llvm-6502/lib/CodeGen/SelectionDAG/ScheduleDAGFast.cpp
Dan Gohman 086ec9976f Replace the LiveRegs SmallSet with a simple counter that keeps
track of the number of live registers, which is all the set was
being used for.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@56498 91177308-0d34-0410-b5e6-96231b3b80d8
2008-09-23 18:50:48 +00:00

658 lines
22 KiB
C++

//===----- ScheduleDAGFast.cpp - Fast poor list scheduler -----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This implements a fast scheduler.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "pre-RA-sched"
#include "llvm/CodeGen/ScheduleDAG.h"
#include "llvm/CodeGen/SchedulerRegistry.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Compiler.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/CommandLine.h"
using namespace llvm;
STATISTIC(NumUnfolds, "Number of nodes unfolded");
STATISTIC(NumDups, "Number of duplicated nodes");
STATISTIC(NumCCCopies, "Number of cross class copies");
static RegisterScheduler
fastDAGScheduler("fast", " Fast suboptimal list scheduling",
createFastDAGScheduler);
namespace {
/// FastPriorityQueue - A degenerate priority queue that considers
/// all nodes to have the same priority.
///
struct VISIBILITY_HIDDEN FastPriorityQueue {
SmallVector<SUnit *, 16> Queue;
bool empty() const { return Queue.empty(); }
void push(SUnit *U) {
Queue.push_back(U);
}
SUnit *pop() {
if (empty()) return NULL;
SUnit *V = Queue.back();
Queue.pop_back();
return V;
}
};
//===----------------------------------------------------------------------===//
/// ScheduleDAGFast - The actual "fast" list scheduler implementation.
///
class VISIBILITY_HIDDEN ScheduleDAGFast : public ScheduleDAG {
private:
/// AvailableQueue - The priority queue to use for the available SUnits.
FastPriorityQueue AvailableQueue;
/// LiveRegDefs - A set of physical registers and their definition
/// that are "live". These nodes must be scheduled before any other nodes that
/// modifies the registers can be scheduled.
unsigned NumLiveRegs;
std::vector<SUnit*> LiveRegDefs;
std::vector<unsigned> LiveRegCycles;
public:
ScheduleDAGFast(SelectionDAG &dag, MachineBasicBlock *bb,
const TargetMachine &tm)
: ScheduleDAG(dag, bb, tm) {}
void Schedule();
/// AddPred - This adds the specified node X as a predecessor of
/// the current node Y if not already.
/// This returns true if this is a new predecessor.
bool AddPred(SUnit *Y, SUnit *X, bool isCtrl, bool isSpecial,
unsigned PhyReg = 0, int Cost = 1);
/// RemovePred - This removes the specified node N from the predecessors of
/// the current node M.
bool RemovePred(SUnit *M, SUnit *N, bool isCtrl, bool isSpecial);
private:
void ReleasePred(SUnit*, bool, unsigned);
void ScheduleNodeBottomUp(SUnit*, unsigned);
SUnit *CopyAndMoveSuccessors(SUnit*);
void InsertCCCopiesAndMoveSuccs(SUnit*, unsigned,
const TargetRegisterClass*,
const TargetRegisterClass*,
SmallVector<SUnit*, 2>&);
bool DelayForLiveRegsBottomUp(SUnit*, SmallVector<unsigned, 4>&);
void ListScheduleBottomUp();
/// CreateNewSUnit - Creates a new SUnit and returns a pointer to it.
SUnit *CreateNewSUnit(SDNode *N) {
SUnit *NewNode = NewSUnit(N);
return NewNode;
}
/// CreateClone - Creates a new SUnit from an existing one.
SUnit *CreateClone(SUnit *N) {
SUnit *NewNode = Clone(N);
return NewNode;
}
};
} // end anonymous namespace
/// Schedule - Schedule the DAG using list scheduling.
void ScheduleDAGFast::Schedule() {
DOUT << "********** List Scheduling **********\n";
NumLiveRegs = 0;
LiveRegDefs.resize(TRI->getNumRegs(), NULL);
LiveRegCycles.resize(TRI->getNumRegs(), 0);
// Build scheduling units.
BuildSchedUnits();
DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
SUnits[su].dumpAll(&DAG));
// Execute the actual scheduling loop.
ListScheduleBottomUp();
}
//===----------------------------------------------------------------------===//
// Bottom-Up Scheduling
//===----------------------------------------------------------------------===//
/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
/// the AvailableQueue if the count reaches zero. Also update its cycle bound.
void ScheduleDAGFast::ReleasePred(SUnit *PredSU, bool isChain,
unsigned CurCycle) {
// FIXME: the distance between two nodes is not always == the predecessor's
// latency. For example, the reader can very well read the register written
// by the predecessor later than the issue cycle. It also depends on the
// interrupt model (drain vs. freeze).
PredSU->CycleBound = std::max(PredSU->CycleBound, CurCycle + PredSU->Latency);
--PredSU->NumSuccsLeft;
#ifndef NDEBUG
if (PredSU->NumSuccsLeft < 0) {
cerr << "*** List scheduling failed! ***\n";
PredSU->dump(&DAG);
cerr << " has been released too many times!\n";
assert(0);
}
#endif
if (PredSU->NumSuccsLeft == 0) {
PredSU->isAvailable = true;
AvailableQueue.push(PredSU);
}
}
/// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
/// count of its predecessors. If a predecessor pending count is zero, add it to
/// the Available queue.
void ScheduleDAGFast::ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle) {
DOUT << "*** Scheduling [" << CurCycle << "]: ";
DEBUG(SU->dump(&DAG));
SU->Cycle = CurCycle;
// Bottom up: release predecessors
for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
I != E; ++I) {
ReleasePred(I->Dep, I->isCtrl, CurCycle);
if (I->Cost < 0) {
// This is a physical register dependency and it's impossible or
// expensive to copy the register. Make sure nothing that can
// clobber the register is scheduled between the predecessor and
// this node.
if (!LiveRegDefs[I->Reg]) {
++NumLiveRegs;
LiveRegDefs[I->Reg] = I->Dep;
LiveRegCycles[I->Reg] = CurCycle;
}
}
}
// Release all the implicit physical register defs that are live.
for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
I != E; ++I) {
if (I->Cost < 0) {
if (LiveRegCycles[I->Reg] == I->Dep->Cycle) {
assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
assert(LiveRegDefs[I->Reg] == SU &&
"Physical register dependency violated?");
--NumLiveRegs;
LiveRegDefs[I->Reg] = NULL;
LiveRegCycles[I->Reg] = 0;
}
}
}
SU->isScheduled = true;
}
/// AddPred - adds an edge from SUnit X to SUnit Y.
bool ScheduleDAGFast::AddPred(SUnit *Y, SUnit *X, bool isCtrl, bool isSpecial,
unsigned PhyReg, int Cost) {
return Y->addPred(X, isCtrl, isSpecial, PhyReg, Cost);
}
/// RemovePred - This removes the specified node N from the predecessors of
/// the current node M.
bool ScheduleDAGFast::RemovePred(SUnit *M, SUnit *N,
bool isCtrl, bool isSpecial) {
return M->removePred(N, isCtrl, isSpecial);
}
/// CopyAndMoveSuccessors - Clone the specified node and move its scheduled
/// successors to the newly created node.
SUnit *ScheduleDAGFast::CopyAndMoveSuccessors(SUnit *SU) {
if (SU->FlaggedNodes.size())
return NULL;
SDNode *N = SU->Node;
if (!N)
return NULL;
SUnit *NewSU;
bool TryUnfold = false;
for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
MVT VT = N->getValueType(i);
if (VT == MVT::Flag)
return NULL;
else if (VT == MVT::Other)
TryUnfold = true;
}
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
const SDValue &Op = N->getOperand(i);
MVT VT = Op.getNode()->getValueType(Op.getResNo());
if (VT == MVT::Flag)
return NULL;
}
if (TryUnfold) {
SmallVector<SDNode*, 2> NewNodes;
if (!TII->unfoldMemoryOperand(DAG, N, NewNodes))
return NULL;
DOUT << "Unfolding SU # " << SU->NodeNum << "\n";
assert(NewNodes.size() == 2 && "Expected a load folding node!");
N = NewNodes[1];
SDNode *LoadNode = NewNodes[0];
unsigned NumVals = N->getNumValues();
unsigned OldNumVals = SU->Node->getNumValues();
for (unsigned i = 0; i != NumVals; ++i)
DAG.ReplaceAllUsesOfValueWith(SDValue(SU->Node, i), SDValue(N, i));
DAG.ReplaceAllUsesOfValueWith(SDValue(SU->Node, OldNumVals-1),
SDValue(LoadNode, 1));
SUnit *NewSU = CreateNewSUnit(N);
assert(N->getNodeId() == -1 && "Node already inserted!");
N->setNodeId(NewSU->NodeNum);
const TargetInstrDesc &TID = TII->get(N->getMachineOpcode());
for (unsigned i = 0; i != TID.getNumOperands(); ++i) {
if (TID.getOperandConstraint(i, TOI::TIED_TO) != -1) {
NewSU->isTwoAddress = true;
break;
}
}
if (TID.isCommutable())
NewSU->isCommutable = true;
// FIXME: Calculate height / depth and propagate the changes?
NewSU->Depth = SU->Depth;
NewSU->Height = SU->Height;
ComputeLatency(NewSU);
// LoadNode may already exist. This can happen when there is another
// load from the same location and producing the same type of value
// but it has different alignment or volatileness.
bool isNewLoad = true;
SUnit *LoadSU;
if (LoadNode->getNodeId() != -1) {
LoadSU = &SUnits[LoadNode->getNodeId()];
isNewLoad = false;
} else {
LoadSU = CreateNewSUnit(LoadNode);
LoadNode->setNodeId(LoadSU->NodeNum);
LoadSU->Depth = SU->Depth;
LoadSU->Height = SU->Height;
ComputeLatency(LoadSU);
}
SUnit *ChainPred = NULL;
SmallVector<SDep, 4> ChainSuccs;
SmallVector<SDep, 4> LoadPreds;
SmallVector<SDep, 4> NodePreds;
SmallVector<SDep, 4> NodeSuccs;
for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
I != E; ++I) {
if (I->isCtrl)
ChainPred = I->Dep;
else if (I->Dep->Node && I->Dep->Node->isOperandOf(LoadNode))
LoadPreds.push_back(SDep(I->Dep, I->Reg, I->Cost, false, false));
else
NodePreds.push_back(SDep(I->Dep, I->Reg, I->Cost, false, false));
}
for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
I != E; ++I) {
if (I->isCtrl)
ChainSuccs.push_back(SDep(I->Dep, I->Reg, I->Cost,
I->isCtrl, I->isSpecial));
else
NodeSuccs.push_back(SDep(I->Dep, I->Reg, I->Cost,
I->isCtrl, I->isSpecial));
}
if (ChainPred) {
RemovePred(SU, ChainPred, true, false);
if (isNewLoad)
AddPred(LoadSU, ChainPred, true, false);
}
for (unsigned i = 0, e = LoadPreds.size(); i != e; ++i) {
SDep *Pred = &LoadPreds[i];
RemovePred(SU, Pred->Dep, Pred->isCtrl, Pred->isSpecial);
if (isNewLoad) {
AddPred(LoadSU, Pred->Dep, Pred->isCtrl, Pred->isSpecial,
Pred->Reg, Pred->Cost);
}
}
for (unsigned i = 0, e = NodePreds.size(); i != e; ++i) {
SDep *Pred = &NodePreds[i];
RemovePred(SU, Pred->Dep, Pred->isCtrl, Pred->isSpecial);
AddPred(NewSU, Pred->Dep, Pred->isCtrl, Pred->isSpecial,
Pred->Reg, Pred->Cost);
}
for (unsigned i = 0, e = NodeSuccs.size(); i != e; ++i) {
SDep *Succ = &NodeSuccs[i];
RemovePred(Succ->Dep, SU, Succ->isCtrl, Succ->isSpecial);
AddPred(Succ->Dep, NewSU, Succ->isCtrl, Succ->isSpecial,
Succ->Reg, Succ->Cost);
}
for (unsigned i = 0, e = ChainSuccs.size(); i != e; ++i) {
SDep *Succ = &ChainSuccs[i];
RemovePred(Succ->Dep, SU, Succ->isCtrl, Succ->isSpecial);
if (isNewLoad) {
AddPred(Succ->Dep, LoadSU, Succ->isCtrl, Succ->isSpecial,
Succ->Reg, Succ->Cost);
}
}
if (isNewLoad) {
AddPred(NewSU, LoadSU, false, false);
}
++NumUnfolds;
if (NewSU->NumSuccsLeft == 0) {
NewSU->isAvailable = true;
return NewSU;
}
SU = NewSU;
}
DOUT << "Duplicating SU # " << SU->NodeNum << "\n";
NewSU = CreateClone(SU);
// New SUnit has the exact same predecessors.
for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
I != E; ++I)
if (!I->isSpecial) {
AddPred(NewSU, I->Dep, I->isCtrl, false, I->Reg, I->Cost);
NewSU->Depth = std::max(NewSU->Depth, I->Dep->Depth+1);
}
// Only copy scheduled successors. Cut them from old node's successor
// list and move them over.
SmallVector<std::pair<SUnit*, bool>, 4> DelDeps;
for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
I != E; ++I) {
if (I->isSpecial)
continue;
if (I->Dep->isScheduled) {
NewSU->Height = std::max(NewSU->Height, I->Dep->Height+1);
AddPred(I->Dep, NewSU, I->isCtrl, false, I->Reg, I->Cost);
DelDeps.push_back(std::make_pair(I->Dep, I->isCtrl));
}
}
for (unsigned i = 0, e = DelDeps.size(); i != e; ++i) {
SUnit *Succ = DelDeps[i].first;
bool isCtrl = DelDeps[i].second;
RemovePred(Succ, SU, isCtrl, false);
}
++NumDups;
return NewSU;
}
/// InsertCCCopiesAndMoveSuccs - Insert expensive cross register class copies
/// and move all scheduled successors of the given SUnit to the last copy.
void ScheduleDAGFast::InsertCCCopiesAndMoveSuccs(SUnit *SU, unsigned Reg,
const TargetRegisterClass *DestRC,
const TargetRegisterClass *SrcRC,
SmallVector<SUnit*, 2> &Copies) {
SUnit *CopyFromSU = CreateNewSUnit(NULL);
CopyFromSU->CopySrcRC = SrcRC;
CopyFromSU->CopyDstRC = DestRC;
SUnit *CopyToSU = CreateNewSUnit(NULL);
CopyToSU->CopySrcRC = DestRC;
CopyToSU->CopyDstRC = SrcRC;
// Only copy scheduled successors. Cut them from old node's successor
// list and move them over.
SmallVector<std::pair<SUnit*, bool>, 4> DelDeps;
for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
I != E; ++I) {
if (I->isSpecial)
continue;
if (I->Dep->isScheduled) {
AddPred(I->Dep, CopyToSU, I->isCtrl, false, I->Reg, I->Cost);
DelDeps.push_back(std::make_pair(I->Dep, I->isCtrl));
}
}
for (unsigned i = 0, e = DelDeps.size(); i != e; ++i) {
SUnit *Succ = DelDeps[i].first;
bool isCtrl = DelDeps[i].second;
RemovePred(Succ, SU, isCtrl, false);
}
AddPred(CopyFromSU, SU, false, false, Reg, -1);
AddPred(CopyToSU, CopyFromSU, false, false, Reg, 1);
Copies.push_back(CopyFromSU);
Copies.push_back(CopyToSU);
++NumCCCopies;
}
/// getPhysicalRegisterVT - Returns the ValueType of the physical register
/// definition of the specified node.
/// FIXME: Move to SelectionDAG?
static MVT getPhysicalRegisterVT(SDNode *N, unsigned Reg,
const TargetInstrInfo *TII) {
const TargetInstrDesc &TID = TII->get(N->getMachineOpcode());
assert(TID.ImplicitDefs && "Physical reg def must be in implicit def list!");
unsigned NumRes = TID.getNumDefs();
for (const unsigned *ImpDef = TID.getImplicitDefs(); *ImpDef; ++ImpDef) {
if (Reg == *ImpDef)
break;
++NumRes;
}
return N->getValueType(NumRes);
}
/// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay
/// scheduling of the given node to satisfy live physical register dependencies.
/// If the specific node is the last one that's available to schedule, do
/// whatever is necessary (i.e. backtracking or cloning) to make it possible.
bool ScheduleDAGFast::DelayForLiveRegsBottomUp(SUnit *SU,
SmallVector<unsigned, 4> &LRegs){
if (NumLiveRegs == 0)
return false;
SmallSet<unsigned, 4> RegAdded;
// If this node would clobber any "live" register, then it's not ready.
for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
I != E; ++I) {
if (I->Cost < 0) {
unsigned Reg = I->Reg;
if (LiveRegDefs[Reg] && LiveRegDefs[Reg] != I->Dep) {
if (RegAdded.insert(Reg))
LRegs.push_back(Reg);
}
for (const unsigned *Alias = TRI->getAliasSet(Reg);
*Alias; ++Alias)
if (LiveRegDefs[*Alias] && LiveRegDefs[*Alias] != I->Dep) {
if (RegAdded.insert(*Alias))
LRegs.push_back(*Alias);
}
}
}
for (unsigned i = 0, e = SU->FlaggedNodes.size()+1; i != e; ++i) {
SDNode *Node = (i == 0) ? SU->Node : SU->FlaggedNodes[i-1];
if (!Node || !Node->isMachineOpcode())
continue;
const TargetInstrDesc &TID = TII->get(Node->getMachineOpcode());
if (!TID.ImplicitDefs)
continue;
for (const unsigned *Reg = TID.ImplicitDefs; *Reg; ++Reg) {
if (LiveRegDefs[*Reg] && LiveRegDefs[*Reg] != SU) {
if (RegAdded.insert(*Reg))
LRegs.push_back(*Reg);
}
for (const unsigned *Alias = TRI->getAliasSet(*Reg);
*Alias; ++Alias)
if (LiveRegDefs[*Alias] && LiveRegDefs[*Alias] != SU) {
if (RegAdded.insert(*Alias))
LRegs.push_back(*Alias);
}
}
}
return !LRegs.empty();
}
/// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
/// schedulers.
void ScheduleDAGFast::ListScheduleBottomUp() {
unsigned CurCycle = 0;
// Add root to Available queue.
if (!SUnits.empty()) {
SUnit *RootSU = &SUnits[DAG.getRoot().getNode()->getNodeId()];
assert(RootSU->Succs.empty() && "Graph root shouldn't have successors!");
RootSU->isAvailable = true;
AvailableQueue.push(RootSU);
}
// While Available queue is not empty, grab the node with the highest
// priority. If it is not ready put it back. Schedule the node.
SmallVector<SUnit*, 4> NotReady;
DenseMap<SUnit*, SmallVector<unsigned, 4> > LRegsMap;
Sequence.reserve(SUnits.size());
while (!AvailableQueue.empty()) {
bool Delayed = false;
LRegsMap.clear();
SUnit *CurSU = AvailableQueue.pop();
while (CurSU) {
if (CurSU->CycleBound <= CurCycle) {
SmallVector<unsigned, 4> LRegs;
if (!DelayForLiveRegsBottomUp(CurSU, LRegs))
break;
Delayed = true;
LRegsMap.insert(std::make_pair(CurSU, LRegs));
}
CurSU->isPending = true; // This SU is not in AvailableQueue right now.
NotReady.push_back(CurSU);
CurSU = AvailableQueue.pop();
}
// All candidates are delayed due to live physical reg dependencies.
// Try code duplication or inserting cross class copies
// to resolve it.
if (Delayed && !CurSU) {
if (!CurSU) {
// Try duplicating the nodes that produces these
// "expensive to copy" values to break the dependency. In case even
// that doesn't work, insert cross class copies.
SUnit *TrySU = NotReady[0];
SmallVector<unsigned, 4> &LRegs = LRegsMap[TrySU];
assert(LRegs.size() == 1 && "Can't handle this yet!");
unsigned Reg = LRegs[0];
SUnit *LRDef = LiveRegDefs[Reg];
SUnit *NewDef = CopyAndMoveSuccessors(LRDef);
if (!NewDef) {
// Issue expensive cross register class copies.
MVT VT = getPhysicalRegisterVT(LRDef->Node, Reg, TII);
const TargetRegisterClass *RC =
TRI->getPhysicalRegisterRegClass(Reg, VT);
const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC);
if (!DestRC) {
assert(false && "Don't know how to copy this physical register!");
abort();
}
SmallVector<SUnit*, 2> Copies;
InsertCCCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies);
DOUT << "Adding an edge from SU # " << TrySU->NodeNum
<< " to SU #" << Copies.front()->NodeNum << "\n";
AddPred(TrySU, Copies.front(), true, true);
NewDef = Copies.back();
}
DOUT << "Adding an edge from SU # " << NewDef->NodeNum
<< " to SU #" << TrySU->NodeNum << "\n";
LiveRegDefs[Reg] = NewDef;
AddPred(NewDef, TrySU, true, true);
TrySU->isAvailable = false;
CurSU = NewDef;
}
if (!CurSU) {
assert(false && "Unable to resolve live physical register dependencies!");
abort();
}
}
// Add the nodes that aren't ready back onto the available list.
for (unsigned i = 0, e = NotReady.size(); i != e; ++i) {
NotReady[i]->isPending = false;
// May no longer be available due to backtracking.
if (NotReady[i]->isAvailable)
AvailableQueue.push(NotReady[i]);
}
NotReady.clear();
if (!CurSU)
Sequence.push_back(0);
else {
ScheduleNodeBottomUp(CurSU, CurCycle);
Sequence.push_back(CurSU);
}
++CurCycle;
}
// Reverse the order if it is bottom up.
std::reverse(Sequence.begin(), Sequence.end());
#ifndef NDEBUG
// Verify that all SUnits were scheduled.
bool AnyNotSched = false;
unsigned DeadNodes = 0;
unsigned Noops = 0;
for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
if (!SUnits[i].isScheduled) {
if (SUnits[i].NumPreds == 0 && SUnits[i].NumSuccs == 0) {
++DeadNodes;
continue;
}
if (!AnyNotSched)
cerr << "*** List scheduling failed! ***\n";
SUnits[i].dump(&DAG);
cerr << "has not been scheduled!\n";
AnyNotSched = true;
}
if (SUnits[i].NumSuccsLeft != 0) {
if (!AnyNotSched)
cerr << "*** List scheduling failed! ***\n";
SUnits[i].dump(&DAG);
cerr << "has successors left!\n";
AnyNotSched = true;
}
}
for (unsigned i = 0, e = Sequence.size(); i != e; ++i)
if (!Sequence[i])
++Noops;
assert(!AnyNotSched);
assert(Sequence.size() + DeadNodes - Noops == SUnits.size() &&
"The number of nodes scheduled doesn't match the expected number!");
#endif
}
//===----------------------------------------------------------------------===//
// Public Constructor Functions
//===----------------------------------------------------------------------===//
llvm::ScheduleDAG* llvm::createFastDAGScheduler(SelectionDAGISel *IS,
SelectionDAG *DAG,
MachineBasicBlock *BB, bool) {
return new ScheduleDAGFast(*DAG, BB, DAG->getTarget());
}