elf32_Word getSymbol() const { return (r_info >> 8); }
unsigned char getType() const { return (unsigned char) (r_info & 0x0ff); }
void setSymbol(Elf32_Word s) { setSymbolAndType(s, getType()); }
void setType(unsigned char t) { setSymbolAndType(getSymbol(), t); }
void setSymbolAndType(Elf32_Word s, unsigned char t) {
r_info = (s << 8) + t;
}
};
// Relocation entry, without explicit addend.
struct Elf64_Rel {
Elf64_Addr r_offset; // Location (file byte offset, or program virtual addr).
Elf64_Xword r_info; // Symbol table index and type of relocation to apply.
// These accessors and mutators correspond to the ELF64_R_SYM, ELF64_R_TYPE,
// and ELF64_R_INFO macros defined in the ELF specification:
Elf64_Word getSymbol() const { return (r_info >> 32); }
Elf64_Word getType() const {
return (Elf64_Word) (r_info & 0xffffffffL);
}
void setSymbol(Elf64_Word s) { setSymbolAndType(s, getType()); }
void setType(Elf64_Word t) { setSymbolAndType(getSymbol(), t); }
void setSymbolAndType(Elf64_Word s, Elf64_Word t) {
r_info = ((Elf64_Xword)s << 32) + (t&0xffffffffL);
}
};
// Relocation entry with explicit addend.
struct Elf64_Rela {
Elf64_Addr r_offset; // Location (file byte offset, or program virtual addr).
Elf64_Xword r_info; // Symbol table index and type of relocation to apply.
Elf64_Sxword r_addend; // Compute value for relocatable field by adding this.
// These accessors and mutators correspond to the ELF64_R_SYM, ELF64_R_TYPE,
// and ELF64_R_INFO macros defined in the ELF specification:
Elf64_Word getSymbol() const { return (r_info >> 32); }
Elf64_Word getType() const {
return (Elf64_Word) (r_info & 0xffffffffL);
}
void setSymbol(Elf64_Word s) { setSymbolAndType(s, getType()); }
void setType(Elf64_Word t) { setSymbolAndType(getSymbol(), t); }
void setSymbolAndType(Elf64_Word s, Elf64_Word t) {
r_info = ((Elf64_Xword)s << 32) + (t&0xffffffffL);
}
};
// Program header for ELF32.
struct Elf32_Phdr {
Elf32_Word p_type; // Type of segment
Elf32_Off p_offset; // File offset where segment is located, in bytes
Elf32_Addr p_vaddr; // Virtual address of beginning of segment
Elf32_Addr p_paddr; // Physical address of beginning of segment (OS-specific)
Elf32_Word p_filesz; // Num. of bytes in file image of segment (may be zero)
Elf32_Word p_memsz; // Num. of bytes in mem image of segment (may be zero)
Elf32_Word p_flags; // Segment flags
Elf32_Word p_align; // Segment alignment constraint
};
// Program header for ELF64.
struct Elf64_Phdr {
Elf64_Word p_type; // Type of segment
Elf64_Word p_flags; // Segment flags
Elf64_Off p_offset; // File offset where segment is located, in bytes
Elf64_Addr p_vaddr; // Virtual address of beginning of segment
Elf64_Addr p_paddr; // Physical addr of beginning of segment (OS-specific)
Elf64_Xword p_filesz; // Num. of bytes in file image of segment (may be zero)
Elf64_Xword p_memsz; // Num. of bytes in mem image of segment (may be zero)
Elf64_Xword p_align; // Segment alignment constraint
};
// Segment types.
enum {
PT_NULL = 0, // Unused segment.
PT_LOAD = 1, // Loadable segment.
PT_DYNAMIC = 2, // Dynamic linking information.
PT_INTERP = 3, // Interpreter pathname.
PT_NOTE = 4, // Auxiliary information.
PT_SHLIB = 5, // Reserved.
PT_PHDR = 6, // The program header table itself.
PT_TLS = 7, // The thread-local storage template.
PT_LOOS = 0x60000000, // Lowest operating system-specific pt entry type.
PT_HIOS = 0x6fffffff, // Highest operating system-specific pt entry type.
PT_LOPROC = 0x70000000, // Lowest processor-specific program hdr entry type.
PT_HIPROC = 0x7fffffff, // Highest processor-specific program hdr entry type.
// x86-64 program header types.
// These all contain stack unwind tables.
PT_GNU_EH_FRAME = 0x6474e550,
PT_SUNW_EH_FRAME = 0x6474e550,
PT_SUNW_UNWIND = 0x6464e550,
PT_GNU_STACK = 0x6474e551, // Indicates stack executability.
PT_GNU_RELRO = 0x6474e552, // Read-only after relocation.
// ARM program header types.
PT_ARM_ARCHEXT = 0x70000000, // Platform architecture compatibility info
// These all contain stack unwind tables.
PT_ARM_EXIDX = 0x70000001,
PT_ARM_UNWIND = 0x70000001,
// MIPS program header types.
PT_MIPS_REGINFO = 0x70000000, // Register usage information.
PT_MIPS_RTPROC = 0x70000001, // Runtime procedure table.
PT_MIPS_OPTIONS = 0x70000002, // Options segment.
PT_MIPS_ABIFLAGS = 0x70000003 // Abiflags segment.
};
// Segment flag bits.
enum : unsigned {
PF_X = 1, // Execute
PF_W = 2, // Write
PF_R = 4, // Read
PF_MASKOS = 0x0ff00000,// Bits for operating system-specific semantics.
PF_MASKPROC = 0xf0000000 // Bits for processor-specific semantics.
};
// Dynamic table entry for ELF32.
struct Elf32_Dyn
{
Elf32_Sword d_tag; // Type of dynamic table entry.
union
{
Elf32_Word d_val; // Integer value of entry.
Elf32_Addr d_ptr; // Pointer value of entry.
} d_un;
};
// Dynamic table entry for ELF64.
struct Elf64_Dyn
{
Elf64_Sxword d_tag; // Type of dynamic table entry.
union
{
Elf64_Xword d_val; // Integer value of entry.
Elf64_Addr d_ptr; // Pointer value of entry.
} d_un;
};
// Dynamic table entry tags.
enum {
DT_NULL = 0, // Marks end of dynamic array.
DT_NEEDED = 1, // String table offset of needed library.
DT_PLTRELSZ = 2, // Size of relocation entries in PLT.
DT_PLTGOT = 3, // Address associated with linkage table.
DT_HASH = 4, // Address of symbolic hash table.
DT_STRTAB = 5, // Address of dynamic string table.
DT_SYMTAB = 6, // Address of dynamic symbol table.
DT_RELA = 7, // Address of relocation table (Rela entries).
DT_RELASZ = 8, // Size of Rela relocation table.
DT_RELAENT = 9, // Size of a Rela relocation entry.
DT_STRSZ = 10, // Total size of the string table.
DT_SYMENT = 11, // Size of a symbol table entry.
DT_INIT = 12, // Address of initialization function.
DT_FINI = 13, // Address of termination function.
DT_SONAME = 14, // String table offset of a shared objects name.
DT_RPATH = 15, // String table offset of library search path.
DT_SYMBOLIC = 16, // Changes symbol resolution algorithm.
DT_REL = 17, // Address of relocation table (Rel entries).
DT_RELSZ = 18, // Size of Rel relocation table.
DT_RELENT = 19, // Size of a Rel relocation entry.
DT_PLTREL = 20, // Type of relocation entry used for linking.
DT_DEBUG = 21, // Reserved for debugger.
DT_TEXTREL = 22, // Relocations exist for non-writable segments.
DT_JMPREL = 23, // Address of relocations associated with PLT.
DT_BIND_NOW = 24, // Process all relocations before execution.
DT_INIT_ARRAY = 25, // Pointer to array of initialization functions.
DT_FINI_ARRAY = 26, // Pointer to array of termination functions.
DT_INIT_ARRAYSZ = 27, // Size of DT_INIT_ARRAY.
DT_FINI_ARRAYSZ = 28, // Size of DT_FINI_ARRAY.
DT_RUNPATH = 29, // String table offset of lib search path.
DT_FLAGS = 30, // Flags.
DT_ENCODING = 32, // Values from here to DT_LOOS follow the rules
// for the interpretation of the d_un union.
DT_PREINIT_ARRAY = 32, // Pointer to array of preinit functions.
DT_PREINIT_ARRAYSZ = 33, // Size of the DT_PREINIT_ARRAY array.
DT_LOOS = 0x60000000, // Start of environment specific tags.
DT_HIOS = 0x6FFFFFFF, // End of environment specific tags.
DT_LOPROC = 0x70000000, // Start of processor specific tags.
DT_HIPROC = 0x7FFFFFFF, // End of processor specific tags.
DT_GNU_HASH = 0x6FFFFEF5, // Reference to the GNU hash table.
DT_RELACOUNT = 0x6FFFFFF9, // ELF32_Rela count.
DT_RELCOUNT = 0x6FFFFFFA, // ELF32_Rel count.
DT_FLAGS_1 = 0X6FFFFFFB, // Flags_1.
DT_VERSYM = 0x6FFFFFF0, // The address of .gnu.version section.
DT_VERDEF = 0X6FFFFFFC, // The address of the version definition table.
DT_VERDEFNUM = 0X6FFFFFFD, // The number of entries in DT_VERDEF.
DT_VERNEED = 0X6FFFFFFE, // The address of the version Dependency table.
DT_VERNEEDNUM = 0X6FFFFFFF, // The number of entries in DT_VERNEED.
// Mips specific dynamic table entry tags.
DT_MIPS_RLD_VERSION = 0x70000001, // 32 bit version number for runtime
// linker interface.
DT_MIPS_TIME_STAMP = 0x70000002, // Time stamp.
DT_MIPS_ICHECKSUM = 0x70000003, // Checksum of external strings
// and common sizes.
DT_MIPS_IVERSION = 0x70000004, // Index of version string
// in string table.
DT_MIPS_FLAGS = 0x70000005, // 32 bits of flags.
DT_MIPS_BASE_ADDRESS = 0x70000006, // Base address of the segment.
DT_MIPS_MSYM = 0x70000007, // Address of .msym section.
DT_MIPS_CONFLICT = 0x70000008, // Address of .conflict section.
DT_MIPS_LIBLIST = 0x70000009, // Address of .liblist section.
DT_MIPS_LOCAL_GOTNO = 0x7000000a, // Number of local global offset
// table entries.
DT_MIPS_CONFLICTNO = 0x7000000b, // Number of entries
// in the .conflict section.
DT_MIPS_LIBLISTNO = 0x70000010, // Number of entries
// in the .liblist section.
DT_MIPS_SYMTABNO = 0x70000011, // Number of entries
// in the .dynsym section.
DT_MIPS_UNREFEXTNO = 0x70000012, // Index of first external dynamic symbol
// not referenced locally.
DT_MIPS_GOTSYM = 0x70000013, // Index of first dynamic symbol
// in global offset table.
DT_MIPS_HIPAGENO = 0x70000014, // Number of page table entries
// in global offset table.
DT_MIPS_RLD_MAP = 0x70000016, // Address of run time loader map,
// used for debugging.
DT_MIPS_DELTA_CLASS = 0x70000017, // Delta C++ class definition.
DT_MIPS_DELTA_CLASS_NO = 0x70000018, // Number of entries
// in DT_MIPS_DELTA_CLASS.
DT_MIPS_DELTA_INSTANCE = 0x70000019, // Delta C++ class instances.
DT_MIPS_DELTA_INSTANCE_NO = 0x7000001A, // Number of entries
// in DT_MIPS_DELTA_INSTANCE.
DT_MIPS_DELTA_RELOC = 0x7000001B, // Delta relocations.
DT_MIPS_DELTA_RELOC_NO = 0x7000001C, // Number of entries
// in DT_MIPS_DELTA_RELOC.
DT_MIPS_DELTA_SYM = 0x7000001D, // Delta symbols that Delta
// relocations refer to.
DT_MIPS_DELTA_SYM_NO = 0x7000001E, // Number of entries
// in DT_MIPS_DELTA_SYM.
DT_MIPS_DELTA_CLASSSYM = 0x70000020, // Delta symbols that hold
// class declarations.
DT_MIPS_DELTA_CLASSSYM_NO = 0x70000021, // Number of entries
// in DT_MIPS_DELTA_CLASSSYM.
DT_MIPS_CXX_FLAGS = 0x70000022, // Flags indicating information
// about C++ flavor.
DT_MIPS_PIXIE_INIT = 0x70000023, // Pixie information.
DT_MIPS_SYMBOL_LIB = 0x70000024, // Address of .MIPS.symlib
DT_MIPS_LOCALPAGE_GOTIDX = 0x70000025, // The GOT index of the first PTE
// for a segment
DT_MIPS_LOCAL_GOTIDX = 0x70000026, // The GOT index of the first PTE
// for a local symbol
DT_MIPS_HIDDEN_GOTIDX = 0x70000027, // The GOT index of the first PTE
// for a hidden symbol
DT_MIPS_PROTECTED_GOTIDX = 0x70000028, // The GOT index of the first PTE
// for a protected symbol
DT_MIPS_OPTIONS = 0x70000029, // Address of `.MIPS.options'.
DT_MIPS_INTERFACE = 0x7000002A, // Address of `.interface'.
DT_MIPS_DYNSTR_ALIGN = 0x7000002B, // Unknown.
DT_MIPS_INTERFACE_SIZE = 0x7000002C, // Size of the .interface section.
DT_MIPS_RLD_TEXT_RESOLVE_ADDR = 0x7000002D, // Size of rld_text_resolve
// function stored in the GOT.
DT_MIPS_PERF_SUFFIX = 0x7000002E, // Default suffix of DSO to be added
// by rld on dlopen() calls.
DT_MIPS_COMPACT_SIZE = 0x7000002F, // Size of compact relocation
// section (O32).
DT_MIPS_GP_VALUE = 0x70000030, // GP value for auxiliary GOTs.
DT_MIPS_AUX_DYNAMIC = 0x70000031, // Address of auxiliary .dynamic.
DT_MIPS_PLTGOT = 0x70000032, // Address of the base of the PLTGOT.
DT_MIPS_RWPLT = 0x70000034 // Points to the base
// of a writable PLT.
};
// DT_FLAGS values.
enum {
DF_ORIGIN = 0x01, // The object may reference $ORIGIN.
DF_SYMBOLIC = 0x02, // Search the shared lib before searching the exe.
DF_TEXTREL = 0x04, // Relocations may modify a non-writable segment.
DF_BIND_NOW = 0x08, // Process all relocations on load.
DF_STATIC_TLS = 0x10 // Reject attempts to load dynamically.
};
// State flags selectable in the `d_un.d_val' element of the DT_FLAGS_1 entry.
enum {
DF_1_NOW = 0x00000001, // Set RTLD_NOW for this object.
DF_1_GLOBAL = 0x00000002, // Set RTLD_GLOBAL for this object.
DF_1_GROUP = 0x00000004, // Set RTLD_GROUP for this object.
DF_1_NODELETE = 0x00000008, // Set RTLD_NODELETE for this object.
DF_1_LOADFLTR = 0x00000010, // Trigger filtee loading at runtime.
DF_1_INITFIRST = 0x00000020, // Set RTLD_INITFIRST for this object.
DF_1_NOOPEN = 0x00000040, // Set RTLD_NOOPEN for this object.
DF_1_ORIGIN = 0x00000080, // $ORIGIN must be handled.
DF_1_DIRECT = 0x00000100, // Direct binding enabled.
DF_1_TRANS = 0x00000200,
DF_1_INTERPOSE = 0x00000400, // Object is used to interpose.
DF_1_NODEFLIB = 0x00000800, // Ignore default lib search path.
DF_1_NODUMP = 0x00001000, // Object can't be dldump'ed.
DF_1_CONFALT = 0x00002000, // Configuration alternative created.
DF_1_ENDFILTEE = 0x00004000, // Filtee terminates filters search.
DF_1_DISPRELDNE = 0x00008000, // Disp reloc applied at build time.
DF_1_DISPRELPND = 0x00010000 // Disp reloc applied at run-time.
};
// DT_MIPS_FLAGS values.
enum {
RHF_NONE = 0x00000000, // No flags.
RHF_QUICKSTART = 0x00000001, // Uses shortcut pointers.
RHF_NOTPOT = 0x00000002, // Hash size is not a power of two.
RHS_NO_LIBRARY_REPLACEMENT = 0x00000004, // Ignore LD_LIBRARY_PATH.
RHF_NO_MOVE = 0x00000008, // DSO address may not be relocated.
RHF_SGI_ONLY = 0x00000010, // SGI specific features.
RHF_GUARANTEE_INIT = 0x00000020, // Guarantee that .init will finish
// executing before any non-init
// code in DSO is called.
RHF_DELTA_C_PLUS_PLUS = 0x00000040, // Contains Delta C++ code.
RHF_GUARANTEE_START_INIT = 0x00000080, // Guarantee that .init will start
// executing before any non-init
// code in DSO is called.
RHF_PIXIE = 0x00000100, // Generated by pixie.
RHF_DEFAULT_DELAY_LOAD = 0x00000200, // Delay-load DSO by default.
RHF_REQUICKSTART = 0x00000400, // Object may be requickstarted
RHF_REQUICKSTARTED = 0x00000800, // Object has been requickstarted
RHF_CORD = 0x00001000, // Generated by cord.
RHF_NO_UNRES_UNDEF = 0x00002000, // Object contains no unresolved
// undef symbols.
RHF_RLD_ORDER_SAFE = 0x00004000 // Symbol table is in a safe order.
};
// ElfXX_VerDef structure version (GNU versioning)
enum {
VER_DEF_NONE = 0,
VER_DEF_CURRENT = 1
};
// VerDef Flags (ElfXX_VerDef::vd_flags)
enum {
VER_FLG_BASE = 0x1,
VER_FLG_WEAK = 0x2,
VER_FLG_INFO = 0x4
};
// Special constants for the version table. (SHT_GNU_versym/.gnu.version)
enum {
VER_NDX_LOCAL = 0, // Unversioned local symbol
VER_NDX_GLOBAL = 1, // Unversioned global symbol
VERSYM_VERSION = 0x7fff, // Version Index mask
VERSYM_HIDDEN = 0x8000 // Hidden bit (non-default version)
};
// ElfXX_VerNeed structure version (GNU versioning)
enum {
VER_NEED_NONE = 0,
VER_NEED_CURRENT = 1
};
} // end namespace ELF
} // end namespace llvm
#endif